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Preface

The fourth BioASQ workshop on biomedical semantic indexing and question answering took place in
Berlin, Germany on August 13th, 2016 and was hosted by the Humboldt University. The workshop
was supported by the BioASQ project1, which organizes the corresponding annual challenge. The goals
of the workshop were to present the results of the fourth BioASQ challenge and further the interaction
with the wider community of biomedical semantic indexing and question answering. The presenters
represented research teams from different parts of the globe and with different viewpoints to the problem.
This contributed to a very lively and interesting discussion among the participants of the workshop. Six
papers were presented during the workshop. All were selected by peer review for presentation. This
volume includes 7 papers and one abstract: The first paper gives an overview of the challenge, including
especially the datasets that were used throughout the challenges and the overall results achieved by the
participants.
The remaining six papers are those presented at the workshop. The first of these papers is a new extension
of the MTI system. In particular, Learning to Rank methodology is used as a boosting component
of the MTI system. The second paper present a system which includes several multi-label classifiers
(MLC) that are combined in ensembles. Elastic-Search for indexing is the object of discourse of the
third workshop paper. The fourth paper presents a system which uses TmTool in addition to MetaMap, to
identify possible biomedical named entities, especially out-of-vocabulary concepts. They also introduced
a unified classification interface for judging the relevance of each retrieved concept, document, and
snippet, which can combine the relevant scores evidenced by various sources. The system presented in
the fifth paper relies on the Hana Database for text processing. It uses the Stanford CoreNLP package
for tokenizing the questions. Each of the tokens is then sent to the BioPortal and to the Hana database
for concept retrieval. The concepts retrieved from the two stores are finally merged to a single list that is
used to retrieve relevant text passages from the documents at hand. The last paper focuses on the retrieval
of relevant documents and snippets. The proposed system uses a cluster-based language model. Then, it
reranks the retrieved top-n sentences using five independent similarity models based on shallow semantic
analysis.

Finally, the proceedings also include the abstract of one paper that was presented in the poster session
only, which describes an approach for extending the web services in order to retrieve the relevant
documents, concepts, snippets and triples for the question-answering task.

We wish to thank all who participated to the success of this workshop, especially the authors, reviewers,
speakers and participants.

Ioannis A. Kakadiaris, George Paliouras and Anastasia Krithara
August 2016

1http://www.bioasq.org

iii





Organizers:

Ioannis A. Kakadiaris, University of Houston, USA
George Paliouras, NCSR "Demokritos", Greece and University of Houston, USA
Anastasia Krithara, NCSR "Demokritos", Greece

Program Committee:

Ion Androutsopoulos, Athens University of Economics and Business, Greece
Nicolas Baskiotis, Université Pierre et Marie Curie, France
Dimitris Galanis, National Technical University of Athens, Greece
Brigitte Grau, LIMSI/CNRS, France
Aris Kosmopoulos, NCSR “Demokritos”, Greece
Zhiyong Lu, National Library of Medicine, USA
Prodromos Malakasiotis, Athens University of Economics and Business, Greece
Jim Mork, National Library of Medicine, USA
Diego Molla, Macquarie University, Australia
Henning Müller, University of Applied Sciences, Switzerland
Claire Nedellec, INRA, France
Mariana Neves, University of Potsdam, Germany
Harris Papageorgiou, ILSP, Greece
Ioannis Partalas, Viseo group, France
John Prager, Thomas J. Watson Research Center, IBM, USA
Francisco J. Ribadas-Pena, University of Vigo, Spain
Hagit Shatkay, University of Delaware, USA
Grigoris Tsoumakas, Aristotle University of Thessaloniki, Greece
Christina Unger, Bielefeld University, Germany
Ellen Voorhees, National Institute of Standards and Technology, USA

Invited Speaker:

Sherri Matis-Mitchell, independent consultant for Text, Data and Social Media Analytics at Data
Star Insights

v





Table of Contents

Results of the 4th edition of BioASQ Challenge
Anastasia Krithara, Anastasios Nentidis, Georgios Paliouras and Ioannis Kakadiaris . . . . . . . . . . . . 1

Using Learning-To-Rank to Enhance NLM Medical Text Indexer Results
Ilya Zavorin, James Mork and Dina Demner-Fushman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

LABDA at the 2016 BioASQ challenge task 4a: Semantic Indexing by using ElasticSearch
Isabel Segura-Bedmar, Adrián Carruana and Paloma Martínez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Learning to Answer Biomedical Questions: OAQA at BioASQ 4B
Zi Yang, Yue Zhou and Eric Nyberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

HPI Question Answering System in BioASQ 2016
Frederik Schulze, Ricarda Schüler, Tim Draeger, Daniel Dummer, Alexander Ernst, Pedro Flem-

ming, Cindy Perscheid and Mariana Neves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

KSAnswer: Question-answering System of Kangwon National University and Sogang University in the
2016 BioASQ Challenge

Hyeon-gu Lee, Minkyoung Kim, Harksoo Kim, Juae Kim, Sunjae Kwon, Jungyun Seo, Yi-Reun
Kim and Jung-Kyu Choi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Large-Scale Semantic Indexing and Question Answering in Biomedicine
Eirini Papagiannopoulou, Yiannis Papanikolaou, Dimitris Dimitriadis, Sakis Lagopoulos, Grigorios

Tsoumakas, Manos Laliotis, Nikos Markantonatos and Ioannis Vlahavas . . . . . . . . . . . . . . . . . . . . . . . . . . 50

WS4A: a Biomedical Question and Answering System based on public web services and ontologies
Miguel J. Rodrigues, Miguel Falé and Francisco M Couto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii





Conference Program

9:00-9:15 Welcome
9:15-10:15 Invited speaker: Sherri Matis-Mitchell “Solving Problems and Supporting Deci-

sions in Pharma R& D using Text Analytics: A Recent History”
10:15-10:30 Results of the 4th edition of BioASQ Challenge

Anastasia Krithara, Anastasios Nentidis, Georgios Paliouras and Ioannis Kakadiaris
10:30-11:00 Coffee break
11:00-12:30 BioASQ participant session

11:00-11:15 Using Learning-To-Rank to Enhance NLM Medical Text Indexer Results
Ilya Zavorin, James Mork and Dina Demner-Fushman

11:15-11:30 LABDA at the 2016 BioASQ challenge task 4a: Semantic Indexing by using Elas-
ticSearch
Isabel Segura-Bedmar, Adrián Carruana and Paloma Martínez

11:30-11:45 Learning to Answer Biomedical Questions: OAQA at BioASQ 4B
Zi Yang, Yue Zhou and Eric Nyberg

11:45-12:00 HPI Question Answering System in BioASQ 2016
Frederik Schulze, Ricarda Schüler, Tim Draeger, Daniel Dummer, Alexander Ernst,
Pedro Flemming, Cindy Perscheid and Mariana Neves

12:00-12:15 KSAnswer: Question-answering System of Kangwon National University and So-
gang University in the 2016 BioASQ Challenge
Hyeon-gu Lee, Minkyoung Kim, Harksoo Kim, Juae Kim, Sunjae Kwon, Jungyun
Seo, Yi-Reun Kim and Jung-Kyu Choi

12:15-12:30 Large-Scale Semantic Indexing and Question Answering in Biomedicine
Eirini Papagiannopoulou, Yiannis Papanikolaou, Dimitris Dimitriadis, Sakis
Lagopoulos, Grigorios Tsoumakas, Manos Laliotis, Nikos Markantonatos and Ioan-
nis Vlahavas

Poster WS4A: a Biomedical Question and Answering System based on public web services
and ontologies
Miguel J. Rodriques, Miguel Fale and Francisco M. Couto

ix





Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1–7,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Results of the 4th edition of BioASQ Challenge
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Abstract

The goal of this task is to push the re-
search frontier towards hybrid information
systems. We aim to promote systems and
approaches that are able to deal with the
whole diversity of the Web, especially for,
but not restricted to, the context of bio-
medicine. This goal is pursued by the
organization of challenges. The fourth
challenge, as the previous challenges, con-
sisted of two tasks: semantic indexing and
question answering. 16 systems partic-
ipated by 7 different participating teams
for the semantic indexing task. The ques-
tion answering task was tackled by 37 dif-
ferent systems, developed by 11 different
teams. 25 of the systems participated in
the phase A of the task, while 12 par-
ticipated in phase B. 3 of the teams par-
ticipated in both phases of the question
answering task. Overall, as in previous
years, the best systems were able to out-
perform the strong baselines. This sug-
gests that advances over the state of the art
were achieved through the BIOASQ chal-
lenge but also that the benchmark in it-
self is very challenging. In this paper, we
present the data used during the challenge
as well as the technologies which were at
the core of the participants’ frameworks.

1 Introduction

The aim of this paper is twofold. First, we aim
to give an overview of the data issued during the
BioASQ challenge in 2016. In addition, we aim to
present the systems that participated in the chal-
lenge and for which we received system descrip-
tions, as well as evaluate their performance. To
achieve these goals, we begin by giving a brief

overview of the tasks, including the timing of the
different tasks and the challenge data. Thereafter,
we give an overview of the systems which par-
ticipated in the challenge and provided us with
an overview of the technologies they relied upon.
Detailed descriptions of some of the systems are
given in lab proceedings. The evaluation of the
systems, which was carried out by using state-of-
the-art measures or manual assessment, is the last
focal point of this paper. The conclusion sums up
the results of this challenge.

2 Overview of the Tasks

The challenge comprised two tasks: (1) a large-
scale semantic indexing task (Task 4a) and (2) a
question answering task (Task 4b).

Large-scale semantic indexing. In Task 4a the
goal is to classify documents from the PubMed1

digital library into concepts of the MeSH2 hierar-
chy. Here, new PubMed articles that are not yet
annotated are collected on a weekly basis. These
articles are used as test sets for the evaluation of
the participating systems. As soon as the anno-
tations are available from the PubMed curators,
the performance of each system is calculated by
using standard information retrieval measures as
well as hierarchical ones. The winners of each
batch were decided based on their performance in
the Micro F-measure (MiF) from the family of flat
measures (Tsoumakas et al., 2010), and the Low-
est Common Ancestor F-measure (LCA-F) from
the family of hierarchical measures (Kosmopou-
los et al., 2013). For completeness several other
flat and hierarchical measures were reported (Ba-
likas et al., 2013). In order to provide an on-line
and large-scale scenario, the task was divided into
three independent batches. In each batch 5 test

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://www.ncbi.nlm.nih.gov/mesh/
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sets of biomedical articles were released consecu-
tively. Each of these test sets were released in a
weekly basis and the participants had 21 hours to
provide their answers. Figure 1 gives an overview
of the time plan of Task 4a.

Biomedical semantic QA. The goal of task 4b
was to provide a large-scale question answering
challenge where the systems should be able to
cope with all the stages of a question answer-
ing task, including the retrieval of relevant con-
cepts and articles, as well as the provision of
natural-language answers. Task 4b comprised
two phases: In phase A, BIOASQ released ques-
tions in English from benchmark datasets created
by a group of biomedical experts. There were
four types of questions: “yes/no” questions, “fac-
toid” questions,“list” questions and “summary”
questions (Balikas et al., 2013). Participants
had to respond with relevant concepts (from spe-
cific terminologies and ontologies), relevant arti-
cles (PubMed articles), relevant snippets extracted
from the relevant articles and relevant RDF triples
(from specific ontologies). In phase B, the re-
leased questions contained the correct answers for
the required elements (articles and snippets) of
the first phase. The participants had to answer
with exact answers as well as with paragraph-sized
summaries in natural language (dubbed ideal an-
swers).

The task was split into five independent batches.
The two phases for each batch were run with a
time gap of 24 hours. For each phase, the partic-
ipants had 24 hours to submit their answers. We
used well-known measures such as mean preci-
sion, mean recall, mean F-measure, mean average
precision (MAP) and geometric MAP (GMAP)
to evaluate the performance of the participants
in Phase A. The winners were selected based on
MAP. The evaluation in phase B for the ideal an-
swers was carried out manually by biomedical ex-
perts on the answers provided by the systems. For
the sake of completeness, ROUGE (Lin, 2004) is
also reported. For the exact answers, we used ac-
curacy for the yes/no questions, mean reciprocal
rank (MRR) for the factoids and mean F-measure
for the list questions.

3 Overview of Participants

3.1 Task 4a
In this subsection we describe the proposed
systems which have sent a description and stress
their key characteristics.
In (Papagiannopoulou et al., 2016) flat classifi-
cation processes were employed for the semantic
indexing task. In particular, they used as a training
set the last 1 million articles and kept the last 50
thousand as a validation set. Pre-processing of
the articles was carried out by concatenated the
abstract and the title. One-grams and bi-grams
were used as features, removing stop-words and
features with less than five occurrences in the
corpus. The tf-idf representation has been used
for the features. The proposed system includes
several multi-label classifiers (MLC) that are
combined in ensembles. In particular, they used
the Meta-Labeler, a set of Binary Relevance
(BR) models with Linear SVMs and a Labeled
LDA variant, Prior LDA. All the above models
were combined in an ensemble, using the MULE
framework, a statistical significance multi-label
ensemble that performs classifier selection.
The approach proposed by (Segura-Bedmar et
al., 2016) is based on Elastic Search. They use
ElasticSearch in order to index the training set
provided by the BioASQ. Then, each document
in the test set is translated into a query, that is
fired against the index built from the training set,
returning the most relevant documents and their
MeSH categories. Finally, each MeSH category
is ranked using a scoring system based on the
frequency of the category and the similarity of
relevant documents, which contain the category,
with the test document to classify.

Baselines. During the challenge three systems
were served as baseline systems. The first base-
line is a state-of-the-art method called Medical
Text Indexer (MTI) (Mork et al., 2014) which is
developed by the National Library of Medicine3

and serves as a classification system for articles of
MEDLINE. MTI is used by curators in order to
assist them in the annotation process. The second
baseline is an extension of the system MTI with
the approaches of the first BioASQ challenge’s
winner (Tsoumakas et al., 2013). The third one,
dubbed BioASQ Filtering (Zavorin et al., 2016) is

3http://ii.nlm.nih.gov/MTI/index.shtml
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Figure 2: The time plan of Task 4b. The two phases for each batch run in consecutive days.

a new extension of the MTI system. In particular,
Learning to Rank methodology is used as a boost-
ing component of the MTI system. The improved
system shows significant gains in both precision
and recall for some specific classes of MeSH head-
ings.

3.2 Task 4b

As mentioned above, the second task of the
challenge is split into two phases. In the first
phase, where the goal is to annotate questions
with relevant concepts, documents, snippets and
RDF triples 9 teams with 25 systems participated.
In the second phase, where teams are requested
to submit exact and paragraph-sized answers for
the questions, 5 teams with 12 different systems
participated.
The system presented in (Papagiannopoulou et
al., 2016) is based on Indri search engine, and
they use MetaMap and LingPipe to detect the
biomedical concepts in local ontology files. For
the relevant snippets, they calculate the semantic
similarity between each one of the sentences
and the query (expanded with synonyms) using a
semantic similarity measure. Concerning phase B,
They provided exact answers only for the factoid
questions. Their system is based on their previous
participation in BioASQ challenge (Papanikolaou
et al., 2014). The system tries to extract the
lexical answer type by manipulating the words

of the question. Then, the relevant snippets of
the question which are provided as inputs for
this tasks are processed with the 2013 release of
MetaMap in order to extract candidate answers.
This year, they have extended their approach by
expanding both the scoring mechanism, as well as
the set of candidate answers.
The system presented in (Yang et al., 2016),
extends the system in (Yang et al., 2015). In
particular, they used TmTool (CH et al., 2016),
in addition to MetaMap, to identify possible
biomedical named entities, especially out-of-
vocabulary concepts. In addition, they also
extract frequent multi-word terms from relevant
snippets to further improve the recall of concept
and candidate answer text extraction. They also
introduced a unified classification interface for
judging the relevance of each retrieved concept,
document, and snippet, which can combine the
relevant scores evidenced by various sources. A
supervised learning method is used to rerank the
answer candidates for factoid and list questions
based on the relation between each candidate
answer and other candidate answers.
The system presented in (Schulze et al., 2016)
relies on the Hana Database for text processing.
It uses the Stanford CoreNLP package for tok-
enizing the questions. Each of the tokens is then
sent to the BioPortal and to the Hana database
for concept retrieval. The concepts retrieved from

3



the two stores are finally merged to a single list
that is used to retrieve relevant text passages
from the documents at hand. The second system
relies on existing NLP functionality in the IMDB.
They have extended it with new functions tailored
specifically to QA.
The approach presented in (gu Lee et al., 2016)
participated in phase A of task 4b. The main
focus was the retrieval of relevant documents and
snippets. The proposed system uses a clusterbased
language model. Then, it reranks the retrieved
top-n sentences using five independent similarity
models based on shallow semantic analysis.

4 Results

4.1 Task 4a

During the evaluation phase of the Task 4a, the
participants submitted their results on a weekly ba-
sis to the online evaluation platform of the chal-
lenge4. The evaluation period was divided into
three batches containing 5 test sets each. 7 teams
were participated in the task with a total of 16
systems. For measuring the classification perfor-
mance of the systems several evaluation measures
were used both flat and hierarchical ones (Balikas
et al., 2013). The micro F-measure (MiF) and the
Lowest Common Ancestor F-measure (LCA-F)
were used to asses the systems and choose the win-
ners for each batch (Kosmopoulos et al., 2013).
12, 208, 342 articles with 27, 301 labels (19.4GB)
were provided as training data to the participants.
Table 1 shows the number of articles in each test
set of each batch of the challenge.

Table 2 presents the correspondence of the sys-
tems for which a description was available and the
submitted systems in Task 4a. The systems MTI
First Line Index, Default MTI, BioASQ Filtering
were the baseline systems used throughout the
challenge. Systems that participated in less than
4 test sets in each batch are not reported in the
results5.
According to (Demsar, 2006) the appropriate way
to compare multiple classification systems over
multiple datasets is based on their average rank
across all the datasets. On each dataset the system
with the best performance gets rank 1.0, the

4http://participants-area.bioasq.org/
5According to the rules of BioASQ, each system had to

participate in at least 4 test sets of a batch in order to be eli-
gible for the prizes.

second best rank 2.0 and so on. In case that two
or more systems tie, they all receive the average
rank.
Tables 3 presents the average rank (according to
MiF and LCA-F) of each system over all the test
sets for the corresponding batches. Note, that the
average ranks are calculated for the 4 best results
of each system in the batch according to the rules
of the challenge6. The best ranked system is
highlighted with bold typeface.

Table 4: Statistics on the training and test datasets
of Task 4b. All the numbers for the documents,
snippets, concepts and triples refer to averages.

Batch Size # of documents # of snippets

training 1307 13.00 17.86
1 100 4.56 6.41
2 100 5.25 6.98
3 100 4.79 6.46
4 100 4.90 7.25
5 97 3.93 6.10

total 1804 10.71 14.77

4.2 Task 4b
Phase A. Table 4 presents the statistics of the
training and test data provided to the participants.
The evaluation included five test batches. For the
phase A of Task 4b the systems were allowed
to submit responses to any of the correspond-
ing types of annotations, that is documents, con-
cepts, snippets and RDF triples. For each of the
categories we rank the systems according to the
Mean Average Precision (MAP) measure (Balikas
et al., 2013). The final ranking for each batch is
calculated as the average of the individual rank-
ings in the different categories. In tables 6 and 7
some indicative results from batch 1 are presented.
The detailed results for Task 4b phase A can
be found in http://participants-area.
bioasq.org/results/4b/phaseA/.

