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Abstract

We present the Vancouver Event and Re-
lation System for Extraction (VERSE)1 as
a competing system for three subtasks of
the BioNLP Shared Task 2016. VERSE
performs full event extraction including
entity, relation and modification extrac-
tion using a feature-based approach. It
achieved the highest F1-score in the Bac-
teria Biotope (BB3) event subtask and the
third highest F1-score in the Seed Devel-
opment (SeeDev) binary subtask.

1 Introduction

Extracting knowledge from biomedical literature
is a huge challenge in the natural language parsing
field and has many applications including knowl-
edge base construction and question-answering
systems. Event extraction systems focus on this
problem by identifying specific events and rela-
tions discussed in raw text.

Events are described using three key concepts,
entities, relations and modifications. Entities are
spans of text that describe a specific concept (e.g.
a gene). Relations describe a specific association
between two (or potentially more) entities. To-
gether entities and relations describe an event or
set of events (such as complex gene regulation).
Modifications are changes made to events such as
speculation.

The BioNLP Shared Tasks have encouraged re-
search into new techniques for a variety of impor-
tant NLP challenges. Occurring in 2009, 2011 and
2013, the competitions were split into several sub-
tasks (Kim et al., 2009; Kim et al., 2011; Nédellec
et al., 2013). These subtasks provided annotated
texts (commonly abstracts from PubMed) of enti-
ties, relations and events in a particular biomedical

1http://www.github.com/jakelever/VERSE

domain. Research groups were then challenged to
generate new tools to better predict new relations
and events in test data.

The BioNLP 2016 Shared Task contains three
separate parts, the Bacteria Biotope subtask
(BB3), the Seed Development subtask (SeeDev)
and the Genia Event subtask (GE4). The BB3
and SeeDev subtasks have separate parts that spe-
cialise in entity recognition and relation extrac-
tion. The GE4 subtask focuses on full event ex-
traction of NFkB related gene events.

Previous systems for relation and event extrac-
tion have taken two main approaches: rule-based
and feature-based. Rule-based methods learn spe-
cific patterns that fit different events, for instance,
the word ”expression” following a gene name gen-
erally implies an expression event for that gene.
The pattern-based tool BioSem (Bui et al., 2013)
in particular performed well in the Genia Event
subtask of the BioNLP’13 Shared Task. Feature-
based approaches translate the textual content into
feature vectors that can be analysed with a tra-
ditional classification algorithm. Support vector
machines (SVMs) have been very popular with
successful relation extraction tools such as TEES
(Björne and Salakoski, 2013).

We present the Vancouver Event and Relation
System for Extraction (VERSE) for the BB3 event
subtask, the SeeDev binary subtask and the Genia
Event subtask. Utilising a feature-based approach,
VERSE builds on the ideas of the TEES system.
It offers control over the exact semantic features
to use for classification, allows feature selection
to reduce the size of feature vectors and uses a
stochastic optimisation strategy with k-fold cross-
validation to identify the best parameters. We ex-
amine the competitive results for the various sub-
tasks and also analyse VERSE’s capability to pre-
dict relations across sentence boundaries.
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Figure 1: Overview of VERSE pipeline

2 Pipeline

VERSE breaks event extraction into five steps out-
lined in the pipeline shown in Figure 1. Firstly the
input data is passed through a text processing tool
that splits and tags text and associates the parsed
results with the provided annotations. This parsed
data is then passed through three separate classi-
fications steps for entities, relations and modifica-
tions. Finally, the results are filtered to make sure
that all relations and modifications fit the expected
types for the given task.

2.1 Text processing

VERSE can accept input in the standard BioNLP-
ST format or the PubAnnotation JSON format
(Kim and Wang, 2012). Both formats are stand-
off, as they contain the text and annotations sepa-
rately. The annotations describe entities in the text
as spans of text and relations and modifications of
these entities.