Phase B. In the phase B of Task 4b the systems
were asked to report exact and ideal answers. The
systems were ranked according to the manual
evaluation of ideal answers by the BioASQ
experts (Balikas et al., 2013), and according to
automatic measures for the exact answers.
Table 7 shows the results for the exact answers
for the first batch of task 4a. In case that systems

6http://participants-area.bioasq.org/
general_information/Task4a/
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Table 1: Statistics on the test datasets of Task 4a.
Batch Articles Annotated Articles Labels per article

1 3,740 569 11.25
2,872 714 12.01
2,599 275 11.09
3,294 520 13.72
3,210 418 11.23

Subtotal 15,715 2,496 11.96

2 3,212 443 10.57
3,213 371 11.37
2,831 534 11.78
3,111 541 10.67
2,470 268 9.82

Subtotal 14,837 2,157 10.94

3 2,994 89 12.08
3,044 353 11.79
3,351 241 10.81
2,630 93 9.77
3,130 50 12.56

Subtotal 15,149 826 11.35

Total 45,701 5,479 11.42

Table 2: Correspondence of reference and submitted systems for Task 4a.
Reference Systems

(Papagiannopoulou et al., 2016) Auth1, Auth2
(Segura-Bedmar et al., 2016) LABDA ElasticSearch, LargeElasticLABDA, LABDA baseline
Baselines ((Mork et al., 2013),(Zavorin et al., 2016)) MTI First Line Index, Default MTI, BioASQ Filtering

Table 3: Average ranks for each system across the batches of the task 4a for the measures MiF and
LCA-F. A hyphenation symbol (-) is used whenever the system participated in less than 4 times in the
batch.
System Batch 1 Batch 2 Batch 3

MiF LCA-F MiF LCA-F MiF LCA-F

iria-1 - - 9.0 9.0 - -
LABDA ElasticSearch - - - - - -
d33p - - - - - -
auth1 2.75 3.25 3.75 3.75 - -
Default MTI 4.0 3.0 5.0 4.5 - -
auth2 - - 6.0 6.25 - -
MeSHLabeler 1.25 1.25 1.25 1.25 - -
LargeElasticLABDA - - - - - -
LABDA baseline - - - - - -
BioASQ Filtering 4.5 4.75 5.75 5.5 - -
MeSHLabeler-2 - - 2.0 2.0 - -
MeSHLabeler-1 1.75 1.75 - - - -
MeSHLabeler-3 - - 3.5 3.25 - -
CSX-1 - - - - - -
MTI First Line Index 5.5 5.75 5.75 6.25 - -
UCSDLogReg - - - - - -

didn’t provide exact answers for a particular
kind of questions we used the symbol “-”. The
results of the other batches are available at
http://participants-area.bioasq.
org/results/4b/phaseB/. From those
results we can see that the systems are achieving
a very high (> 90% accuracy) performance in the
yes/no questions. The performance in factoid and
list questions is not as good indicating that there
is room for improvements.

5 Conclusion

In this paper, an overview of the fourth BioASQ
challenge is presented. As the previous chal-
lenges, the challenge consisted of two tasks: se-
mantic indexing and question answering. Over-
all, as in previous years, the best systems were
able to outperform the strong baselines provided
by the organizers. This suggests that advances
over the state of the art were achieved through the
BIOASQ challenge but also that the benchmark in

5



Table 5: Results for batch 1 for documents in phase A of Task 4b.
System Mean Mean Mean MAP GMAP

Precision Recall F-measure

testtext 0.169 0.5331 0.2276 0.0981 0.0128
ustb prir2 0.158 0.5277 0.2164 0.0973 0.0119
ustb prir4 0.165 0.5254 0.2224 0.0967 0.0109
fdu2 0.147 0.5011 0.2012 0.0885 0.0087
ustb prir3 0.156 0.497 0.2114 0.0869 0.0095
fdu 0.153 0.5086 0.2081 0.0866 0.0095
ustb prir1 0.155 0.4936 0.2097 0.0865 0.0088
fdu4 0.15 0.5057 0.205 0.0859 0.012
fdu3 0.154 0.5184 0.2112 0.0849 0.0109
fdu5 0.149 0.4971 0.2036 0.0823 0.01
KNU-SG Team Korea 0.084 0.2258 0.1065 0.0486 0.0008
HPI-S1 0.1209 0.3266 0.1547 0.0474 0.0012
Auth001 0.069 0.1983 0.0914 0.0375 0.0004
WS4A 0.01 0.0134 0.011 0.0038 0
HPI-S2 0.005 0.0062 0.0054 0.0028 0

Table 6: Results for batch 1 for snippets in phase A of Task 4b.
System Mean Mean Mean MAP GMAP

Precision Recall F-measure

HPI-S1 0.0822 0.1706 0.0917 0.0481 0.0005
KNU-SG Team Korea 0.0482 0.0952 0.0534 0.0266 0.0002
ustb prir2 0.0469 0.1135 0.0503 0.0216 0.0002
ustb prir3 0.0452 0.1070 0.0482 0.0212 0.0002
ustb prir1 0.0409 0.1080 0.0491 0.0211 0.0002
ustb prir4 0.0449 0.1108 0.0477 0.0201 0.0002
testtext 0.0433 0.1098 0.0460 0.0188 0.0002

Table 7: Results for batch 3 for exact answers in phase B of Task 4b.
System Yes/no Factoid List

Accuracy Strict Acc. Lenient Acc. MRR Precision Recall F-measure

fa1 0.9600 0.1154 0.1923 0.1442 0.2500 0.3000 0.2641
Lab Zhu ,Fdan Univer 0.9600 0.1923 0.2692 0.2192 0.1450 0.5929 0.2181
LabZhu,FDU 0.9600 0.1923 0.2692 0.2192 0.1444 0.6214 0.2176
LabZhu FDU 0.9600 0.1923 0.2692 0.2192 0.1420 0.5929 0.2132
Lab Zhu,Fudan Univer 0.9600 0.1923 0.2692 0.2192 0.1455 0.5770 0.2185
oaqa-3b-3 0.5200 0.2308 0.2692 0.2436 0.5396 0.5008 0.4828
WS4A 0.2400 0.0385 0.0385 0.0385 0.1172 0.2817 0.1609
LabZhu-FDU 0.0400 0.1923 0.2692 0.2192 0.1420 0.5929 0.2132
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itself is very challenging. Consequently, we regard
the outcome of the challenge as a success towards
pushing the research on bio-medical information
systems a step further. In future editions of the
challenge, we aim to provide even more bench-
mark data derived from a community-driven ac-
quisition process.
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Abstract

For almost 15 years, the NLM Medical
Text Indexer (MTI) system has been pro-
viding assistance to NLM Indexers, Cat-
alogers, and the History of Medicine Di-
vision (HMD) in the task of indexing the
ever increasing number of MEDLINE ci-
tations, with MTI’s role continuously ex-
panding by providing more extensive and
specialized coverage of the MEDLINE
collection. The BioASQ Challenge has
been a tremendous benefit by expanding
the knowledge of leading-edge indexing
research. In this paper we present an in-
dexing approach based on the Learning
to Rank methodology which was success-
fully applied to the indexing task by sev-
eral participants of recent Challenges. The
proposed solution is designed to enhance
the results that come from MTI by com-
bining strengths of MTI with additional
sources of evidence to produce a more ac-
curate list of top MeSH Heading candi-
dates for a MEDLINE citation being in-
dexed. It incorporates novel Learning to
Rank features and other enhancements to
produce performance superior to that of
MTI, both overall and for two specific
classes of MeSH Headings for which MTI
has shown poor performance.

1 Introduction

The Indexing Section of the US National Library
of Medicine R© (NLM R©) is tasked with processing
the ever increasing number of MEDLINE R©1 cita-
tions (currently numbering more than 800,000 ar-
ticles per year from more than 5,600 journals in
almost 40 languages) using a vocabulary of over

1https://www.nlm.nih.gov/pubs/factsheets/medline.html

27,000 MeSH R© Descriptors and 220,000 MeSH
Supplementary Concept Records2. To support
this effort, various automatic and semi-automatic
indexing solutions have been proposed over the
years, including the NLM Medical Text Indexer
(MTI) system (Mork et al., 2013).

Given any biomedical text, MTI produces a
ranked list of controlled vocabulary terms (MeSH)
that summarizes the main points of the text us-
ing MeSH Main Headings (MH), Subheadings
(SH), Check Tags (CT), and Supplementary Con-
cept Records (SCRs). It can also recommend
a limited number of Publication Types3 (Yepes
et al., 2013a). MTI fuses heading recommenda-
tions from three separate sources: MetaMap in-
dexing (Aronson and Lang, 2010), PubMed R© Re-
lated Citations (Lin and Wilbur, 2007) and Ma-
chine Learning (Yepes et al., 2013b), with the lat-
ter source used to improve performance on some
of the most frequent CheckTags. The results of
this fusion are post-processed using various rules
based on the end-user requirements, to provide a
customized summary of the text. In this paper we
focus solely on MH and CT indexing.

MTI has been made available to the research
community worldwide4 providing both a baseline
for performance evaluations and input data for
several other indexing systems. This includes re-
sults MTI produces for each of the weekly datasets
during the BioASQ Challenges (Tsatsaronis et al.,
2015).

Since 2013, the MTI team has been participat-
ing in the BioASQ Challenge which has proven
to be an excellent forum for exchange and evalu-
ation of ideas for biomedical indexing and which
inspired several recent improvements in the MTI
system (Mork et al., 2014). In this paper we

2https://www.nlm.nih.gov/mesh/meshhome.html
3https://www.nlm.nih.gov/mesh/pubtypes.html
4https://ii.nlm.nih.gov/MTI/index.shtml
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present a component that is designed to enhance
results produced by MTI. This component is based
on the Learning to Rank methodology that was
successfully used by several participants of recent
Challenges (Liu et al., 2014a; Liu et al., 2015) .
While learning from that work, we have also ex-
perimented with several new features specifically
engineered to harness the power of MTI, as well
as to incorporate other heterogeneous sources of
evidence. We applied L2R to the results generated
by MTI for the test batches of the 2016 BioASQ
Challenge and other test collections comprised of
recent MEDLINE citations. L2R outperformed
MTI on these collections, both overall and for two
specific classes of MeSH Headings for which MTI
has performed poorly.

2 Learning to Rank

The task of MEDLINE indexing can be formu-
lated as a ranking problem: given a new PubMed
citation, can we find those MeSH headings that are
the most relevant to this citation? In this formula-
tion, the indexing task becomes similar to the doc-
ument retrieval task, in which the documents in a
collection are evaluated for relevance, significance
or importance to an incoming query. In document
retrieval, the documents are usually long and the
queries are short, whereas in this application of
ranking, the roles are in a way reversed: the ci-
tation is the query while the MeSH headings are
the documents (Ruch, 2006).

In recent years, the Learning to Rank method-
ology (Liu, 2009) has been successfully applied
to biomedical indexing. Learning to Rank (L2R)
uses supervised machine learning to build a model
that calculates a numerical score for any citation-
heading pair. Thus, given a target citation and a
set of candidate headings, L2R scores can be used
to rank these candidates. The top N ranked candi-
dates from the set are then selected as the relevant
headings. The value of N is usually calculated for
each citation individually.

During the training stage of L2R, a set of cita-
tions previously indexed by humans is processed
to build the ranking model. For each training ci-
tation, a set of candidate headings is generated.
While in principle the whole MeSH (more than
27,000 headings) may be used as candidates, in
practice, only a relatively small subset of headings
deemed more likely to be relevant is considered.

For each citation and each candidate heading,

a feature vector is calculated. Each feature usu-
ally depends on both the citation and the heading
and measures similarity between the two in some
space. The features can be derived both from the
raw data (such as n-grams appearing in the title
and abstract of the citation and entry terms of the
heading) and from metadata (such as statistics of
occurrence of the heading in the journal where the
citation is published). To each feature vector, a bi-
nary relevance flag is then assigned that equals 1
if the corresponding candidate MeSH heading has
been assigned to the citation by a human indexer,
and 0 otherwise. Assuming the same number MT

of candidates for each of the T training citations,
this yields MT ∗T feature vectors with correspond-
ing relevance flags. This training dataset is then
used to build a ranking model.

Processing of a new target citation also consists
of several steps. As during training, a set of candi-
date headings is first collected and then the corre-
sponding set of feature vectors is generated. These
vectors are ranked by the trained model and then
truncated to produce the final set of recommended
headings.

3 Learning-To-Rank as an MTI Booster

MTI is a mature indexing tool that provides high-
accuracy recommendations for some classes of
MeSH headings, such as CheckTags (Yepes et al.,
2013b), while performing worse on other classes,
such as “as Topic” headings5. It is a sophisti-
cated multi-stage processing system that generates
as output its own ranked list of candidate head-
ings. As additional evidence, it can also produce
a list of rejected candidates that, while being ulti-
mately labeled by MTI as irrelevant based on var-
ious heuristics, have at least some relevance to the
target citation. The headings at the very top of
MTI ranked list for a citation are almost always
correct. For example, in 2015, the percentage of
correct recommendations for the highest ranked
CheckTag candidates and the top five other recom-
mendations were, respectively, 81.21%, 84.97%,
73.78%, 65.10%, 57.57%, and 51.15%, with the
performance trailing off further down the list.
Therefore, we choose to employ the L2R method-
ology to develop a complete indexing solution that
uses MTI results as input. We use various types of

5For each “As Topic” MeSH heading, there is a corre-
sponding Publication Type. These are designed to capture
differences between what a citation is (Publication Type) ver-
sus what it is about (“as Topic” MeSH heading).
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information provided by MTI to both generate the
candidate heading list for a given citation and to
compute some of the L2R features for these candi-
dates. We also expand the candidate list with head-
ings obtained from other sources, such as PubMed
Related Citations (Lin and Wilbur, 2007) now
known as Similar Articles, and use other types of
evidence independent of MTI and PRC to generate
additional features. The result is a software com-
ponent that takes as input detailed MTI results for
a given target citation, together with the external
evidence, to produce a new list of indexing recom-
mendations that, on average, has higher precision
and recall than MTI.

Given a set of citations, each citation is pro-
cessed as follows:

1. MTI is applied to the citation to produce
an expanded ranked set of candidates that
includes both accepted and rejected MeSH
headings. For each candidate heading, we
record its MTI score, whether it is a Check-
Tag and whether it is accepted or rejected.

2. A set of PubMed Related Citations is col-
lected, together with their normalized sim-
ilarity scores and their MeSH headings as-
signed by human indexers.

3. The final MeSH heading candidate set is gen-
erated as the union of MTI- and PRC-derived
candidates.

4. For each candidate heading in the final set, a
feature vector is calculated (see Section 4 for
details).

5. In the L2R training mode, feature vectors for
all citations are collected into a single train-
ing set that is used to train a model. Training
is performed offline and no incremental train-
ing or tuning of the model is done afterwards.

6. In the L2R ranking mode:

(a) The trained model computes a rank-
ing score for each feature vector cor-
responding to a heading from the final
candidate set.

(b) Top candidates from the ranked list are
selected as the final result (see Section 5
for more details on different ways of cal-
culating the number of top candidates).

4 Features

4.1 PubMed Related Citations Based
Features

We implemented two neighborhood features orig-
inally proposed in (Huang et al., 2011) that we de-
note by PRCfreq and PRCsim. They are derived
from PubMed Related Citations of the citation be-
ing processed, their MeSH Headings and normal-
ized similarity scores. For each candidate heading,
PRCfreq is the number of PubMed Related Cita-
tions that contain this heading, and PRCsim is the
sum of the similarity scores of those neighbors.

4.2 Text Based Features

We implemented several features that also origi-
nated from (Huang et al., 2011) and that are based
on statistics collected from unigrams and bigrams
extracted from the MeSH heading and its entry
terms (i.e., a synonymy set of the heading) as well
as the title and abstract of a citation:

• Overlap: The fraction of MeSH term uni-
grams and bigrams that appear in the title or
abstract of the citation.

• Syn: A binary feature that captures presence
of entry terms in the title and abstract.

• IBM: Probabilities of translating the title
and abstract into a candidate MeSH heading,
based on a parallel corpus of heading-title
and heading-abstract pairs collected from a
set of previously indexed citations and IBM
statistical translation model 1 (Brown et al.,
1993).

• Okapi: Treating the heading as the query and
the title or abstract of a citation as the docu-
ment, we computed similarities between the
heading and the title and abstract using Okapi
BM25 model (Robertson et al., 1995). Fol-
lowing (Mao and Lu, 2013), we used a corpus
of 58,088 MEDLINE documents to construct
the parallel training corpus for both Okapi
and IBM features.

These features can be considered extensions of
more traditional TF/IDF-based features used for
ranking because TF/IDF and similar information
is used for their computation. We refer the reader
to (Huang et al., 2011) for further details.
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4.3 Vocabulary Density Based Feature

Adding journal-specific information was shown to
boost precision of MTI without losses in recall
(Mork et al., 2014). We therefore included Vo-
cabulary Density (VocD) as a feature in learning
to rank using data provided by NLM‘s Indexing
Initiative6. It is equivalent to the MeSH frequency
feature described in (Liu et al., 2015).

4.4 MTI Based Features

A feature that we denote as InMTI is set to 1 if
the candidate heading was recommended by MTI,
regardless of whether or not it was included in hu-
man indexing, -1 if it was rejected by MTI and
0 otherwise. MTIScore is the score assigned by
MTI to the corresponding candidate and divided
by the score of the top MTI candidate. For PRC-
derived candidates that were not recommended by
MTI, this feature is set to 0. MHtype is a binary
feature that indicates whether or not the candidate
heading is a CheckTag.

4.5 Journal Descriptor Indexing Based
Features

We implemented additional features based on
the Journal Descriptor Indexing (JDI) methodol-
ogy (Humphrey et al., 2006) maintained by the
NLMs Lexical Systems Group7. Given a block
of text, the JDI-based Text Categorization (TC)
tool produces a ranked list of about 120 high-
level journal descriptors (e.g. “Anatomy”, “Chem-
istry”, “Biomedical Engineering” etc) according
to their relevance to the text. For example, the
TC tool applied to the text “heart valve” pro-
duces ranking scores of 0.156, 0.098 and 0.090 for
top three descriptors “Cardiology”, “Pulmonary
Medicine”, and “Vascular Diseases”, respectively.
Similarly, JDI provides precomputed rankings of
each MeSH heading against the same journal de-
scriptors set. For example, the MeSH heading
“Lung Neoplasms’ has a score of 0.167 for its top
descriptor “Pulmonary Medicine”, 0.138 for the
second closest descriptor “Neoplasms” but only
0.0187 for the descriptor “Cardiology”. Given
a citation text (title or abstract) and a candidate
heading, we apply the TC tool to the text to find
the top ranking journal descriptor, and then multi-
ply the corresponding score by the score of the top
descriptor for the heading. The more relevant the

6https://ii.nlm.nih.gov/DataSets/index.shtml
7https://lsg2.nlm.nih.gov/LexSysGroup/Home/index.html

heading is to the citation text, the higher we expect
the resulting product to be. We denote this feature
as JDI.

We also implemented a simplified JDI-based
feature denoted by JDInoTC that does not require
invoking the TC tool for each heading-citation
pair. Instead, it uses the journal descriptor pre-
assigned to the journal where the citation is pub-
lished. This assignment is designed to capture
the overall topic of the journal. For example, the
journal “Clinical Obesity” has been assigned the
Broad Subject Term (descriptor) “Metabolism”8.
We then set JDInoTC to the score of the candidate
heading for that journal descriptor. Although the
JDI and JDInoTC features are correlated, experi-
ments presented in Section 5.3 show an advantage
of using these features together over using just one
or the other.

4.6 MeSH Similarity Based Features

We implemented a set of features inspired by
the adaptation of a method called User-oriented
Semantic Indexer (USI) to biomedical index-
ing (Fiorini et al., 2015) that uses similarity scores
computed between pairs of candidate headings
based on their positions in the MeSH tree, to select
an optimal set of headings for a citation, without
directly depending on the text of the citation. For
a given candidate heading, we compute the max-
imum, minimum, and average MeSH-based dis-
tances from that heading to the non-rejected head-
ings of the MTI candidate set. The intuition be-
hind this approach is that recommending head-
ings that are very similar to each other may be
redundant while, at the other end of the distance
spectrum, candidate headings that are very differ-
ent from those recommended by MTI might rep-
resent spurious outliers from citations with low
PRC similarity scores. The features were imple-
mented using the SML Java library (Harispe et
al., 2014). We experimented with several ways of
computing pairwise heading similarity and found
the combination of Jiang and Conrath semantic
distance (Jiang and Conrath, 1997) with the Seco
information content measure (Seco et al., 2004) to
provide the best results. We denote these features
as SML.

8http://www.ncbi.nlm.nih.gov/nlmcatalog/101560587
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5 Experiments

We experimented with several variations of the
L2R module that differed in their feature sets, their
ranking algorithms, the number of PubMed Re-
lated Citations for each target citation, as well
as the type of cut-off used to select the final list
of recommended MeSH headings. We used the
RankLib library implementation of the Learning
to Rank core9.

5.1 BioASQ 2016

To train the L2R component, as well as for lo-
cal testing, we have used a dataset of 139,072
citations. This collection is comprised of ran-
domly completed citations from the beginning of
the 2015 NLM indexing year (mid-November of
2014) until early February of 2015. Since the L2R
system was being actively developed at the time
of the BioASQ Challenge runs, the L2R version
that was evaluated had a limited number of fea-
tures, namely, PRCfreq, PRCsim, Overlap, Syn,
IBM, Okapi, VocD, and InMTI resulting in a fea-
ture vector of length 12. We note that in this ver-
sion, unlike the one described in Section 5.3, we
did not include rejected MTI candidates at either
the training or the ranking stage, which also im-
plies that the InMTI feature was binary. We col-
lected 40 PubMed Related Citations for each pro-
cessed citation in both training and ranking modes.
When ranking a citation, we set the number of top
ranked citations reported as the final result equal
to the number of headings recommended by MTI.
Finally, we used MART (Friedman, 2001) as the
ranking algorithm. We denote this version of the
L2R module applied to results of MTI as MTI with
L2R. We also denote the default MTI system that
does not use L2R as MTI. In Table 1 we report per-
formance of MTI with L2R on two BioASQ test
batches, as of May 3, 2016. Throughout this pa-
per, we use micro-precision, recall and F1 metrics
to measure performance.

5.2 Significant Improvements over MTI

We have observed that MTI with L2R performs sig-
nificantly better than MTI on two specific classes
of MeSH headings: Historical Check Tags and
“As Topic” headings. Table 2 shows performance
of MTI with L2R on Historical CheckTags using
2016 MTI test collection. Due to low accuracy,

9https://sourceforge.net/p/lemur/wiki/RankLib

Batch/week Precision Recall F1

B 1, Wk 2 62.48% 58.81% 60.59%
B 1, Wk 3 59.09% 57.70% 58.39%
B 1, Wk 4 60.55% 54.23% 57.21%
B 1, Wk 5 58.29% 55.71% 56.97%
B 2, Wk 1 60.05% 63.26% 61.61%
B 2, Wk 1 52.74% 56.61% 54.60%
B 2, Wk 3 59.12% 55.82% 57.42%

Table 1: Performance of MTI with L2R on
BioASQ 2016 Test batches 1 and 2.

MTI currently does not recommend any Histor-
ical CheckTags except for “History, 20th Cen-
tury” for which MTI’s precision, recall and F1

are, respectively, 100%, 0.79%, and 1.56%. Ta-
ble 3 shows performance of MTI with L2R for
“As Topic” headings with F1 values of at least
50%. For 39 “As Topic” headings MTI with L2R
achieved precision of more than 50%, with 16 of
those reaching perfect precision. These headings
attempt to describe what an article is about (e.g.
“Dissertations, Academic as Topic”) whereas Pub-
lication Types attempt to capture what a citation
is (e.g. “Academic Dissertations”). These differ-
ences are often subtle which leads to frequent MTI
errors when identifying “as Topic” headings. As
a result, MTI currently only recommends “Ran-
domized Controlled Trials as Topic”, “Patents as
Topic”, and “Advertising as Topic” based on a
small set of trigger keywords. This yields over-
all precision, recall and F1 of, respectively, 92%,
2.55% and 4.96%, which should be compared to
the corresponding values from the last row of Ta-
ble 3. These results demonstrate that L2R pro-
vides a significant performance boost for these two
classes of MeSH headings.

Historical MH Precision Recall F1

15th Century 53.85% 28.00% 36.84%
16th Century 85.42% 73.21% 78.85%
17th Century 82.61% 51.35% 63.33%
18th Century 74.32% 55.00% 63.22%
19th Century 80.23% 64.13% 71.28%
20th Century 89.57% 70.37% 78.82%
21st Century 95.81% 26.32% 41.29%
Ancient 78.31% 51.59% 62.20%
Medieval 90.48% 66.67% 76.77%
All Historical 86.49% 54.81% 67.10%

Table 2: Performance of MTI with L2R on Histor-
ical CheckTags.
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“As Topic” MH Precision Recall F1

D,A 100.00% 100.00% 100.00%
Cookbooks 100.00% 71.43% 83.33%
Periodicals 83.52% 63.19% 71.95%
Patents 88.89% 57.97% 70.18%
A&I 55.56% 71.43% 62.50%
W&H 83.33% 50.00% 62.50%
Formularies 66.67% 50.00% 57.14%
Poetry 85.71% 40.00% 54.55%
RS 65.38% 45.95% 53.97%
Dictionaries 100.00% 33.33% 50.00%
Manuscripts 100.00% 33.33% 50.00%
Webcasts 100.00% 33.33% 50.00%
Advertising 68.18% 39.47% 50.00%
All “as Topic” 69.56% 24.58% 36.33%

Table 3: Performance of MTI with L2R on indi-
vidual “As Topic” headings with F1 values of at
least 50% (“D,A”, “A&I”, “W&H”, and “RS”
denote, respectively, “Dissertations, Academic as
Topic” , “Abstracting and Indexing as Topic”,
“Wit and Humor as Topic”, and “Research Sup-
port as Topic”), as well as collectively for all 83
“As Topic” headings.

5.3 Further L2R development

Overall, adding more features as well as using a
larger number of PubMed Related Citations has
a positive effect on the L2R performance. We
trained L2R on the feature set from MTI with L2R
extended with the MHType and MTIScore fea-
tures and 80 PubMed Related Citations. We then
experimented with other L2R configurations with
additional features, and switched from MART
to the LambdaMART (Wu et al., 2010) ranking
method. We also compared two different ways of
determining, the number of top recommendations.
One approach was to preserve the number of can-
didates recommended by MTI (nMTI), as we did
with MTI with L2R. We also observed that Lamb-
daMART often produced positive ranking scores
for the most relevant candidate headings, and neg-
ative values for irrelevant ones. Therefore the
other trimming approach PosNeg, was to only re-
tain the candidates with positive LambdaMART
ranking scores. In some cases that produced a
very long list of candidates in which case we set
the threshold at 3 times the number of MTI candi-
dates.

Table 4 shows performance of the standalone
L2R module on the the 2015 MTI test collection,

compared to that of MTI. It shows that PosNeg
trimming provides a significant advantage in pre-
cision over nMTI with a relatively smaller drop in
recall. Therefore it would be the recommended
choice especially if precision is more important
than recall, which is often the case during produc-
tion use of the MTI system.

6 Conclusions and Future Directions

The integration of the Learning to Rank method-
ology as a boosting component of the MTI system
improved its overall performance and showed sig-
nificant gains in both precision and recall for some
specific classes of MeSH headings. As is often
the case in supervised machine learning, our ex-
periments show that using a richer set of features
specifically engineered to capture various types of
evidence of relevance of MeSH headings to cita-
tions yields better candidate rankings. One future
step in this direction would be to explore features
based on author information. For example, analo-
gous to PRC-based similarity of citations, we can
explore author-based similarity. We performed
limited experiments with author-derived statistics
that produced some promising results. We also
found that accurate author disambiguation (Liu
et al., 2014b) is a prerequisite for robustness of
author-based features. Other potential sources of
evidence that can be used in Learning to Rank are
both general and journal-specific MeSH heading
coocurrence patterns10 as well as dense distributed
representations of citation text (Le and Mikolov,
2014). And to go beyond Learning to Rank, we
plan to explore the application of Deep Learning
to biomedical indexing and, more generally, multi-
label classification (Read and Perez-Cruz, 2014).
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Abstract

This paper describes the participation of
LABDA team in the 2016 BioASQ Task
4a on large-scale online biomedical se-
mantic indexing. Our approach is based
on the use of the open source search en-
gine ElasticSearch. Experimental results
show that our approach achieves high re-
call while keeping processing time low.
Although more work needs to be done to
improve our results, we can conclude that
ElasticSearch is a competitive and scalable
system for indexing biomedical literature.

1 Introduction

Biomedical Natural Language Processing
(BioNLP) has made great advances in the last
decade thanks to different community-wide chal-
lenge evaluations, such as BioCreative (Krallinger
et al., 2015), BioNLP shared tasks (Kim et al.,
2011; Nédellec et al., 2013), i2b2 (Stubbs et
al., 2015) DDIExtraction (Segura-Bedmar et al.,
2011; Segura Bedmar et al., 2013), etc. While
most of them have pursued the further develop-
ment of research on informations extraction tasks,
the BioASQ Challenge1 focuses on biomedical
semantic indexing and question answering fields.

Biomedical Semantic Indexing is to identify the
MeSH categories that best describe a PubMed
article and is a crucial task to facilitate liter-
ature search. This process is manually per-
formed by human experts, thus becoming a costly,
time-consuming and laborious task (Huang et al.,
2011). Therefore there is an urgent need to explore
automatic methods to support this task.

As in previous editions (Tsatsaronis et al., 2015;
Balikas et al., 2015), BioASQ 2016 consists of two

1http://www.bioasq.org/

different tasks: large-scale online biomedical se-
mantic indexing (Task 4a) and question answering
(Task 4b). This paper describes our participation
in Task 4a. The goal of the task is to automatically
predict the most relevant MeSH labels for a given
document. One of the major challenges of the task
is to manage scalability due to the great amount
of documents that have to be indexed. More than
750,000 articles were added in 2014 with a load of
2000-4000 documents per day.2 Search systems
such as ElasticSearch, an open source search en-
gine, could be adequate frameworks to cope with
this information overload problem.

To the best of our knowledge, this is the first
work that addresses semantic indexing by using
ElasticSearch. Due to the horizontal scalability
provided by ElasticSearch, it is possible to index
large collections of documents, as is the case of
the Medline/PubMed database with more than 22
million citations to date. Our approach is to index
the training set provided by the BioASQ organiz-
ers with ElasticSearch. Then, each document in
the test set is translated into a query, that is fired
against the index built from the training set, return-
ing the most relevant documents and their MeSH
categories. Finally, each MeSH category is ranked
using a scoring system based on the frequency of
the category and the similarity of relevant docu-
ments, which contain the category, with the test
document to classify. Up to date at which we write
this paper, no official definitive results have been
published for any of our submissions yet. To eval-
uate our approach, we generated our own develop-
ment set from a random sample of 1099 training
documents. To avoid any potential bias, these doc-
uments were removed from the training set. Tested
on this development set, our approach achieves a
recall of 80.6%, precision of 45.4% and an F1 of

2https://www.nlm.nih.gov/pubs/factsheets/medline.html
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56.3%. In comparison to the Medical Text Indexer
(MTI) (Mork et al., 2013), which is considered the
baseline system of the task, our system does not
only provide an improvement of more than 1% in
F1, but also has a much better time response (15
seconds per document) than the MTI system (30-
45 seconds per document).3

The rest of the paper is organized as follows:
related work is presented in Section 2. Sec-
tion 3 presents a description of our method and the
datasets used in this study. Then, we report and
discuss some preliminary results of our approach
in section 4. Finally, section 5 presents conclusion
and future work.

2 Related Work

Semantic indexing of MEDLINE articles is a man-
ual laborious task which could be helped by infor-
mation technology. The objective is to tag an ar-
ticle with a set of MeSH categories, hence it is a
multilabel classification problem.

The main challenge of this shared task is to
work with MeSH, a big hierarchy that includes a
controlled vocabulary composed of 15 root con-
cepts, such as organisms and diseases, with more
than 25,000 categories. Most of works restrict the
scope of MeSH hierarchy using only a particular
branch in the MeSH tree (for instance Heart Dis-
eases) (Ruiz and Srinivasan, 2002), or a subset of
tags, generally those appearing in the training col-
lection (Yepes et al., 2015).

Current state-of-the art includes approaches
whose general architecture comprises two differ-
entiated phases: a first phase that obtains an initial
set of MeSH categories that could represent the
document to classify and a second phase that re-
rank these categories to select the top K that bet-
ter fit the input document. In both phases differ-
ent document features can be used; the most fre-
quent feature model is the so called bag-of-words
(where words could follow a ngram model or be
a word, phrase, concept, etc. storing a value that
represents its presence frequency in the document
or any other model such as TF*IDF).

Doing a review of BioASQ previous edi-
tions (Partalas et al., 2013; Balikas et al., 2014;
Balikas et al., 2015; Tsatsaronis et al., 2015), the
main characteristics of participants systems are:
approaches that use flat methods which consider
each MeSH category independently of the others

3https://www.nlm.nih.gov/mesh/MeSHonDemand.html

or hierarchical methods that take into account the
MeSH tree structure; the machine learning tech-
niques used to select the initial set of MeSH labels
(SVM, logistic regression, K nearest neighbor,
etc.); the word model (unigram, bigram, trigram);
if Natural Language Processing (NLP) tools are
included to preprocess documents (POS taggers,
chunkers, syntactic parser); if domain specific re-
sources are used (for instance, UMLS ontology or
WordNet lexical database); if the system is built
over a search-based platform (such as Lucene); if
curator annotation guidelines are considered and
the processing and storage requirements both in
the definition of models to multilabel training and
classification process.

In 2013 edition, the best systems (depending
on the batch) were the Medical Text Indexer
(MTI) (Mork et al., 2013) with a micro F mea-
sure of 0.5481 and the system AUTH (Tsoumakas
et al., 2013) with a micro F measure of 0.578.
The MTI system, which is considered the base-
line system of the task, is based on a combina-
tion of Metamap indexing and Pubmed related ci-
tations to recognize MeSH concepts that then are
clustered and ranked. AUTH system preprocessed
the articles using the Stanford parser and bigram
frequencies were extracted. The meta-labeler tool
(Tang et al., 2009), which is based on SVM binary
classifiers trained for each label present in a subset
of training collection, was used to rank the labels
and a regression model is used to predict the K top
labels.

In 2014 edition, several systems outperformed
the MTI baseline system (micro F measure of
0.547), the system of NCBI (Mao et al., 2014),
with a micro F measure of 0.605 and the Antino-
myra system (Liu et al., 2014), with a micro F
measure of 0.619. The NCBI system selected the
relevant MeSH labels for a given article from its
k-nearest neighbor documents. This set was also
extended with the MeSH labels proposed by the
MTI system. Then, a learning-to-rank algorithm
was used to sort the MeSH labels based on the
learned associations between the article text and
each MeSH label. This system also used SVM
binary classifiers (trained for each MeSH label in
the training data) to predict the MeSH labels in
the test data. The Antinomyra system followed
a similar approach but instead of using SVM
classifiers it used a logistic regression method.
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The winner in BioASQ 2015 (Liu et al., 2015)
used a learning to rank approach that returns an
ordered list of MeSH categories for each instance
using a combination of binary classifiers, similar
articles to the article to annotate, pattern matching
between MeSH categories and title of the article as
well as the prediction of the MTI baseline system.
This system achieved a micro F measure of 0.615.

Concerning the annotation guidelines followed
by curators, some works such as (Mork et al.,
2013) make use of MEDLINE annotation guide-
lines to postprocess the ranking of MeSH cate-
gories. The overview of BioASQ 2013 systems
(Tsatsaronis et al., 2015) suggests that it is dif-
ficult to know the utility of the is-a relations in
the MeSH hierarchy due to human curators do not
seem to follow the annotation guidelines concern-
ing the use of most specialized tag.

Out of the scope of BioASQ forum, the ap-
proach described in (Rak et al., 2007), was based
on association rule mining from the OHSUMED
corpus (Hersh et al., 1994), which contains ap-
proximately 340.000 articles from 1987 to 1991
(the rules are a kind of information retrieval tech-
niques where a set of words determine the class of
the document). A more recent work (Yepes et al.,
2015) analyzed different representations of arti-
cles based on lexical, syntactic and semantic infor-
mation. This system was tested over a collection
of 143,853 citations and 63 selected MeSH cate-
gories (those with at least 1,500 citations indexed).
Application of NLP features do not exhibit good
performance although combination of all features
performs better than individual sets. Participants
in BioASQ such as (Ribadas et al., 2014) achieved
poor results when NLP techniques are included.

3 Method

The goal of the task is to automatically predict the
most relevant MeSH categories for each article in
a test set. The predictions should be compared
to MeSH categories proposed by human curators.
This section describes the method and data used in
this study.

3.1 Data

The training data for the BioASQ task 4.a consist
of PubMed articles that were manually annotated
with MeSH terms by human curators. In addi-
tion to the new 2016 training dataset, the train-
ing datasets of the previous BioASQ challenges

are available too. The main difference between
those datasets is the version of the MeSH vocab-
ulary that was used to annotate their articles. It
should be noted that each year a new release of
MeSH including updates of its structure (for ex-
ample, 310 new MeSH Headings were added to
MeSH in 2015) is published. Typically, articles
are not re-indexed with the new MeSH terms.

The teams are permitted to use any resource to
train their systems, however we only use the 2016
training dataset because the evaluation will be per-
formed using the MeSH version 2016. There are
two versions of the training data: (1) Training
v.2016a with more than 12 million of documents,
and (2) Training v.2016b with almost 5 million
of documents from the pool of journals that the
BioASQ organizers use to select the articles for
the test data. This dataset was built using only
journals with small average annotation periods. In
both datasets, the average number of MeSH terms
assigned to an article is 12-13.

In order for the teams to evaluate their systems,
a new test set is available every Monday. Then,
the teams can upload their results before the next
24 hours after the release. A total 15 test sets have
been published, which are grouped in three differ-
ent periods (batches). It should be noted that the
articles used in the test datasets have not been an-
notated yet by human experts, and therefore, it is
not possible to provide an immediate evaluation
of the participant systems. This is an important
inconvenience since there is no fast way to assess
if a given technique or resource helps to improve
the results. It should be very helpful having a
development dataset. We built our own develop-
ment dataset from a random sample of 1099 docu-
ments taken from the small training dataset (Train-
ing v.2016a). Thus, our development dataset only
collects articles from the same set of journals used
to build the test datasets of the task. As mentioned
above, these articles were removed from our train-
ing set in order to avoid any potential bias.

3.2 ElasticSearch

Our approach relies on the assumption that similar
documents should be classified by similar MeSH
labels. While previous work has exploited a kNN
approach in order to propose the MeSH labels of
the relevant documents for a given query (test doc-
ument), we propose to calculate document similar-
ity by using ElasticSearch, an open source search
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engine. ElasticSearch provides horizontal scala-
bility, that is, it is able to index large collections
of documents. The main advantage of Elastic-
Search is its capacity to create distributed systems
by specifying only the configuration of the hierar-
chy of nodes. Then, ElasticSearch is self-managed
to maintain better fault tolerance and load distribu-
tion. The core of ElasticSearch is Lucene,4 a free,
open-source and de-facto standard retrieval soft-
ware library. Lucene is based on the well-known
and commonly used vector space model for infor-
mation retrieval. The efficiency of Lucene is due
to it searches on index instead of searching the text
directly.

Another important advantage of ElasticSearch
is that it does not require very high computing
power and a high storage capacity to index large
collections. In this study, ElasticSearch (ver-
sion 2.2) was installed on a server Ubuntu Server
14.0f4 with 24GB of RAM and 500GB of disk
space. We create an index (that is like a database
in a relational database) built from the training
dataset. By default, each index in Elasticsearch is
configured with five shards, lucene instances. One
of the most important advantages of ElasticSearch
is that the shards can be distributed amongst all
nodes in the cluster, and can be moved from one
node to another in the case of node failure. Each
shard has a backup copy.

As it has already been mentioned before, our
approach is to index the training dataset and rep-
resent each test document as a query. In particular,
we define two different types of index, one using
the large training dataset (Training v.2016a) and
the second one using the small training set (Train-
ing v.2016b), that only contains articles from the
journals used for testing. Both collections are in-
dexed using bag-of-word model. To translate the
test documents to the queries, each document is
also represented as bag of words. Then, each
query is fired against the index, returning the most
relevant documents (relevance scoring is calcu-
lated using TF/IDF). Figure 1 shows the basic ar-
chitecture of our system.

Finally, the MeSH categories from the relevant
documents are collected. The simplest approach
would be to return the whole set of MeSH labels
for all retrieved documents. However, we define
a metric to rank each MeSH category for a given
test document based on the total number of occur-

4https://lucene.apache.org/core/

Figure 1: Architecture of our system.

rences of the label in the whole index as well as the
similarity of the relevant document containing this
category with the test document (query). Our scor-
ing system is based on the hypothesis that similar
documents should have similar MeSH categories,
and that the most used MeSH categories should
achieve higher scores. The following formula de-
scribes this metric:

score(l, q) = (tf(l)−R)
∑
d:l∈d

score(d, q) (1)

where tf(l) refers to the total number of occur-
rences of the label in the whole index, and R is
a discrete parameter that indicates the minimum
number (minus one) of times a label has to appear
in the relevant documents in order to be considered
as a candidate label for the test document. R takes
only three values: 0, 1 and 2. Finally, score(d, q)
represents the scoring of a document d, contain-
ing the MeSH label l, for a given query q (a test
document).

While some documents present a large number
of MeSH labels, others only contain a small set.
In order to reduce this variability, the scoring for a
label is normalized using the following equation:

score(l, q)n = (tf(l)−R)
∑
d:l∈d

score(d, q)

maxa:l∈ascore(a, q)
(2)

Finally, we choose those MeSH categories with
a score higher than a threshold (which was set em-
pirically upon our development dataset). It should
be noted that if the threshold is set to 0 then the
whole set of MeSH categories for all retrieved
documents is returned.
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4 Experimental results

Task 4.a began on 8th of February, 2016, how-
ever we enrolled almost two months later. Our first
submission was on the fourth week of the second
batch (March 14-April 11). Unfortunately, there
is no results for our systems at the time of writing
this paper and we cannot offer any official defini-
tive results. For this reason, we show the results of
our settings on own development dataset.

The performance of the participating systems is
evaluated using standard IR measures (e.g., pre-
cision, recall, accuracy), as well as hierarchical
variants of them, such as Lowest Common Ances-
tor F-measure (LCA-F). The HEMKit tool5 (Kos-
mopoulos et al., 2015) was used to evaluate our
different settings on our development set.

We experimented with different settings such as
the index used to retrieve the documents, the num-
ber of relevant documents (10, 20, 30 and 40), the
option of including MeSH labels without repeti-
tions, and the threshold to select the MeSH labels.
We also provided baseline results based on the use
of the MTI system (Mork et al., 2013). Table 1
shows the results. Our best result among all ap-
proaches is highlighted in bold. The different set-
tings are described bellow:

• MTI: our baseline system using MTI.

• Elastic-2016V-X-R-T: V refers to the index
used: a for the index built from the large
training dataset (Training v.2016a) or b for
index built from the small training dataset
(Training v.2016b). X refers to the number
of relevant documents retrieved by Elastic-
Search. R is a discrete parameter that indi-
cates the minimum number (minus one) of
times a label has to appear in the relevant doc-
uments in order to be considered as a candi-
date label for the test document. R takes only
three values: 0, 1 and 2. T refers to the mini-
mum threshold in equation 2 for selecting the
MeSH labels.

We experimented with different settings such
as the index type, the number of relevant docu-
ments or the threshold used to select the MeSH
categories. Results for some of these settings
are shown in Table 1 (we do not show all re-
sults for lack of space). Experiments showed that
the increase in the number of relevant documents

5http://nlp.cs.aueb.gr/software

achieved to improve precision and recall values.
Finally, the number of documents was set to 30
because this value achieved the best results while
keeping the processing time low (less than 15 sec-
onds per document).

The simplest approach by using ElasticSearch
(that is, returning the whole set of MeSH labels for
all retrieved documents) provides a very high re-
call (93%) but with a very low precision (15-16%).
We tried with different values for the threshold T
(minimum score to select the MeSH categories)
and decided that 1.5 was a good value balancing
precision with recall as higher values returned.

Regardless of the other parameters, the index
type, that is, the use of the large training dataset
versus the small training dataset, does not seem
to obtain a significant difference. The results ob-
tained with the small index are slightly better than
those obtained with the large index.

As could be expected, the fact of including the
MeSH categories with frequencies lower than 2
achieves better recall value, but has worse preci-
sion. On the contrary, if we require that the MeSH
category has to occur at least twice in the set of
the relevant documents in order to be selected, the
precision increases but the recall decreases.

When comparing the experimental results of the
current study with those from the MTI baseline,
we can observe that our approach outperforms this
baseline at recall, but with a significant decrease in
precision. Therefore, we need to further research
for techniques to improve precision. On the other
hand, it should be noted that our system based on
ElasticSearch gives a much better time response
than the MTI system.

Finally, we also combined the MTI baseline
with our approach based on ElasticSearch by out-
puting all MeSH labels proposed by MTI as well
as those proposed by ElasticSearch. In this case,
the best value for the threshold T was 3. This set-
ting provided the best results (see two last rows in
Table 1).

Table 2 shows our results on a very small sam-
ple (302 articles) from the test batch 3-week 5,
and thereby, no conclusion can be drawn yet. The
setting used for this submission was only based
on providing the labels from the top 30 articles
retrieved by ElasticSearch from the small index
(Training v.2016b). This set was also extended
with the MeSH labels proposed by MTI.
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Systems F R P LCA-F LCA-R LCA-P
MTI 0.7065 0.6741 0.6881 0.4165 0.4217 0.454
Elastic-2016a-30-0-0 0.2734 0.9394 0.1647 0.2004 0.6792 0.1206
Elastic-2016b-30-0-0 0.2626 0.9364 0.1571 0.1933 0.6752 0.1156
Elastic-2016a-30-1-1.5 0.5150 0.8303 0.3926 0.3345 0.5589 0.2510
Elastic-2016b-30-1-1.5 0.5188 0.8474 0.3925 0.3377 0.5717 0.2519
Elastic-2016a-30-2-1.5 0.5592 0.7944 0.4537 0.3580 0.5282 0.2861
Elastic-2016b-30-2-1.5 0.5632 0.8066 0.4543 0.3625 0.5364 0.2889
MTI + Elastic-2016a-30-2-3 0.6266 0.8168 0.5330 0.4034 0.5420 0.3396
MTI + Elastic-2016b-30-2-3 0.6207 0.8039 0.5297 0.3982 0.5345 0.3357

Table 1: Experimental results on our development dataset.

Systems F P R LCA-F LCA-P LCA-R
MTI 0.6373 0.6650 0.6674 0.3949 0.4085 0.4168
MTI + Elastic-2016b-30-2-3 0.4408 0.3295 0.6910 0.3890 0.4774 0.7928

Table 2: Experimental results on the test batch 3, week 5 (Annotated articles:302/3130).

5 Conclusions

Several works have already applied a k-Nearest-
Neighbors (kNN) approach for semantic indexing
(Névéol et al., 2007; Mao et al., 2014; Dramé et
al., 2014). This approach relies on the assump-
tion that similar documents should be classified
by similar MeSH labels. We make the same as-
sumption, but our work is the first that explores the
document similarity using ElasticSerach instead
of kNN. Our approach achieves similar results to
those reported in previous editions of BioASQ,
while keeping the processing time much lower
than that reported by the MTI baseline (30-45 sec-
onds per document). Our approach yields high re-
call (80-84%), but with a low precision (45-53%).
Therefore, we plan to study alternatives that aim to
improve precision. As future steps, we also plan to
determine semantic similarity between documents
using word embeddings (Mikolov et al., 2013), in-
stead of the well-known and commonly used vec-
tor space model for information retrieval.
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Abstract

This paper describes the OAQA system
evaluated in the BioASQ 4B Question
Answering track. The system extends
the Yang et al. (2015) system and inte-
grates additional biomedical and general-
purpose NLP annotators, machine learn-
ing modules for search result scoring, col-
lective answer reranking, and yes/no an-
swer prediction. We first present the over-
all architecture of the system, and then fo-
cus on describing the main extensions to
the Yang et al. (2015) approach. Before
the official evaluation, we used the devel-
opment dataset (excluding the 3B Batch
5 subset) for training. We present initial
evaluation results on a subset of the devel-
opment data set to demonstrate the effec-
tiveness of the proposed new methods, and
focus on performance analysis of yes/no
question answering.

1 Introduction

The BioASQ QA challenge (Tsatsaronis et al.,
2015) evaluates automatic question answering
technologies and systems in the biomedical do-
main. It consists of two phases: in Phase A, the
task requires to retrieve relevant document, snip-
pets, concepts, and triples given a natural lan-
guage question, and evaluates the retrieval results
in terms of mean average precision (MAP); in
Phase B, the task requires to generate ideal an-
swers for the questions, which are evaluated us-
ing accuracy and mean reciprocal rank (MRR), as
well as exact answers, which are evaluated based
on manual judgment. The OAQA team partici-
pated in Batches 3, 4, and 5 of BioASQ 4B, in
the categories of document, snippet, and concept
retrieval, factoid, list and yes/no question answer-

ing (exact answer generation). The source code of
the participating system can be downloaded from
our GitHub repository1.

We follow the same general hypothesis ex-
pressed in Ferrucci et al. (2009) and Yang et
al. (2015), specifically that informatics challenges
like BioASQ are best met through careful design
of a flexible and extensible architecture, coupled
with continuous, incremental experimentation and
optimization over various combinations of exist-
ing state-of-the-art components, rather than rely-
ing on a single “magic” component or single com-
ponent combination. This year, the number of la-
beled questions in the development set has grown
to 1,307 (up from 810 in last year’s dataset), which
allows further exploration of a) the potential of su-
pervised learning methods, and b) the effective-
ness of various biomedical NLP tools in various
phases of the system, from relevant concept and
document retrieval to snippet extraction, and from
answer text identification to answer prediction.

First, we use TmTool2 (Wei et al., 2016), in ad-
dition to MetaMap3, to identify possible biomed-
ical named entities, especially out-of-vocabulary
concepts. We also extract frequent multi-word
terms from relevant snippets (Frantzi et al., 2000)
to further improve the recall of concept and can-
didate answer text extraction. Second, we pro-
pose a supervised learning method to rerank the
answer candidates for factoid and list questions
based on the relation between each candidate an-
swer and other candidate answers, which we refer
to as collective reranking in this paper. Third, we
implement a yes/no question answering pipeline
combining various heuristics, e.g. negation words,
sentiment of the statements, the biomedical con-

1https://github.com/oaqa/bioasq
2http://www.ncbi.nlm.nih.gov/

CBBresearch/Lu/Demo/tmTools/
3http://metamap.nlm.nih.gov/
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cepts mentioned in the relevant snippets that be-
long to the same concept type, and question in-
version (Kanayama et al., 2012). Finally, we in-
troduce a unified classification interface for judg-
ing the relevance of each retrieved concept, docu-
ment, and snippet, which can combine the relevant
scores evidenced by various sources, e.g. retrieval
scores using different queries and indexes.

This paper describes the system that was evalu-
ated in the BioASQ 4B challenge. We first review
the system architecture and the approaches used
in Yang et al. (2015) in Section 2, and then we fo-
cus on describing each individual component for
BioASQ 4B in Sections 3 to 6. Before the offi-
cial evaluation, we trained the system using the de-
velopment dataset excluding the 3B Batch 5 sub-
set; we evaluate the proposed approach using the
held-out 3B Batch 5 subset. Section 7 presents
the results, which illustrate the effectiveness of
the proposed methods, and Section 8 presents a
manual error analysis of the proposed yes/no QA
method and highlight the challenges of biomedi-
cal yes/no QA problem. We conclude and present
future work in Section 9.

2 Overview of Yang et al. (2015) System

In this section, we briefly describe the architecture
of the Yang et al. (2015) system, which provided
the baseline for the system evaluated here. Further
detail can be found in the full paper.

The Yang et al. (2015) system uses the UIMA
ECD/CSE framework4 (Garduno et al., 2013;
Yang et al., 2013) with a YAML5-based lan-
guage to support formal, declarative descriptors
for the space of system and component configu-
rations to be explored during system optimization.
The system employs a three-layered architecture.
The first layer BaseQA6 is designed for domain-
independent QA components, and includes the ba-
sic input/output definition of a QA pipeline, inter-
mediate data objects, QA evaluation components,
and data processing components. In the second
layer, we implemented biomedical resources that
can be used in any biomedical QA task (outside
the context of BioASQ). A few BioASQ-specific
components were integrated in the third design
layer; for example, GoPubMed services are only
hosted for the purpose of the BioASQ challenge.

4https://github.com/oaqa/
cse-framework/

5http://yaml.org/
6https://github.com/oaqa/baseqa/

Tools and resources that are shared by multiple
components are defined as providers, includ-
ing NLP parsers, concept identification modules,
synonym expansion modules, classifiers, etc.

Resources. The Yang et al. (2015) system uses
LingPipe and ClearNLP7 (Choi and Palmer, 2011)
to parse the questions and relevant snippets using
models applicable to generic English texts as well
as biomedical texts, e.g. the parser models trained
on the CRAFT treebank (Verspoor et al., 2012).
It uses the named entity recognition (NER) mod-
ule from LingPipe8 trained on the GENIA corpus
(Kim et al., 2003) and MetaMap annotation com-
ponent (Aronson, 2001) to identify the biomedi-
cal concepts, and further uses UMLS Terminology
Services (UTS)9 to identify concepts and retrieve
synonyms. It uses the official GoPubMed services
for concept retrieval, and a local Lucene10 index
for document retrieval and snippet retrieval. Li-
bLinear11 (Fan et al., 2008) is used to train clas-
sifiers to predict answer types to the questions
and estimate the relevance scores of candidate an-
swers.

Answer Type Prediction. To identify the gold
standard labels for the existing Q/A pairs used for
training, the Yang et al. (2015) system employs
UTS to retrieve the semantic types for each gold
standard exact answer. A number of linguistic
and semantic features are extracted from the to-
kens and concepts, including the lemma form of
each token, the semantic type of each concept in
the question, the dependency label of each token,
combination of semantic type labels and depen-
dency labels, etc., where the concepts are identi-
fied from MetaMap, LingPipe NER, and Apache
OpenNLP Chunker12 (noun phrases). A multi-
class Logistic Regression classifier is trained using
the LibLinear tool (Fan et al., 2008).

Candidate Answer Generation. Depending
on the question type (general factoid/list question,
CHOICE question, or QUANTITY question), the
Yang et al. (2015) system applies different strate-
gies to generate candidate answers. For general
factoid/list questions, it generates a candidate an-
swer using each concept identified by one of three

7http://www.clearnlp.com
8http://alias-i.com/lingpipe/
9https://uts.nlm.nih.gov/home.html

10https://lucene.apache.org/
11http://www.csie.ntu.edu.tw/˜cjlin/

liblinear/
12https://opennlp.apache.org/

24



concept identification approaches. For CHOICE
questions, it first identifies the “or” token in the
question and its head token, which is most likely
the first option in the list of candidate answers, and
then finds all the children of the first option token
in the parse tree that have a dependency relation of
conj, which are considered to be alternative op-
tions. For QUANTITY questions, it identifies all
the tokens that have a POS tag of CD in all rele-
vant snippets.

Candidate Answer Scoring and Pruning. The
Yang et al. (2015) system extends the approach
used by Weissenborn et al. (Weissenborn et al.,
2013) and defines 11 groups of features to capture
how likely each candidate answer is the true an-
swer for the question from different aspects, which
includes answer type coercion, candidate answer
occurrence count, name count, average overlap-
ping token count, stopword count, overlapping
concept count, token and concept proximity, etc.
A Logistic Regression classifier is used to learn
the scoring function, where the class is weighted
by their frequencies. A simple threshold based
pruning method is trained from the development
dataset and applied to the list questions.

Besides incorporating a larger development data
set, our OAQA system extends the Yang et al.
(2015) system by integrating additional biomedi-
cal and general-purpose NLP annotators, and in-
troducing trainable modules in more stages of
the pipeline, such as using supervised methods
in search result reranking, answer reranking, and
yes/no answer prediction, which we will detail in
the following sections. The architecture diagrams
are illustrated in Figures 1, 2, and 3 in Appendix.

3 Concept Identification

We use the MetaMap and LingPipe concept iden-
tification modules with the GENIA model from
Yang et al. (2015). However, due to the exces-
sive noise introduced from the Apache OpenNLP
Chunker based method, which extracts all noun
phrases, we discard this approach. In addition, we
integrate the TmTool biomedical concept identifi-
cation RESTful service (Wei et al., 2016) for both
the semantic type labeling of gold standard ex-
act answers and question/snippet annotation, and
also use C-Value (Frantzi et al., 2000), a frequent
phrase mining method, to extract potential out-of-
vocabulary multi-word terms.

3.1 TmTool for Annotating Questions,
Snippets, and Answer Texts

The TmTool provides a standard Web service
interface to annotate biomedical concepts us-
ing a number of state-of-the-art biomedical NLP
parsers, which includes GNormPlus/SR4GN (for
genes and species), tmChem (for chemicals),
DNorm (for diseases), and tmVar (for mutations).
Although it can only identify biomedical concepts
belonging to any of these categories, they ac-
count for a great portion of the concepts used in
the BioASQ corpus. In addition, many of these
parsers utilize morphological features to estimate
the likelihood of a term being a biomedical con-
cept, rather than relying on an existing ontology
like MetaMap, which makes it complementary to
the existing tools in Yang et al. (2015).

TmTool supports three data exchange formats:
PubTator (tab-separated), BioC (XML) and Pub-
Annotation (JSON). Since the PubTator format
does not support DNorm annotation, and BioC
format sometimes causes a single-sentence request
to timeout (no response after 20 minutes) , we
chose the robustest PubAnnotation format. We
also found that the offsets returned from the Tm-
Tool RESTful service might not align well with
original request texts, especially with tmChem
trigger, and hence we implement an escape
method to convert the texts into a TmTool com-
patible format by replacing some non-ASCII char-
acters with their normalized forms, and removing
special characters.

We use the TmTool to identify the biomedical
concepts and annotate their semantic types from
both the questions (in Phases A and B) and the
relevant snippets (in Phase B) in the same man-
ner as MetaMap. As the semantic type set of
concepts has expanded to include TmTool concept
types, the answer type prediction module should
also be able to predict these additional semantic
types. Therefore, we also use the TmTool to la-
bel the semantic types of the gold standard exact
answers. In particular, we concatenate all the ex-
act answers of each factoid or list question using
commas, and send the concatenated string to the
TmTool service, instead of each exact answer at
a time. For example, if the gold standard exact
answer is a list of strings: “NBEAL2”, “GFI1B”,
“GATA1”, then a single string “NBEAL2, GFI1B,
GATA1” will be sent.
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3.2 C-Value for Extracting Multi-Word
Terms from Snippets

We treat the relevant snippets provided for each
question in Phase B as a corpus, and we hypoth-
esize that if a multi-word phrase is frequent in
the corpus, then it is likely a meaningful concept.
In order to extract not only high-frequency terms
but also high-quality terms, a C-Value criterion
(Frantzi et al., 2000) is introduced, which subtracts
the frequency of its super terms from a term’s
own frequency. In this way, it returns the longer
multi-word terms if two candidate terms overlap
and have the same frequency. This approach only
applies to a corpus, rather than a single sentence.
Therefore, we only use this method to extract con-
cepts from snippets. In the future, we may con-
sider to collect a corpus relevant to the question,
in order to apply the same idea to questions.

4 Collective Answer Reranking

We employ a collective answer reranking method
aiming to boost the low-ranked candidate answers
which share the same semantic type with high-
ranked candidate answers for list questions, and
use an adaptive threshold for pruning. The in-
tuition is that list questions always ask for a list
of concepts that have the same properties, which
implies that the concepts usually have the same
semantic types (e.g. all of them should be gene
names). After the answer scoring step where a
confidence score is assigned to each candidate an-
swer individually, we can imagine the top candi-
date answers might have mixed types. For exam-
ple, in a situation where the second answer is a
disease, but the rest of the top-5 answers are all
gene names, we should expect that the second an-
swer should be down-ranked.

We use the same labels used for training the
candidate answer scoring model, but incorporate
features that measure how similar each answer is
to the other top-ranked answers, which are de-
tailed in Table 1. The token distance counts the
number of intermediate tokens between the candi-
date answer tokens in the snippet text, and Leven-
shtein edit distance and shape edit distance mea-
sure the morphological similarities between the
answer texts. Common semantic type count should
“promote” the candidate answers that have a large
number of semantic types in common with the top
ranked answers.

For each candidate answer, we calculate a fea-

ture value, according to Table 1, for each other
candidate answer in the input candidate list, and
then we calculate the max/min/avg value corre-
sponding to the top-k candidate answers. We use
1, 3, 5, 10 for k, and use Logistic Regression to
train a binary classifier by down-sampling the neg-
ative instances to balance the training set. In addi-
tion to list questions, we also apply the method to
factoid questions. In Section 7, we observe if the
hypothesis also holds for factoid questions.

5 Learning to Answer Yes/No Questions

We consider the yes/no question answering prob-
lem as a binary classification problem, which al-
lows to prioritize, weight, and blend multiple
pieces of evidence from various approaches using
a supervised framework. We list the sources of ev-
idence (features) integrated into the system.

“Contradictory” concept. First, we hypothe-
size that if a statement is wrong, then the rel-
evant snippets should contain some statements
that are contradictory to the original statement,
with some mentions of “contradictory” concepts
or “antonyms”. To identify pairs of contradic-
tory concepts or antonyms is difficult given the
resources that we have. Instead, we try to iden-
tify all the different concepts in the snippets that
have the same semantic type as each concept in
the original statement. For a given concept type,
the more the unique concepts are found in both
question and relevant snippets, or the less the con-
cepts in the questions are found in the snippets, the
more likely the original statement is wrong.

Formally, for a concept type t, we calculate a
“contradictory” score as follows:∑

s∈S

∑
c∈s[type(c) = t]∑

c∈q[type(c) = t] +
∑

s∈S

∑
c∈s[type(c) = t]

where S is the set of snippets, q is the question,
c is a concept mention, and [type(c) = t] takes
1 if the concept c is type t and 0 otherwise. We
derive the aggregated contradictory score from the
concept type level scores using max/min/average
statistics. We calculate a number of similar statis-
tics to estimate how likely each snippet contradicts
the original statement.

Overlapping token count. In case the concept
identification modules fail to identify important
concepts in either the original questions or rele-
vant snippets, we also consider the difference of
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No. Feature
1 the original score from the answer scoring prediction
2 min/max/avg token distance between each pair of candidate answer occurrences
3 min/max/avg Levenshtein edit distance between each pair of candidate answer variant names
4 min/max/avg number (and percentage) of semantic types that each pair of candidate answers

have in common
5 min/max/avg edit distance between each pair of candidate answer variant names after trans-

formed into their shape forms (i.e. upper-case letters are replaced with ‘A’, lower-case letters
are replaced with ‘a’, digits are replaced with ‘0’, and all other characters are replaced with ‘-’.)

Table 1: Collective Answer Reranking Features

No. Feature
1 “contradictory” concept count in the relevant snippets
2 overlapping token count in the relevant snippets
3 expected answer count in the relevant snippets
4 sentiment analysis via positive and negative word count of each relevant snippet
5 negation word count of each relevant snippet
6 question inversion

Table 2: Yes/No Question Answering Features

token mentions between the original question and
the relevant snippets, instead of concepts.

Expected answer count. Not all concepts and
tokens are equally important in the original ques-
tions. We find that many times the focus of a
yes/no question is the last concept mention, which
we denote as the expected answer. We count the
frequency (and the percentage) that the expected
answer is mentioned in the relevant snippets, as
well as the frequency that concepts of the same
type are mentioned.

Positive / negative / negation word count.
Sometimes, an explicit sentiment is expressed in
the relevant snippets to indicate how confident the
author believes a statement is true or false. We
use a simple dictionary 13 based method (Hu and
Liu, 2004) for sentiment analysis, and we count
whether and how many times each positive / neg-
ative word is mentioned in each snippet, then ag-
gregate across the snippets using min / max / aver-
age. We also use a list of common English nega-
tion words14 for negation detection, for simplicity.
Intuitively, a high overlapping count with a high
negative or negation count indicates that the origi-
nal statement tends to be incorrect.

Question inversion. The question inversion

13http://www.cs.uic.edu/˜liub/FBS/
opinion-lexicon-English.rar

14http://www.enchantedlearning.com/
wordlist/negativewords.shtml

method (Kanayama et al., 2012) answers a yes/no
question by first converting it to a factoid ques-
tion, then applies an existing factoid question an-
swering pipeline to generate a list of alternate can-
didate answers, and finally evidence each candi-
date answer and rank them. If the expected an-
swer in the original question is also ranked at the
top among all candidates for the factoid question,
then the statement is true.

In our system, we first assume the last con-
cept mention corresponds to the expected answer.
Therefore, its concept type(s) are also the answer
type(s) of the factoid question, and all the syn-
onyms of the concept are the answer variants. Af-
ter the token(s) and concept mention(s) covered by
the expected answer are removed from the orig-
inal question and the question type is changed
to FACTOID, we use the candidate answer gen-
eration and scoring pipeline for the factoid QA
to generate and rank a list of candidate answers.
Since annotating additional texts is computation-
ally expensive, we do not retrieve any relevant
snippets for the converted factoid questions, in-
stead we only use the relevant snippets of the origi-
nal yes/no questions (provided as part of the Phase
B input). The rank and the score of the expected
answer are used as question inversion features for
yes/no question training.

We use a number of classifiers, e.g. Logistic Re-
gression, Classification via Regression (Frank et
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al., 1998), Simple Logistic (Landwehr et al., 2005)
using LibLinear and Weka15 tools (Hall et al.,
2009), after we down-sampled the positive (“yes”)
instances. In Section 7, we report not only the per-
formance of each method in terms of accuracy, but
also accuracy on the “yes” questions and the “no”
questions, since on an imbalanced dataset, a sim-
ple “all-yes” method is also a “strong” baseline.

6 Retrieval Result Reranking via
Relevance Classification

For relevant document, concept, and snippet re-
trieval, we first retrieve a list of 100 candidate re-
sults, then we define a set of features to estimate
the relevance of each candidate result and employ
a standardized interface to incorporate these fea-
tures to rerank the retrieval result, which is dif-
ferent from Yang et al. (2015), where each stage
employs a different retrieval / reranking strategy.

First, we replace the GoPubMed services with
local Lucene indexes as the response time is es-
timated to be at least 20 times faster, although the
task performance could be slightly worse (.2762 in
terms of MAP using the GoPubMed concept Web
service vs. .2502 using the local Lucene index in
our preliminary experiment for concept retrieval).
The concept Lucene index was created by fusion
of the same biomedical ontologies used by the
GoPubMed services, where we create 3 text fields:
concept name, synonyms, and definition, and 2
string fields: source (Gene Ontology, Disease On-
tology, etc) and URI. The document Lucene index
was created from the latest MEDLINE Baseline
corpus16 using Lucene’s StandardAnalyzer. After
a list of documents are retrieved and segmented
into sections and sentences, the snippet Lucene
index is then built in memory on-the-fly at the
sentence level. The search query is constructed
by concatenating all synonyms of identified con-
cepts (enclosed in quotes) and all tokens that are
neither covered by any concept mentions nor are
stop words, where the most 5,000 common En-
glish words17 are used as the stop list. Then, the
query searches all text fields.

The standardized search result reranking inter-
face allows each retrieval task to specify different
scoring functions (features). The features that we
used for concept, document, and snippet retrieval

15http://www.cs.waikato.ac.nz/ml/weka/
16https://mbr.nlm.nih.gov/
17http://www.wordfrequency.info/

are listed in Table 3. For example, during concept
search result reranking, we can check if each can-
didate concept is also identified in the question by
a biomedical NER. During snippet reranking, we
can also incorporate the meta information, such
as section label (title, abstract, body text, etc.),
offsets in the section, and length of each snip-
pet. In the candidate retrieval step, we have used
a query that combines all non stop words and con-
cepts identified by all biomedical concept anno-
tators, in order to guarantee high recall. How-
ever, it does not optimize the precision. For ex-
ample, some annotators/synonym expansion ser-
vices may falsely identify concepts and introduce
noisy search terms, and some search fields tend
to be less informative than others. Therefore, in
the reranking step, we employ various query for-
mulation strategies, e.g. only within certain text
fields and/or only using a subset of concept anno-
tators, and consider the search score and rank of
each candidate search result as features.

For this year’s evaluation, we use Logistic Re-
gression to learn relevance classifiers for all the
reranking tasks, after negative instances are down-
sampled to balance the training set. In the future,
we can also integrate learning-to-rank modules.

7 Results

Besides the proposed methods described in Sec-
tions 3 to 6, we also made a few minor changes to
the Yang et al. (2015) system, including

1. separating the texts in the parentheses in all
gold standard exact answers as synonyms be-
fore gold standard semantic type labeling and
answer type prediction training,

2. introducing the “null” type for the exact an-
swer texts if neither of the two concept search
providers (TmTool or UTS) can identify,

3. and adding nominal features (e.g. answer
type name, concept type name, etc.) in addi-
tion to existing numeric features (e.g. count,
distance, ratio, etc.) for candidate answer
scoring.

In this section, we first report the evaluation re-
sults using the held-out BioASQ 3B Batch 5 sub-
set, and then we conduct a manual analysis using
BioASQ 4B dataset for our yes/no question an-
swering method.

We first compare the retrieval results (Phase A)
In Table 4. We can see that the proposed retrieval
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No. Feature
Concept

1 the original score from the concept retrieval step
2 overlapping concept count between the retrieval results and mentions annotated in the question
3 retrieval scores using various query formulation strategies

Document
1 the original score from the document retrieval step
2 retrieval scores using various query formulation strategies

Snippet
1 the score of the containing document
2 meta information, including the section label (abstract or title), binned begin/end offsets, binned

length of the snippet, etc.
3 retrieval scores using various query formulation strategies

Table 3: Retrieval Result Reranking via Relevant Classification Features

Method MAP F1 Precision Recall
Concept

LR .3216
.0297 .0154 .5504

NO .2361
Document

LR .1364
.0462 .0284 .2709

NO .1003
Snippet

NO .1073
.0147 .0079 .3015

LR .0826

Table 4: Evaluation results on BioASQ 3B Batch
5 Phase A subset. LR represents a Logistic Re-
gression based reranking method is used, and NO
means no operation is performed, i.e. original re-
trieval scores are used.

result reranking method via Logistic Regression
improves the performance of concept and doc-
ument retrieval, but not snippet retrieval, which
may be due to the fact that the input candidate
snippets have been reranked using a similar set of
features at the document reranking step, and no
further information is provided during the subse-
quent snippet reranking step.

The exact answer generation results (Phase B)
are shown in Table 5. We see that the best con-
figuration for factoid question answering in terms
of MRR is keeping the original feature set with
no collective reranking. However, if additional
features are used, then the collective reranking
method can improve the performance, and achieve
the highest lenient accuracy score.

To answer list questions, we tune the thresh-
olds (hard threshold, or TP and ratio threshold,

or RP) and report the results from the thresholds
that maximize the F1 score. Although the best
F1 score is achieved by incorporating additional
features without collective reranking, and using a
ratio-based pruning method, all other configura-
tions without collective reranking have the lowest
performance. In addition, we can see that addi-
tional features improve the performance in gen-
eral, and after carefully tuning of the threshold
and the ratio in the pruning step, we can achieve
the same level of performance. We hypothe-
size that the proposed method (CR + RP) can re-
normalize the answer scores and is thus more ro-
bust than the baseline system (NO + TP) in the
sense that the performance of the former approach
is less sensitive to the predefined threshold, al-
though the latter can sometimes outperform the
former when the threshold is carefully tuned. We
submitted two runs in BioASQ 4B Batch 5 eval-
uation: oaqa-3b-5 and oaqa-3b-5-e for the
proposed and baseline methods respectively (us-
ing the same thresholds), and initial evaluation re-
sult confirms our hypothesis.

Due to the imbalance between “yes” and “’no”
questions, we report the mean negative and posi-
tive accuracy scores in addition to the overall ac-
curacy for yes/no question answering. We can see
the performance is very sensitive to the choice of
the classifier. Using the same set of features, Clas-
sificationViaRegression achieves the highest per-
formance, with both negative and positive accu-
racy scores greatly above 0.5 (random). All other
methods tend to predict “yes”, which results in a
high positive accuracy but a low (below 0.5) neg-
ative accuracy score.
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Factoid
Method Len.Ac. MRR Str.Ac.
OF + NO .5000 .3843 .3182
OF + CR .4545 .3791 .3182
AF + CR .5455 .3732 .2727
AF + NO .5000 .3689 .2727

List
Method F1 Precision Recall
AF + NO + RP .4291 .4449 .4593
AF + CR + RP .4246 .4045 .4864
AF + CR + TP .3969 .4100 .4267
OF + CR + TP .3704 .4231 .3645
OF + CR + RP .3629 .3654 .3874
AF + NO + TP .3463 .3840 .3677
OF + NO + RP .3460 .3188 .4431
OF + NO + TP .1461 .2639 .1183

Yes/No
Method Ac. Neg.Ac. Pos.Ac.
CVR .7143 .7778 .6842
SL .7143 .4444 .8421
AY .6786 .0000 1.0000
LR .5357 .2222 .6842

Table 5: Evaluation results on BioASQ 3B Batch
5 Phase B subset. OF and AF represent Orig-
inal or Additional features are used in training
and predicting answer scorers for factoid and list
questions. CR represents the Logistic Regression
based Collective Reranking is used. TP means
a hard Threshold is used to prune the answer,
whereas RP uses the relative Ratio to the maxi-
mum score. CVR and SL are ClassificationViaRe-
gression and SimpleLogistic classifiers from the
Weka toolkit. AY means ”All-Yes”, a simple but
strong baseline, in terms of accuracy.

8 Analysis

From Section 7, we see that, despite integration
of various sources of evidence, the current yes/no
question answering system is still unreliable. We
conducted a manual analysis of our yes/no ques-
tion answering method using BioASQ 4B dataset
based on our own judgment of yes or no, which
may not be consistent with the gold standard.

We found the BioASQ 4B dataset is more im-
balanced than the development dataset, where we
only identified six questions from all five test
batches that have a “no” answer. We applied the
proposed yes/no QA method to the six questions.
Among these questions, three are correctly pre-
dicted (namely, “Is macitentan an ET agonist?”,

“Does MVIIA and MVIIC bind to the same cal-
cium channel?”, and “Is the abnormal dosage
of ultraconserved elements disfavored in cancer
cells?”), and the answers to the other three ques-
tions are wrong. We conduct an error analysis for
the false positive predictions.

The first false positive question is “Are adenylyl
cyclases always transmembrane proteins?” The
key to this question is the recognition of the
contradictory concept pair “transmembrane” and
“soluble” or “transmembrane adenylyl cyclase
(tmAC)” and “soluble AC”. This requires first cor-
rectly identifying both terms as biomedical con-
cepts and then assigning correct semantic type la-
bels to them, where the latter can only be achieved
using MetaMap and TmTool. MetaMap correctly
identified “transmembrane proteins” in the ques-
tion and assigned a semantic label of “Amino
Acid, Peptide, or Protein”, and identified “soluble
adenylyl cyclase” in the snippet and assigned a se-
mantic label of “Gene or Genome”. Due to the
mismatch of semantic types “Amino Acid, Pep-
tide, or Protein” and “Gene or Genome”, the sys-
tem fails to recognize the contradiction.

In fact, we found that the same problem also
happened during the answer type prediction and
answer scoring steps, e.g. the question may be
predicted to ask for a “Gene or Genome”, but the
candidate answer is often labeled as “Amino Acid,
Peptide, or Protein” by MetaMap/UTS. Because
of the interchangeable use of “Amino Acid, Pep-
tide, or Protein” and “Gene or Genome” terms, we
might consider to treat them as one type. More-
over, the universal quantifier “always” also plays
an important role, in contrast to a question with an
existential quantifier such as “sometimes”, which
the current system has not captured yet. However,
this is not the main reason of the failure, since
we assume the relevant snippets will rarely men-
tion “soluble AC” if the question asks for whether
“transmembrane” exists.

The second false positive question is “Can
chronological age be predicted by measuring
telomere length?” This should be an easy one,
because we can find a negation cue “cannot” in
the snippet “telomere length measurement by real-
time quantitative PCR cannot be used to predict
age of a person”. The system integrates two types
of negation cue related features: the negation cue
count and the existence of a particular negation
cue. We found the system correctly identified
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and counted the negation cue. Therefore, we sus-
pect the classifier did not optimize the combina-
tion of features. Furthermore, we need to observe
whether our hypothesis that the gold standard an-
swer (yes or no) is strongly correlated with the
negation word occurrence in the relevant snippets
is true using the development set.

The third false positive question is “Does the
3D structure of the genome remain stable during
cell differentiation?” The key to this question is
the word “stable”, which requires biomedical, esp.
genomics, knowledge to understand what “stable”
means in the context of genome structure. The
word “stable” is mentioned in one of the snip-
pets “the domains are stable across different cell
types”, which however does not answer the ques-
tion. Useful contradictory keywords that we find
in the relevant snippets include “reorganization”,
“alteration”, “remodelling”, etc. MetaMap/UTS
identified “stable” as a concept of semantic type
“Qualitative Concept”, whereas it labeled “reor-
ganization” as a “Idea or Concept” and missed
“alternation” and “remodelling”. It suggests that
our contradictory concept based method works the
best if the focus is factoid (entities), but the current
knowledge base can hardly support identification
of contradictory properties or behaviors.

We focus on 4B Batch 5 subset for error analy-
sis of false negative examples. In fact, the cases for
false negative questions are more diverse, which
makes it more difficult to find the causes of fail-
ures. One reason is that some snippets contain
multiple sentences or clauses, and only one is
crucial to answer the question, while others can
negatively influence the results. For example,
the snippet “OATP1B1 and OATP1B3-mediated
transport of bilirubin was confirmed and inhibi-
tion was determined for atazanavir, rifampicin, in-
dinavir, amprenavir, cyclosporine, rifamycin SV
and saquinavir.” has two clauses, but the sec-
ond one (“and inhibition...”), although is not rel-
evant to the question, introduces other chemical
names that confuse the classifier. Another prob-
lem is lack of understanding of specificity and
generality between concepts, e.g. “encephalopa-
thy” in the question is considered a different con-
cept from “Wernicke encephalopathy” mentioned
in the snippets, both belonging to the same disease
category. The classifier believed another disease
name is mentioned to contradict the statement.

We found that yes/no questions are more diffi-

cult to answer than factoid and list questions, since
there can be many different ways to support or op-
pose a statement. Although the problem can be
simply viewed as a binary classification problem,
due to the fact that a limited number of relevant
snippets are provided, simple token or phrase level
retrieval and statistics can hardly solve the prob-
lem. Instead, we believe that reliably answering
yes/no questions requires deeper linguistic and se-
mantic understanding of the questions and rele-
vant snippets, which includes leveraging semantic
networks of concepts to identify antonyms, hyper-
nyms, and hyponyms, and utilizing dependency
relations between the concepts, as well as senti-
ment analysis of the facts.

9 Conclusion

This paper describes the OAQA system evaluated
in the BioASQ 4B Question Answering track. We
first present the overall architecture of the system,
and then focus on describing the main differences
from the Yang et al. (2015) system, including two
concept identification modules: TmTool and C-
value based multi-word term extractor, collective
answer reranking, yes/no question answering ap-
proach, and a standardized retrieval result rerank-
ing method via relevant classification. We report
our initial evaluation results on 3B Batch 5 subset
show the effectiveness of the proposed new meth-
ods, and since the yes/no question answering ap-
proach is unsatisfactory, we further conduct an er-
ror analysis for yes/no questions using 4B subset.

As we mention in earlier sections, to further
improve the retrieval performance, we may use
learning-to-rank methods to rerank the retrieval
results. For exact answer generation, esp. for
yes/no questions, we believe a deeper linguistic
and semantic analysis of both questions and rel-
evant snippets are necessary. Our preliminary ex-
periment suggested that the word2vec (Mikolov et
al., 2013) based method did worse than the KB
based method in modeling the semantics of enti-
ties. We plan to study whether the former is com-
plementary to the latter in representing the seman-
tics of biomedical properties and event mentions.
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Appendix

Listing 1: ECD main descriptor for factoid and list
QA in batch 5 in Phase B

1 # execute
2 # mvn exec:exec -Dconfig=bioasq.

phase-b-test-factoid-list
3 # to test the pipeline
4
5 configuration:
6 name: phase-b-test-factoid-list
7 author: ziy
8
9 persistence-provider:

10 inherit: baseqa.persistence.
local-sqlite-persistence-provider

11
12 collection-reader:
13 inherit: baseqa.collection.json.

json-collection-reader
14 dataset: BIOASQ-QA
15 file:
16 - input/4b-5-b.json
17 type: [factoid, list]
18 persistence-provider: |
19 inherit: baseqa.persistence.

local-sqlite-persistence-provider
20
21 pipeline:
22 - inherit: ecd.phase
23 name: question-parse
24 options: |
25 - inherit: bioqa.question.parse.

clearnlp-bioinformatics
26
27 - inherit: ecd.phase
28 name: question-concept-metamap
29 options: |
30 - inherit: bioqa.question.concept.

metamap-cached
31
32 - inherit: ecd.phase
33 name: question-concept-tmtool
34 options: |
35 - inherit: bioqa.question.concept.

tmtool-cached
36
37 - inherit: ecd.phase
38 name: question-concept-lingpipe-genia
39 options: |
40 - inherit: bioqa.question.concept.

lingpipe-genia
41
42 - inherit: ecd.phase
43 name: question-focus
44 options: |
45 - inherit: baseqa.question.focus
46
47 - inherit: ecd.phase
48 name: passage-to-view
49 options: |
50 - inherit: baseqa.evidence.passage-to-view
51
52 - inherit: ecd.phase
53 name: evidence-parse
54 options: |
55 - inherit: bioqa.evidence.parse.

clearnlp-bioinformatics
56
57 - inherit: ecd.phase
58 name: evidence-concept-metamap
59 options: |
60 - inherit: bioqa.evidence.concept.

metamap-cached
61
62 - inherit: ecd.phase
63 name: evidence-concept-tmtool
64 options: |
65 - inherit: bioqa.evidence.concept.

tmtool-cached
66
67 - inherit: ecd.phase
68 name: evidence-concept-lingpipe-genia
69 options: |

70 - inherit: bioqa.evidence.concept.
lingpipe-genia

71
72 - inherit: ecd.phase
73 name: evidence-concept-frequent-phrase
74 options: |
75 - inherit: baseqa.evidence.concept.

frequent-phrase
76
77 - inherit: ecd.phase
78 name: concept-search-uts
79 options: |
80 - inherit: bioqa.evidence.concept.

search-uts-cached
81
82 - inherit: ecd.phase
83 name: concept-merge
84 options: |
85 - inherit: baseqa.evidence.concept.merge
86
87 - inherit: ecd.phase
88 name: answer-type
89 options: |
90 - inherit: bioqa.answer_type.

predict-liblinear-null
91
92 - inherit: ecd.phase
93 name: answer-generate
94 options: |
95 - inherit: bioqa.answer.generate.generate
96
97 - inherit: ecd.phase
98 name: answer-modify
99 options: |

100 - inherit: baseqa.answer.modify.modify
101
102 - inherit: ecd.phase
103 name: answer-score
104 options: |
105 - inherit: bioqa.answer.score.

predict-liblinear
106
107 - inherit: ecd.phase
108 name: answer-collective-score
109 options: |
110 - inherit: bioqa.answer.collective_score.

predict-liblinear
111 - inherit: base.noop
112
113 - inherit: ecd.phase
114 name: answer-prune
115 options: |
116 - inherit: baseqa.answer.modify.pruner
117
118 # - inherit: baseqa.cas-serialize
119
120 post-process:
121 # submission
122 - inherit: bioasq.collection.json.

json-cas-consumer

Listing 2: ECD main descriptor for yes/no QA in
batch 5 in Phase B

1 # execute
2 # mvn exec:exec -Dconfig=bioasq.

phase-b-test-yesno
3 # to test the pipeline
4
5 configuration:
6 name: phase-b-test-yesno
7 author: ziy
8
9 persistence-provider:

10 inherit: baseqa.persistence.
local-sqlite-persistence-provider

11
12 collection-reader:
13 inherit: baseqa.collection.json.

json-collection-reader
14 dataset: BIOASQ-QA
15 file:
16 - input/4b-5-b.json
17 type: [yesno]
18 persistence-provider: |
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19 inherit: baseqa.persistence.
local-sqlite-persistence-provider

20
21 pipeline:
22 - inherit: ecd.phase
23 name: question-parse
24 options: |
25 - inherit: bioqa.question.parse.

clearnlp-bioinformatics
26
27 - inherit: ecd.phase
28 name: question-concept-metamap
29 options: |
30 - inherit: bioqa.question.concept.

metamap-cached
31
32 - inherit: ecd.phase
33 name: question-concept-tmtool
34 options: |
35 - inherit: bioqa.question.concept.

tmtool-cached
36
37 - inherit: ecd.phase
38 name: question-concept-lingpipe-genia
39 options: |
40 - inherit: bioqa.question.concept.

lingpipe-genia
41
42 - inherit: ecd.phase
43 name: passage-to-view
44 options: |
45 - inherit: baseqa.evidence.passage-to-view
46
47 - inherit: ecd.phase
48 name: evidence-parse
49 options: |
50 - inherit: bioqa.evidence.parse.

clearnlp-bioinformatics
51
52 - inherit: ecd.phase
53 name: evidence-concept-metamap
54 options: |
55 - inherit: bioqa.evidence.concept.

metamap-cached
56
57 - inherit: ecd.phase
58 name: evidence-concept-tmtool
59 options: |
60 - inherit: bioqa.evidence.concept.

tmtool-cached
61
62 - inherit: ecd.phase
63 name: evidence-concept-lingpipe-genia
64 options: |
65 - inherit: bioqa.evidence.concept.

lingpipe-genia
66
67 - inherit: ecd.phase
68 name: evidence-concept-frequent-phrase
69 options: |
70 - inherit: baseqa.evidence.concept.

frequent-phrase
71
72 - inherit: ecd.phase
73 name: concept-search-uts
74 options: |
75 - inherit: bioqa.evidence.concept.

search-uts-cached
76
77 - inherit: ecd.phase
78 name: concept-merge
79 options: |
80 - inherit: baseqa.evidence.concept.merge
81
82 - inherit: ecd.phase
83 name: answer-yesno
84 options: |
85 - inherit: bioqa.answer.yesno.

predict-weka-other
86 - inherit: baseqa.answer.yesno.all-yes
87
88 post-process:
89 # submission
90 - inherit: bioasq.collection.json.

json-cas-consumer

Listing 3: ECD main descriptor for retrieval in
batch 5 in Phase A

1 # execute
2 # mvn exec:exec -Dconfig=bioasq.phase-a-test
3 # to test the pipeline
4
5 configuration:
6 name: phase-a-test
7 author: ziy
8
9 persistence-provider:

10 inherit: baseqa.persistence.
local-sqlite-persistence-provider

11
12 collection-reader:
13 inherit: baseqa.collection.json.

json-collection-reader
14 dataset: BIOASQ-QA
15 file:
16 - input/4b-5-a.json
17 persistence-provider: |
18 inherit: baseqa.persistence.

local-sqlite-persistence-provider
19
20 pipeline:
21 - inherit: ecd.phase
22 name: question-parse
23 options: |
24 - inherit: bioqa.question.parse.

clearnlp-bioinformatics
25
26 - inherit: ecd.phase
27 name: question-concept-metamap
28 options: |
29 - inherit: bioqa.question.concept.

metamap-cached
30
31 - inherit: ecd.phase
32 name: question-concept-tmtool
33 options: |
34 - inherit: bioqa.question.concept.

tmtool-cached
35
36 - inherit: ecd.phase
37 name: question-concept-lingpipe-genia
38 options: |
39 - inherit: bioqa.question.concept.

lingpipe-genia
40
41 - inherit: ecd.phase
42 name: concept-search-uts
43 options: |
44 - inherit: bioqa.evidence.concept.

search-uts-cached
45
46 - inherit: ecd.phase
47 name: concept-merge
48 options: |
49 - inherit: baseqa.evidence.concept.merge
50
51 - inherit: ecd.phase
52 name: abstract-query-primary
53 options: |
54 - inherit: baseqa.abstract_query.token-concept
55
56 # concept
57 - inherit: ecd.phase
58 name: concept-retrieval
59 options: |
60 - inherit: bioqa.concept.retrieval.

lucene-bioconcept
61
62 - inherit: ecd.phase
63 name: concept-rerank
64 options: |
65 - inherit: bioqa.concept.rerank.

predict-liblinear
66
67 # document
68 - inherit: ecd.phase
69 name: document-retrieval
70 options: |
71 - inherit: bioqa.document.retrieval.

lucene-medline
72
73 - inherit: ecd.phase
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74 name: document-rerank
75 options: |
76 - inherit: bioqa.document.rerank.

predict-liblinear
77
78 # snippet
79 - inherit: ecd.phase
80 name: passage-retrieval
81 options: |
82 - inherit: bioasq.passage.retrieval.

document-to-passage
83
84 - inherit: ecd.phase
85 name: passage-rerank
86 options: |
87 - inherit: bioqa.passage.rerank.

predict-liblinear
88 - inherit: base.noop
89
90 post-process:
91 # submission
92 - inherit: bioasq.collection.json.

json-cas-consumer

Listing 4: ECD component descriptor of
bioqa.answer.collective score.liblinear-predict

1 inherit: baseqa.learning_base.classifier-predict
2
3 candidate-provider: ’inherit: baseqa.answer.score.

candidate-provider’
4 scorers: |
5 - inherit: baseqa.answer.collective_score.scorers.

original
6 - inherit: baseqa.answer.collective_score.scorers.

distance
7 - inherit: baseqa.answer.collective_score.scorers.

edit-distance
8 - inherit: baseqa.answer.collective_score.scorers.

type-coercion
9 - inherit: baseqa.answer.collective_score.scorers.

shape-distance
10 classifier: ’inherit: bioqa.answer.collective_score.

liblinear-classifier’
11 feature-file: result/

answer-collective-score-predict-liblinear.tsv

Listing 5: ECD component descriptor of
bioqa.answer.yesno.predict

1 inherit: baseqa.answer.yesno.predict
2
3 scorers: |
4 - inherit: baseqa.answer.yesno.scorers.

concept-overlap
5 - inherit: bioqa.answer.yesno.scorers.

token-overlap
6 - inherit: baseqa.answer.yesno.scorers.

expected-answer-overlap
7 - inherit: baseqa.answer.yesno.scorers.sentiment
8 - inherit: baseqa.answer.yesno.scorers.negation
9 - inherit: bioqa.answer.yesno.scorers.

question-inversion
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Figure 1: Retrieval (Phase A) pipeline diagram. † represents a provider that requires accessing external
Web services.
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Figure 2: Factoid and list question answering (Phase B) pipeline diagram. † represents a provider that
requires accessing external Web services.
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Abstract

Question answering (QA) systems are cru-
cial when searching for exact answers for
natural language questions in the biomed-
ical domain. Answers to many of such
questions can be extracted from the 26
millions biomedical publications currently
included in MEDLINE when relying on
appropriate natural language processing
(NLP) tools. In this work we describe our
participation in the task 4b of the BioASQ
challenge using two QA systems that we
developed for biomedicine. Preliminary
results show that our systems achieved
first and second positions in the snippet re-
trieval sub-task and for the generation of
ideal answers.

1 Introduction

The deluge of scientific publication in
biomedicine requires tools for processing
and searching precise information in real time.
Question answering (QA) comes as an alternative
to standard search engines system, e.g. PubMed1,
and provides precise and short answers for
questions in natural language (Athenikos and
Han, 2010; Neves and Leser, 2015). One of the
advantages of QA systems is that the user does
not need to be proficient in formulating queries in
a way that the system can understand. Instead, a
user may simply enter a question as they would
pose it to another person and receive a answer in
return. Thus, no formal training is required to use
QA systems.

QA is one of the more complex applications of
natural language processing (NLP) (Jurafsky and
Martin, 2013). This is usually achieved through
a three-steps architecture: (1) the users question

1http://www.ncbi.nlm.nih.gov/pubmed

must be processed so that a query can be gener-
ated; (2) this query is then used to find all relevant
text passages from a large document collection;
and (3) finally, the system generates the exact an-
swer to the users question and/or a summary of the
facts from these passages. Some QA systems al-
ready exist for the biomedical domain (Bauer and
Berleant, 2012). However, none of them are ca-
pable of answering questions in real time, in part
due to the large collections of documents involved
in the task.

We describe our participation in the fourth edi-
tion of the BioASQ challenge2 (Tsatsaronis et al.,
2015), a community-based shared task which aims
to evaluate the current solutions for a variety of
QA sub-tasks. We submitted runs from two QA
systems which were specifically developed for the
biomedical domain. One of the system (HPI1)
successfully participated in the previous editions
of the BioASQ challenge (Neves, 2015) and our
second system (HPI2) is described in this work.
We relied on existing NLP functionality from a in-
memory database (IMDB) and we extend it with
new procedures tailored specifically to QA. We
participated in the task 4b (Biomedical Semantic
QA) which is split in two phases: (a) phase A:
concept mapping and document, passage and RDF
triples retrieval; and (b) phase B: exact and ideal
(short summary) answers.

The next section presents a short description of
our the HPI2 system, followed by the preliminary
results that we obtained in the challenge and a
short discussion about our performance and meth-
ods.

2 Data

We relied on two main resources when developing
our QA system: the MEDLINE and the Unified

2http://bioasq.org/
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Medical Language System (UMLS). In this sec-
tion, we give a short overview on both resources.

2.1 MEDLINE
MEDLINE3 is the main source for biomedical
publications and grows continuously. We down-
loaded the publications from MEDLINE and inte-
grated them into our local database. For the pur-
poses of our QA system, an article consists of a
title, an abstract and the main text. In this paper
we refer only to titles and abstracts, as full pa-
pers are not considered in the current edition of
the BioASQ challenge.

2.2 Unified Medical Language System
Extracting meaning out of biomedical documents
is usually supported by manually curated dic-
tionaries. These dictionaries contain words and
phrases which are common to the biomedical do-
main. such dictionaries are used to map synonyms
and abbreviations of terms to a common base term.
Often, they also contain information to assign cat-
egories to terms. There are various terminolo-
gies for the biomedical domain, such as UMLS,
SNOMED CT or MeSH.

UMLS4 is a comprehensive database that com-
bine various sources into a single knowledge
base. It includes vocabularies mapping words and
phrases onto a set of concepts. Each concept
has an associated semantic type and group, which
classifies the category of the concept, such as gene
or disease.

In our QA system, UMLS was mainly used for
named-entity recognition (NER), i.e., for extract-
ing named-entities both in the question and in the
document collection. Also in the context of NER,
we used the UMLS semantic types to map the
named-entities to their corresponding types. Fi-
nally, we also rely on UMLS to resolve synonyms,
thus avoiding to miss important passages which
include synonyms to the words in the questions.
Abbreviations, in particular, are very frequent in
biomedical documents.

3 Methods

Our QA is composed of many components (cf.
Figure 1) which are included in three main steps,
i.e., question processing, document retrieval, and

3https://www.nlm.nih.gov/pubs/
factsheets/medline.html

4https://www.nlm.nih.gov/research/
umls/

answer processing. The later includes a two-step
phase: exact answer extraction (not included in
this paper) and summarization. Details for each
component are described below.

Figure 1: Work-flow of our question answering
system.

3.1 Architecture

Our system was developed on top of a IMDB (SAP
HANA database) (Plattner, 2013), which allows
fast access of data directly from main memory,
in contrast to processing data from files that re-
side on disk space, thus requiring loading data into
main memory. The IMDB we used comes with
built-in text analysis features, such as language
detection, sentence splitting, tokenization, stem-
ming, part-of-speech (POS) tagging, NER based
on pre-compiled dictionaries, information extrac-
tion based on manually crafted rules, document
indexing, approximate searching and sentiment
analysis.

All textual resources (documents and ques-
tions) were added to the database and dictionar-
ies of biomedical terms were created based on
the UMLS terminology. Then we created the so-
called full text index (FTI), i.e., an additional table
which can be created for columns which contain
text. Such an index can be created in many ways,
we opted for two of them, namely: (a) a linguis-
tic index, which contains all words from the origi-
nal documents, as well as corresponding POS tags;
and (b) a NER index, which contains all entities
that were found based on the dictionary that was
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previously built. In summary, from the linguistic
FTI it is possible to retrieve information about sen-
tence splitting, tokenization, stemming and POS
tags, while the NER provides the named-entities.

3.2 Question processing

The first step in a question answering system is to
analyze the input question. This step is composed
of three components in our QA system: (a) ques-
tion type detection, (b) target extraction, and (c)
query building.

Question Type Detection. The question type
can be either ”yes/no”, ”factoid”, ”list” or ”sum-
mary”. It defines which kind of the answer the
system needs to return. In this step, we split the
question into words and and apply special rules
to find the correct type, by considering question
words and the structure (POS tags) of the ques-
tion. Our approach is based on regular expres-
sions, for instance, a questions beginning with an
auxiliary verb is classified as yes/no-question. Al-
though our QA system includes a component for
detecting the question type, this step is not neces-
sary in the BioASQ challenge because all question
types are given.

Target Extraction. The second component of
our question processing step extracts the target of
the question, in case of factoid questions, and clas-
sifies it according to the UMLS semantic types5,
e.g, whether the question asks for a disease or a
gene. This is an important information for the
answer extraction step. We extract the headword
using simple rules, for instance, the first noun af-
ter the question word (e.g., ”what”, ”which”). For
classifying the headwords according to the many
UMLS semantic types, and inspired by (Huang
et al., 2008), we relied on a machine learning
(ML) approach based on the implementation of the
Support Vector Machine (SVM) algorithm in the
IMDB database. The features that we use were
the headwords and the questions words. All head-
words in the factoid questions were manually clas-
sified into the semantic types by one of the authors
(MN) and this is the training data that was used
in our experiments. During the process, several
different features were evaluated, but they did not
improved our results.

5https://metamap.nlm.nih.gov/
SemanticTypesAndGroups.shtml

Query Building. Good query terms are impor-
tant features when relying on a keyword-based
search to find relevant documents for the question.
For this purpose, we use all words, except for stop-
words and question words (e.g., ”what”, ”which”).

3.3 Document and Passage Retrieval

The query that was built in the previous step was
used in this step to find relevant documents and
passages within the millions abstracts. We relied
on the tf-idf method (Manning et al., 2008) as a ba-
sis and we adjusted it by various means to better fit
the biomedical domain. We opted for the weighted
tf-idf approach since our experiments showed that
it provided up to 10% more recall than an equally
weighted approach. We used a proximity measure
to boosts a documents relevancy rating when it
contains words from the query which appear close
together. This measure searches for each possible
word pair that appears in the query and applies a
fixed rating increase for each such pair that is sep-
arated by a maximum of two words anywhere in
the document.

We also consider the documents title in our ap-
proach. A documents titles relevancy was added
to the documents relevancy in a weighted sum,
thereby increasing the relevancy of documents
with relevant titles. We also utilized a Jaccard-
based word overlap measure between sentences
in the document and in the question for the pas-
sage retrieval step. Our system first retrieves the
100.000 most relevant documents and then checks
their sentences. This way we achieve a significant
speed-up compared to calculating relevancy scores
for all sentences in all documents. The document’s
total proximity score and the best sentence’s word
overlap score are then used to boost the initial tf-
idf score. Their influence was tuned empirically
on a test set of BioASQ questions and answers.
Finally, our document and passage retrieval al-
gorithms return a list of documents or passages,
sorted by their relevance score.

3.4 Answer extraction

We only submitted ideal answers, i.e. short sum-
maries, for the BioASQ challenge. Our approach
is described in details below.

For the generation of summaries, we used an
algorithm that is based on LexRank (Erkan and
Radev, 2004), but that solely used the named-
entities for the similarity function. In other words,
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instead of using tf/idf values to rate the importance
of each word, we use the named-entities instead.

The first step was to build a sentence graph.
Therefore we calculated the cosine similarity of
each sentence with each other sentences, i.e., a
vector representation of each sentence. However,
instead of using each word as dimension for the
vector, we only use the named-entities. After the
construction of the vectors, we calculate the co-
sine similarity (cf. equation 1) between each two
of these:

cosine =

n∑
i=1

AiBi√
n∑

i=1
A2

i

√
n∑

i=1
B2

i

(1)

where Ai and Bi are the dimensions of the
vectors representing the sentences. Afterwards,
we create the sentence graph by adding a ver-
tex for each sentence. Then we create edges be-
tween those vertices whose corresponding sen-
tences have a similarity score above 0.2.

For calculating the ranking, we used the exact
round based formula (cf. equation 2) that is used in
LexRank and that originates from PageRank (Page
et al., 1999):

score(si) =
d

N
+(1−d)

∑
sj∈adj[si]

score(sj)
deg(sj)

(2)

where N is the total number of vertices in the
graph, adj[s] are all adjacent vertices of the vertex
s. Additionally, we have the parameter d, a ’damp-
ing factor’, which is typically set to 0.2 (Page et
al., 1999).

Subsequently, we ranked all sentences accord-
ing to their centrality in the set of related abstracts.
We need a last step to generate a summary by
removing redundant sentences and we follow the
following process:

1. Initialize two sets: (a) an empty set A and a
set B that contains all extracted sentences.

2. Order the sentences in set B by decreasing
order of their score.

3. Move the top sentence si from set B to set A.
Then penalize all sentences sj whose similar-
ity to si is greater than a threshold of 0.3 by
multiplying their score with the penalty fac-
tor of 0.5.

4. Repeat the steps 2 and 3 until enough sen-
tences are in set A.

In a final step, we order the sentences from set A
according to their occurrence in the original docu-
ments. Thus, we tried to roughly keep the sentence
at the position that the author intended.

4 Results and Discussion

In this section, we present the preliminary results
we obtained in the fourth edition of the BioASQ
challenge. We introduce the details of the BioASQ
challenge and then present our results for the two
systems with which we participated this year.

4.1 BioASQ challenge
We participated on the Task 4b, which is com-
posed of two phases: A and B. During phase A, the
participating teams received a test set of 100 ques-
tions along with their question type, i.e., whether
yes/no, factoid, list or summary, and had 24 hours
to submit their predictions for concepts, docu-
ments, passages and RDF triples. When phase A
was over, the organizers released the the test set
for phase B which contained the same questions
previously released for phase A along with gold-
standard annotations. During phase B, the partici-
pating teams had 24 hours to submit their predic-
tions for exact and ideal answers.

The BioASQ organizers released five bathes of
around 100 questions every two weeks. Although
our QA systems are capable to output results for
most of the tasks covered in BioASQ, we did not
submit runs for every sub-task due to problems
with the systems, which are still under develop-
ment.

4.2 Systems
We participated this year with two QA systems, as
identified by their run names:

1. HPI1: our previous system that participated
in the BioASQ challenge last year (Neves,
2015);

2. HPI2: our new QA system, which is de-
scribed in this work.

HPI1 is exactly the same system that partici-
pated in the BioASQ 2015 and that was one of
the winners systems6. We made no changes in the

6http://www.bioasq.org/participate/
third-challenge-winners
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system and details on the methods can be found
in our previous publication (Neves, 2015). This
system was used this year for concept matching
and for document and snippet retrieval. The only
change made to this system was on the dictio-
naries which are used in the concept matching
task of Phase A. The dictionaries were re-created
based on newer versions of the five terminologies
specified in the guidelines of the BioASQ chal-
lenge: DO, MeSH, Jochem, GO and Uniprot. We
downloaded the original files from the respective
web sites and compiled dictionaries for each of
the terminologies. The dictionaries include var-
ious names and synonyms for each concept and
was used by the built-in NER functionality of the
database to match concepts to the questions.

The document and passage retrieval of the HPI1
system did not make use of our local copy of
MEDLINE but it queries PubMed instead. For
each question, we generate two queries based on
its tokens: (1) by using the ”OR” operator and
words in the question, except stopwords, and (2)
by using the ”AND” operator and using all words
in the question, except stopwords and words in list
of common English words (cf. (Neves, 2015)).
We retrieve up to 200 PubMed documents for each
of the queries and index these in the IMDB. We
rank the sentences for each question based on an
approximate similarity between the words in the
question and the ones in the document, while a
score is automatically calculate between those. Fi-
nally, we rank the sentences according to the sum
of scores of the matching words and select the top
10 sentences. The list of up to 10 documents is de-
rived from the list to top 10 sentences, i.e., the cor-
responding documents of these sentences, in the
same order.

4.3 Evaluation

Currently, only preliminary results are available
for some of the tasks of the BioASQ challenge.
We summarize them in Table 1. More details on
the results can be found in the BioASQ web site 7.

We present in this section a discussion on
the preliminary results that we obtained in the
BioASQ challenge, on the limitation of our meth-
ods and improvements for future versions of our
QA system.

7http://participants-area.bioasq.
org/results/4b/phaseA/ and http://
participants-area.bioasq.org/results/
4b/phaseB/

HPI1 HPI2
Concepts MAP MAP
batch1 na -
batch2 - -
batch3 na -
batch4 na -
batch5 na -

Documents MAP MAP
batch1 0.0474 (12/15) 0.0028 (15/15)
batch2 - -
batch3 0.0674 (16/18) 0.0006 (18/18)
batch4 - -
batch5 0.434 (16/21) -

Snippets MAP MAP
batch1 0.0481 (1/7) -
batch2 - -
batch3 0.0715 (4/14) -
batch4 - -
batch5 0.0510 (5/16) -

Ideal Answ. Rouge-2 Rouge-2
batch1 - 0.2231 (1/2)
batch2 - 0.2240 (6/7)
batch3 - 0.2559 (6/7)
batch4 - 0.2280 (4/4)
batch5 - 0.3233 (6/7)

Table 1: Preliminary results in the BioASQ task
4b. Scores for concepts, documents and snippets
are in terms of MAP (Mean Average Precision).
”na” indicated that results are still not available for
this task, while ”-” indicated that we did not sub-
mit any run for the task. The values inside parame-
ters indicate our current rank and the total number
of submissions for the task.
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Documents. Curiously, although the strategy
used for the document retrieval is exactly the same
one used for the snippet retrieval, we obtained
much better results for the later, in term of po-
sition in the ranking, also in previous editions of
the BioASQ challenge. As gold-standard and not
available, we can only try to guess the reasons
for our performance. When comparing our two
systems, HPI2 performed much worse than HPI1,
which proves that we still have to need to be im-
proved to deal with large document collections,
while HPI1 rely on up to 200 previously retrieved
from PubMed.

Snippets. Our system HPI1 performed well
again and it a good candidate for obtaining first
and second position in the challenge. This proves
that the IMDB could effectively match the key-
words in the queries to the documents and rank the
sentences. However, we see much room for im-
provement in our approach as named-entities are
still not being used in this component, a step which
can certainly improve both document and passage
retrieval.

Ideal Answers. Our results for ideal answers,
i.e., short summaries, provided by system HPI2
also obtained either first or second positions in
the all of the batches, when considering results by
teams, instead of each individual run.

5 Conclusions and Future Work

In this work we present our results for our two QA
systems that participated in task 4b of the BioASQ
challenge. The preliminary results show that our
approaches are obtained top positions for the snip-
pet retrieval and for the ideal answers. Regarding
future work, we envisage much room for improve-
ment for our HPI2 system, the one which is cur-
rently under development in our group:

• Both the document and snippet retrieval steps
performed much worse than the HPI1 sys-
tem, which rely on PubMed API. Future work
should aim at improving our current ranking
algorithms.

• We did not submit runs for factoid and list
questions because our system could not re-
turn any answer for most of the answers. We
did submit one run for yes/no questions but
MAP value was of only 25%, while other

system are close to 100%. We should per-
form a comprehensive evaluation of the ques-
tion processing step, specially the target iden-
tification step, and properly integrate further
components which can potentially boost our
results, such as NER, chunking and semantic
role labeling.

Finally, we should perform a comprehensive
evaluation on biomedical corpora for the many
built-in NLP components of the IMDB, such as
NER and POS tagging, as mistakes returned by
these can be propagated throughout the system.
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Abstract

This paper describes a question–
answering system that returns relevant
documents and snippets (with particular
emphasis on snippets) from a large med-
ical document collection. The system is
implemented as part of our participation to
Phase A of Task 4b in the 2016 BioASQ
Challenge. The proposed system retrieves
candidate answer sentences using a
cluster–based language model. Then, it
re–ranks the retrieved top-n sentences
using five independent similarity models
based on shallow semantic analysis. The
experimental results show that the pro-
posed system is the first to find snippets
in batches 2 (MAP 0.0604), 3 (MAP
0.0728), 4 (MAP 0.1182), and 5 (MAP
0.1187).

1 Introduction

BioASQ 2016 is the fourth annual BioASQ chal-
lenge as an established international competition
for large–scale biomedical semantic indexing and
question–answering, since 2013 (Tsatsaronis et
al., 2015). The challenge consists of two tasks:
Task 4a on large–scale online biomedical seman-
tic indexing and Task 4b on biomedical semantic
question–answering. Task 4b is further divided
into two phases: Phase A and Phase B. In Phase
A, participating systems are required to return a
maximum of 10 relevant concepts, documents,
snippets, and triples during five batches. Partic-
ipation in Phase A can be partial, which means
that it is acceptable to participate in only some of
the batches and to return only relevant documents
without snippets, triples, and concepts. This paper
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describes a questionanswering system of Kang-
won National University and Sogang University
submitted for Phase A of Task 4b in BioASQ
2016. The proposed system is focused on return-
ing relevant documents and snippets (with partic-
ular emphasis on snippets).

2 Question-answering system based on
sentence retrieval and re–ranking
techniques

KSAnswer consists of two submodules: A re-
trieval model for finding candidate answer sen-
tences from a large medical collection and a re–
ranking model for determining the final answer
among the retrieved candidate answer sentences.

2.1 Sentence retrieval model

Prior to indexing documents, KSAnswer first
splits documents into a sequence of sentences us-
ing LingPipe (Baldwin et al., 2003). Then, it per-
forms morphological analysis of the sentences and
extracts content words (i.e., proper noun, common
noun, verb, number, and so on) from the sentences.
This is followed by stemming of content words ex-
cept proper nouns using Porter Stemmer (Porter,
1980). Finally, KSAnswer uses the stemmed con-
tent words and the proper nouns as indexing terms.

For cluster–based sentence retrieval, KSAnswer
generates two types of indexing units from the
document collection comprising full data sets of
PubMed journals: a sentence trigram unit and a
document unit. The sentence trigram unit con-
sists of an indexing target sentence and its context
sentences (the previous and the next sentences)
to address the lexical disagreement between a
query and an indexed sentence. If a document
consists of three sentences, KSAnswer generates
three sentence trigrams (NULL–1st sentence–2nd

sentence, 1st sentence–2nd sentence–3rd sentence,
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Figure 1: Relationship between a query and an answer sentence

2nd sentence–3rd sentence–NULL). The docu-
ment unit consists of a title sentence and abstract
sentences. The document unit assists in address-
ing the lexical disagreement between a query and
a sentence trigram. Then, KSAnswer performs
indexing of each unit and constructs two index-
ing databases using Lucene 4.0.0 (Białecki et al.,
2012).

To rank candidate answer sentences, KSAnswer
uses a cluster–based language model (Liu et al.,
2004; Merkel et al., 2007), as shown in Eq. (1):

SimIR(Q,S) =∝ Simtri(Q,T ) +
(1− ∝)Simdoc(Q,D) (1)

where Simtri(Q,T ) is the similarity of the lan-
guage model between the query Q and the sen-
tence trigram T in the document D. Then,
Simdoc(Q,D) is the similarity of the language
model between the query Q and the document D.
The weighting parameter ∝ has a value between
0 and 1. Finally, SimIR(Q,S) returns similari-
ties between the query Q and the indexing target
sentence S, which is located in the middle of the
sentence trigram T .

2.2 Sentence re–ranking model
Prior to re–ranking of candidate answer sentences,
KSAnswer selects top–n retrieved sentences and
normalizes their similarities, as shown in Eq. (2):

Sim
′
IR(Q,S) =

SimIR(Q,S)−m
σ

(2)

where m and σ are the average and standard de-
viation of similarity scores of top–n retrieved sen-
tences, respectively.

KSAnswer re–ranks the top–n retrieved sen-
tences using five independent similarity models,

namely, SimSNT (Q,S), SimEMB(Q,S),
SimEAT (Q,S), SimFOCUS(Q,S), and
SimME(Q,S). SimSNT (Q,S) is a similar-
ity model between the query Q and the sentence
S, which is located in the middle of the retrieved
sentence trigram. SimEMB(Q,S) is a simi-
larity model between the sentence embedding
of Q and the sentence embedding of S. The
sentence embeddings are constructed by the sum
of position–encoded word vectors in Word2Vec
(so–called position encoding) (Sukhbaatar et al.,
2015). SimEAT (Q,S) is a similarity model
between the expected answer type (EAT; a
category name of expected answer) of Q and
medical entity types (category names of medical
entities) in S. SimFOCUS(Q,S) is a similarity
model between focus words (FOCUS; a clue
word sequence to identify correct answers) in
Q and content words in S. SimME(Q,S) is a
similarity model between medical entities (MEs)
in Q and medical entities in S. For example, in
the sentence “Which drugs are utilized to treat
eosinophilic esophagitis?”, EAT, FOCUS, and
ME are [Chemicals & Drugs], [eosinophilic
esophagitis], and [drugs, eosinophilic esophagi-
tis], respectively. To obtain EAT, FOCUS, and
ME, KSAnswer uses a sentence analyzer based
on pattern matching and machine learning (Kim
et al., 2004). The sentence analyzer extracts
word chunks (generally noun phrases) from a
query using lexico–semantic patterns. Then, it
determines EAT and FOCUS by searching the
syntactic chunks in MetaMap (Aronson et al.,
2006). To obtain MEs, the sentence analyzer
uses a special version of named entity recognizer
based on Conditional Random Fields (CRFs),
which is trained for medical documents (Abacha
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Figure 2: Vector-based similarity model based on a neural network

et al., 2012). The named entity recognizer extracts
medical entities from a sentence and annotates
them with predefined semantic categories. EAT
and MEs use the same semantic categories as
follows: ACTI (Activities & Behaviors), ANAT
(anatomy), CHEM (chemicals & drugs), CONC
(concepts & ideas), DEVI (devices), DISO (dis-
orders), GENE (genes & molecular sequences),
GEOG (geographic areas), LIVB (living beings),
OBJC (objects), OCCU (occupations), ORGA
(organizations), PHEN (phenomena), PHYS
(physiology), and PROC (procedures). Figure 1
shows a relationship between Q and S at the view
of EAT, FOCUS, and ME.

Eq. (3) shows the similarity scores between a
query and each top–n retrieved sentences for re–
ranking.

ReSim(Q,S) = αSim
′
IR

+(1− α){βSimsnt(Q,S)

+(1− β)
4∑

i=1

γiSim
i
sem(Q,S)},

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1,
4∑

i=1

γi = 1 (3)

where Simi
sem(Q,S) is the ith similarity

model among SimEMB(Q,S), SimEAT (Q,S),
SimFOCUS(Q,S), and SimME(Q,S). Then,
∝, β, and γ are the weighting parameters set by
experiments. The word–based similarity models
(i.e., models for calculating similarities between
words in Q and S), such as SimSNT (Q,S),
SimFOCUS(Q,S), and SimME(Q,S), are
calculated using the well-known Okapi BM25
(Robertson et al., 1999). Then, the category–based

similarity model (i.e., a model for calculating
similarities between category names in Q and S),
SimEAT (Q,S), is calculated using OR similarity
of the Paice model (Paice, 1984), as shown in Eq.
(4).

SimEAT (Q,S) =
∑n

i=1(r
i−1wi)∑n

i=1 r
i−1

,

where 0 ≤ r ≤ 1 and w
′
is are

considered in descending order (4)

In Eq. (4), wi is a TF·IDF value of the ith word in
ME’s of S that have the same semantic category
with EAT of Q. Finally, the vector–based simi-
larity model, SimEMB(Q,S), is calculated using
a feed–forward neural network with one hidden
layer (Svozil et al., 1997), as shown in Figure 2.

The feed–forward neural network uses the sen-
tence embedding vectors of Q and S as input val-
ues and uses a degree of relevance (from 0 to 1)
between the two sentence embedding vectors as
an output value. It is trained using gold standard
answers as relevant snippets and by using top–n
retrieved sentences except gold standard answers
as irrelevant snippets.

3 Experiments

3.1 Experimental setting

We indexed the full data set of PubMed jour-
nals using Lucene 4.0.0. The number of docu-
ment units was 12,208,342 and the number of sen-
tence trigram units was 99,911,516. The language
model parameters (µ values) for the document and
sentence trigram units were set to 500 and 100, re-
spectively. The weighting parameter ∝ in Eq. (1)
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was 0.8. Then, the weighting parameters∝, β, and
γi in Eq. (3) were 0.5, 0.9, and 0.3, respectively.

3.2 Experimental results

In Phase A of Task 4b, our best submission was
the first to find snippets in batches 2, 3, 4, and 5.
In batch 1, we indexed the limit set of PubMed and
achieved the second place in finding snippets. Ta-
ble 1 shows the best performances of KSAnswer.

Table 1: Evaluation results of submitted runs

Batch
Document

Precision Recall
F1 MAP

1
0.0840(0.0840) 0.2258(0.1664)
0.1065(0.1116) 0.0486(0.1223)

2
0.1675(0.1675) 0.4056(0.2758)
0.2122(0.2084) 0.0949(0.1905)

3
0.1380(0.1380) 0.3946(0.2686)
0.1786(0.1823) 0.0992(0.2095)

4
0.1720(0.1720) 0.5333(0.3470)
0.2247(0.2300) 0.1257(0.2871)

5
0.1103(0.1103) 0.3752(0.2560)
0.1546(0.1542) 0.0752(0.1742)

Batch
Snippet

Precision Recall
F1 MAP

1
0.0482(0.0418) 0.0952(0.1071)
0.0534(0.0602) 0.0266(0.0738)

2
0.1021(0.0967) 0.1615(0.1930)
0.1104(0.1288) 0.0604(0.1381)

3
0.0873(0.0823) 0.1208(0.1460)
0.0886(0.1053) 0.0728(0.1440)

4
0.1504(0.1377) 0.2023(0.2653)
0.1554(0.1813) 0.1182(0.2549)

5
0.0771(0.0773) 0.1272(0.1434)
0.0798(0.1004) 0.0582(0.1187)

The parenthesized values are informal per-
formances that are calculated using gold stan-
dard answers for each batch. In an ad-
ditional experiment, we found that the de-
gree of the sub-model importance in the re-
ranking model is as follows: SimSNT (Q,S)
>> SimEAT (Q,S) > SimFOCUS(Q,S) ≈
SimME(Q,S) ≈ SimEMB(Q,S)

4 Conclusion

We proposed a question-answering system for
finding candidate answer snippets from a large

medical document collection. The proposed sys-
tem retrieves candidate answer sentences using
cluster–based language model. Then, it re–ranks
top–n retrieved sentences using various similarity
models based on shallow semantic analysis of sen-
tences. In Phase A of task 4b, the proposed system
showed excellent performance by being the first to
find snippets in batches 2,3,4 and 5.
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Abstract

In this paper we present the methods
and approaches employed in terms of our
participation in the 2016 version of the
BioASQ challenge. For the semantic in-
dexing task, we extended our successful
ensemble approach of last year with addi-
tional models. The official results obtained
so-far demonstrate a continuing consis-
tent advantage of our approaches against
the National Library of Medicine (NLM)
baselines. For the question answering
task, we extended our approach on fac-
toid questions, while we also developed
approaches for the document, concept and
snippet retrieval sub-tasks.

1 Introduction

The BioASQ project (Balikas et al., 2014) aims
to provide a challenge framework for researchers
dealing with classification (semantic indexing)
and natural language processing (question answer-
ing) tasks in the field of bio-medicine. The chal-
lenge, similar to the previous three years, is di-
vided into two tasks: automated semantic indexing
(4A) and question answering (4B).

In Task 4A participants are given a set of new,
unannotated articles and are required to automat-
ically predict the relevant MeSH terms for each
one of them in a given time. For each article only
the abstract along with some meta-information is
provided (journal, year and title). This task is par-
ticularly difficult, as the MeSH taxonomy is com-
prised of a large number of labels (∼ 27000), with
the label set following a distribution similar to
power-law. Furthermore the terms are subject to
a significant concept drift along time.

Task 4B is divided into 2 phases, called A and
B. In phase A participants are given a set of ques-

tions and must return the 10 most relevant doc-
uments, snippets, concepts (from designated on-
tologies) and RDF triples. In phase B participants
are given the gold standard documents and snip-
pets and must provide exact and ideal answers.

This paper discusses the approaches we devel-
oped for this year’s BioASQ challenge. In par-
ticular, Section 2 discusses our semantic indexing
algorithms, Section 3 our document retrieval sys-
tem, Section 4 our concept retrieval method, Sec-
tion 5 our snippet retrieval approach and Section 6
discusses our question answering approach. Final
considerations and conclusions are drawn in Sec-
tion 7.

2 Task 4A: Semantic Indexing

In this section we present the methods that we used
for the semantic indexing task. We first provide
the pre-processing pipeline and subsequently the
methods employed.

2.1 Pre-processing

In this year’s participation, we used the 1,050,000
most recent documents from the BioASQ 2016
corpus using as a training set the first 1 million
articles and the last 50 thousand as a validation
set. The motivation behind using the latest arti-
cles of the corpus, stems from the hypothesis that
more recent chronologically articles will tend to
follow more similar labels distributions to new ar-
ticles that have to be predicted, compared to older
ones. Pre-processing of the articles was carried out
similar to previous years; the abstract and the title
were concatenated, uni-grams and bi-grams were
used as features, removing stop-words and fea-
tures with less than five occurrences in the corpus.
We used the tf-idf representation for the features.
Also, zoning of the features belonging to the title
and those equal to a MeSH label was performed
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by increasing the tf-idf value of features that be-
longed to the title by log2 and those being equal
to a label by log1.25. The above features were
used in order to train several multi-label learning
models, described in the following section.

2.2 Methods
Our participation to this year’s contest included
several multi-label classifiers (MLC) that were
combined in various ensembles. As in the previ-
ous year, we used the Meta-Labeler (Tang et al.,
2009), a set of Binary Relevance (BR) models with
Linear SVMs (both tuned and with default pa-
rameters) and a Labeled LDA variant, Prior LDA
(Rubin et al., 2012). For the tuned SVM mod-
els, we used different values for the C parameter
and handled class imbalance by penalizing more
heavily false negative errors than false positive
ones by adjusting properly the weight parameter
(Lewis et al., 2004). This year, we additionally
employed Fast XML (Prabhu and Varma, 2014)
and HOMER-BR (Tsoumakas et al., 2008).

All the above models were combined in an en-
semble, using the MULE framework (Papaniko-
laou et al., 2014). MULE is a statistical signif-
icance multi-label ensemble that performs classi-
fier selection. The key idea is to combine a set
of multi-label classifiers aiming to optimize a se-
lected measure (for the purpose of this challenge,
we are mainly interested in the micro-F measure)
and validate this combination through a statistical
significance test; McNemar’s test. This way, each
label of the multi-label problem is predicted with
a specific component model, the one that (a) con-
tributes to the greatest improvement to the evalu-
ation metric of interest and (b) is validated from
the statistical test to indeed produce the aforemen-
tioned improvement. If (b) does not hold, in other
words if the component model’s improvement is
not statistically significant, we predict that label
with the globally optimal model.

2.3 Results
Since at the moment of writing this paper there
are not sufficient official results yet(only the a
small part of documents of the first batch are an-
notated), in Table 1 we present the performance of
the multi-label classifiers used in our ensembles,
in terms of the Micro-F and Macro-F measures,
for the training set (one million documents) and
the validation set (fifty thousand documents) used
throughout the challenge.

Table 1: Performance of the multi-label classifiers
used throughout the BioASQ challenge semantic
indexing task 4a, in terms of Micro-F and Macro-
F. Training set size was 1,000,000 documents and
test set size 50,000 respectively.

MLC Micro-F Macro-F
Meta-Labeler 0.61936 0.57477
Vanilla SVMs 0.58422 0.50080
Tuned SVMs 0.61365 0.54444
Labeled LDA 0.47399 0.39084

Fast XML 0.38053 0.28899
HOMER-BR (k=3) 0.59698 0.54972

3 Task 4B Phase A: Documents

Here we describe our document retrieval system.
The system was written in Java. A variety of li-
braries have been used. The StAX Parser1 for the
input of XML files, the Stanford Parser2 for natu-
ral language parsing and the GSON library3 for
output of JSON files. We build our system on
open source Indri search engine from the Lemur
Project4.

3.1 Pre-processing of citations
We processed the full database of MEDLINE
and extracted the citations that contained Ti-
tle, Abstract and MeSH annotations. There are
14,938,869 documents.

3.2 Search Engine
We used Indri as our search engine. We normal-
ized the text of all the processed citations and we
inserted them to our search engine. No stemming
or stop-words filtering has been done in order to
avoid any distortion of bio-medical and other im-
portant terminology.

3.3 Question Parsing and Query
Our system processes and analyzes the input ques-
tion before producing the final query. It removes
any unwanted punctuation, it analyzes the ques-
tion with the Stanford Parser and produces a bag of
words. Finally, we form our query by combining
the bag of words with the query language grammar
of Indri.

1https://docs.oracle.com/javase/
tutorial/jaxp/stax/api.html

2http://nlp.stanford.edu/software/
lex-parser.shtml

3https://github.com/google/gson
4http://www.lemurproject.org/
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3.4 Testing

We tested our system by using both the ques-
tions and the gold standard articles of the previous
BioASQ challenges and the current challenge. We
experimented with Indri’s great variety of search
terms and tried retrieving top-10, top-20 and top-
50 documents. The table below provides the re-
sults of our experiments retrieving top-10 docu-
ments.

Table 2: Test results retrieving top-10 documents
Task # questions Precision MAP

1b, 2b, 3b 940 0.279 0.141
4b TestSet 1 100 0.156 0.233
4b TestSet 2 100 0.230 0.198
4b TestSet 3 100 0.195 0.250
4b TestSet 4 100 0.235 0.321
4b TestSet 5 97 0.105 0.158

4 Task 4B Phase A: Concepts

We are working at the phase A task of returning
a list of at most 10 relevant concepts from the
designated terminologies and ontologies. The list
is ordered by decreasing confidence. In our ap-
proach, we use MetaMap5 and LingPipe6 to de-
tect the biomedical concepts and local ontology
files (Disease ontology, Gene ontology, Jochem,
Uniprot and MeSH) to retrieve the appropriate in-
formation. More particularly, we use RDF4J7, a
powerful Java framework for processing and han-
dling RDF data of Disease ontology, Gene ontol-
ogy, Jochem, and MeSH. This includes creating,
parsing, storing, inferencing and querying over
such data. Additionally, we use RDF4J’s Lucene
Sail that enables us to add full text search of RDF
literals to find fast subject resources. As far as
the Uniprot data are concerned which are not in
obo format, we exploit them in XML format (not
plain text that is recommended by the contest). Of
course, Lucene indexing is necessary again. We
present our methodology step by step:

1. The first step of our methodology is to re-
move stopwords from the given question. We
use 2 stopwords lists: a basic list with 634
words and the Pubmed stopword list8. Then,
we detect keywords using MetaMap and

5https://metamap.nlm.nih.gov/
6http://alias-i.com/lingpipe/
7http://rdf4j.org/
8http://www.ncbi.nlm.nih.gov/books/

NBK3827/table/pubmedhelp.T.stopwords/

LingPipe. We give a boosting score to those
concepts that come from MetaMap/LingPipe
and a smaller score in any other word that ap-
pears in the question and MetaMap/LingPipe
does not recognize it as biomedical concept.

2. Then, we expand the list with the candidate
concepts exploiting the MeSH ontology (up
to 15 candidate concepts, totally, enriching
the list with ExactSynonyms). We retain two
lists with candidate concepts: a list with all
possible biomedical concepts for search in
Disease ontology, Gene ontology, Jochem,
and MeSH and a list that contains only pro-
teins or genes for search in Uniprot XML
data.

3. We search for each candidate term separately
combining search in RDF4J’s Lucene Sail
index for fast detection of relevant terms
and search in RDF4J RDF Repositories via
SPARQL queries to filter the results which
are returned as relevant terms by RDF4J’s
Lucene Sail index. More specifically, for
the 4 ontologies we examine if the candi-
date term appears in properties: label, Ex-
actSynonym, RelSynonym, Synonym, Nar-
rowSynonym, BroadSynonym in order to add
to Lucene score an additional boosting score
and return the corresponding URI. If the can-
didate term does not appear in the above
properties, then we just keep the Lucene
score. Additionally, we exploit the properties
(Positively/Negatively) Regulates in order to
return the corresponding URI, too. Similarly,
we conduct search in Uniprot data but instead
of SPARQL queries, we use XPath, focusing
in the following XML elements: fullName,
shortName, alternativeName and innName.

4. Finally, we take the top 10 concepts with the
biggest scores.

Here, we present experimental results on 2 dif-
ferent sets of questions (the sets belong to the
training set of BioASQ contest).

Table 3: Results of our approach
# questions Precision Recall F1 MAP

238 0.167 0.511 0.223 0.120
286 0.209 0.513 0.267 0.167
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5 Task 4B Phase A: Snippets

In order to extract relevant snippets to a query, we
exploit our knowledge given by the ontologies we
referred to in Section 4 (Disease ontology, Gene
ontology, Jochem, Uniprot and MeSH). Briefly:

1. Detect keywords using MetaMap and Ling-
Pipe

2. Search for synonyms for each keyword in
order to make query expansion. Consider
we have K keywords and for each one we
find a few synonyms, e.g. for i-th keyword,
i = 1, ...,K, we detect N synonyms. Each
synonym is denoted by synjkeyi

, that is the j-
th synonym (synj), j = 1, ..., N of i-th key-
word (keyi).
Format of query after the expansion step:
Suppose K=2, key1 has N synonyms and
key2 has M synonyms, so the query is go-
ing to be the following:
((key1 OR syn1key1

OR syn2key1
OR . . . OR

synN key1
)

AND
(key2 OR syn1key2

OR syn2key2
OR . . . OR

synM key2
))

The total number of the candidate concepts
(i.e. keywords with their corresponding syn-
onyms) should contain up to 15 concepts.

3. Retrieve top 100 relevant documents (use of
Lucene index). More particularly, we are in-
terested in their title, abstract and pmid.

4. Split titles/abstracts returned in step 3 into
sentences.

5. Calculate sematic similarity between each
one of the sentences and the (expanded)
query using the semantic similarity measure
described in (Han et al., 2013). (At this point,
we experiment using clustering algorithms in
order to select the sentences that are located
in the same cluster with the query, regarding
them as the most relevant snippets.)

6. Return the top 10 sentences that are more
similar to our query according to the similar-
ity measure.

6 Task 4B, Phase B: Exact Answers

We developed a system that extracts answers from
factoid questions under a scoring mechanism. In

our approach, we applied numerous measurements
that rank the candidate answers based on their re-
lations with the questions. Some of them were ap-
plied in our previous system, but we realized that
were not enough to estimate the correct answer.
Thus, we extended the previous scoring mecha-
nism in order to include the measures describing
below.

• distance: The words, being near to the LAT
of the question into the snippets, it is more
possible to be a candidate answer.

• wordnet synonyms: We strongly believe that
words with many synonyms in wordnet are
more likely to be used in common language
rather than in biomedicine. Thus, they take a
punishment according to the number of syn-
onyms that they have.

Furthermore, in the previous work, the system se-
lected some of the words of an article as candidate
answers. It selected the words that were produced
by MetaMap parsing. Although, the results of the
previous system were promising in the BioASQ
training set, in the BioASQ challenge were quite
low. The system’s failure was caused by the lack
of candidate answers. That’s why we decided to
expand the set of candidate answers considering
all words including in the related snippets of a
question.

Finally, the specificity measure in our previ-
ous work changed because of the execution time.
We had implemented that measure to count the
number of instances of a candidate answer in all
PubMed documents. Thus, we decided to seek the
documents including the candidate answers with
a document retrieval system. For each retriev-
ing document, the candidate answer take a pun-
ishment.

Table 4: Results of factoid system
LACC SACC MRR
0.54 0.237 0.305

7 Conclusions

In this paper we presented the participation of our
team in the BioASQ challenge 2016. Building on
the successful approaches in the past three chal-
lenges, we further extended our line of work to
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improve the performance of our systems. Addi-
tionally, our methodology for relevant concepts re-
trieval gives quite good results based on our eval-
uation in a variety of bio-medical questions that
are provided by BioASQ’s training set. Moreover,
the semantic information from ontologies could be
exploited for other tasks.
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WS4A: a Biomedical Question and Answering System based on public
web services and ontologies

Miguel J. Rodriques1, Miguel Fale1, and Francisco M. Couto1

1University of Lisbon

Abstract

In this work we describe our participa-
tion in the fourth edition of the BioASQ
challenge (2016). We developed a sys-
tem called WS4A (Web Services for All)
that produced our submitted results for the
Question and Answering (QA) task 4b,
which consisted on the retrieval of rele-
vant concepts, documents, snippets, RDF
triples, exact answers and ”ideal answers”
for each given question. The novelty in
our approach consists on the maximum
exploration of existing web services for
performing each task, such as the anno-
tation of text, and the retrieval of meta-
data for each annotation. The retrieved
metadata included concept identifiers, on-
tologies, ancestors, and most importantly,
PubMed identifiers. The paper describes
the WS4A pipeline and also presents its
performance in terms of precision, recall
and f-measure.
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