The input files for the shared subtasks are
initially processed using the Stanford CoreNLP
toolset. The texts are split into sentences and tok-
enized. Parts-of-speech and lemmas are identified
and a dependency parse is generated for each sen-
tence. CoreNLP also returns the exact positions
of each token. Using this data, an interval tree is
created to identify intersections of text with enti-
ties described in the associated annotation. The
specific sentence and locations of each associated
word are then stored for each entity. Relations
and modifications described in the associated an-
notations are also loaded, retaining information on
which entities are involved.

The entities in the BB3 and SeeDev subtasks
are generally sets of full words but can be non-
contiguous. Entities are stored as a set of associ-
ated words rather than a span of words. The GE4

task also contains entities that contain only partial
words, for example, ”PTEN” is tagged as an en-
tity within ”PTEN-deficient”. A list of common
prefixes and suffixes from the GE4 task is used to
separate these words into two words so that the ex-
ample would become ”PTEN deficient”. Further-
more, any annotation that divides a word that con-
tains a hyphen or forward slash causes the word to
be separate into two separate words.

For easier interoperability, the text parsing code
was developed in Jython (Developers, 2008) (a
version of Python that can load Java libraries,
specifically the Stanford CoreNLP toolset). This
Jython implementation is then able to export eas-
ily processed Python data structures. Due to in-
compatibility between Jython and various numer-
ical libraries, a separate Python-only implementa-
tion loads the generated data structures for further
processing and classification.

2.2 Candidate generation

For all three classifications steps (entities, rela-
tions and modifications), the same machine learn-
ing framework is used. All possibles candidates
are generated for entities, relations or modifica-
tions. For relations, this means all pairs of enti-
ties are found (within a certain sentence range).
For the training step, the candidates are associated
with a known class (i.e. the type of relation), or
the negative class if the candidate is not annotated
in the training set. For testing, the classes are un-
known. Candidates can contain one argument (for
entity extraction and modification) or two argu-
ments (for relation extraction). These arguments
are stored as references to sentences and the in-
dices of the associated words.
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Figure 2: Relation candidate generation for the example text which contains a single Lives In relation
(between bacteria and habitat). The bacteria entity is shown in bold and the habitat entities are underlined.
Relation example generation creates pairs of entities that will be vectorised for classification. (a) shows
all pairs matching without filtering for specific entity types (b) shows filtering for entity types of bacteria
and habitat for a potential Lives In relation

2.2.1 Entity extraction

Entity extraction aims to classify individual or
sets of words as a certain type of entity, given a
set of training cases. Entities may contain non-
contiguous words. The set of all possible com-
binations of words that could compose an entity
is too large for the classification system. Hence
VERSE filters for only combinations of words that
are identified as entities in the training set.

2.2.2 Relation extraction

VERSE can predict relations between two entities,
also known as binary relations. Candidates for
each possible relation are generated for every pair
of entities that are within a fixed sentence range.
Hence when using the default sentence range of 0,
only pairs of entities within the same sentence are
analysed. VERSE can optionally filter pairs of en-
tities using the expected types for a set of relations
as shown in Figure 2.

Each candidate is linked with the locations of
the two entities. If the two entities are already an-
notated to be in a relation, then they are labelled
with the corresponding class. Otherwise, the bi-
nary relation candidate is annotated with the neg-
ative class.

2.2.3 Modification extraction

VERSE supports modification of entities in the
form of event modification but currently does not
support modification of individual relations. A
modification candidate is created for all entities
that form the base of an event. These entities are
often known as the triggers of the event. In the
JSON format, these entities traditionally have IDs
that start with “E”. If a modification exists in the
training set for that entity, the appropriate class is
associated with it. Individual binary classifiers are
generated for each modification type. This allows
an event to be classified with more than one mod-
ification.

2.3 Classification

All candidates are vectorized using the same
framework, whether for candidates with one or
two arguments with minor changes. The full set of
features is outlined in Section 3. These vectorized
candidates are then used for training a traditional
classifier. The vectors may be reduced using fea-
ture selection. Most importantly, the parameters
used for the feature generation and classifier can
easily be varied to find the optimal results. Classi-
fication uses the scikit-learn Python package (Pe-
dregosa et al., 2011).
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2.3.1 Feature selection

VERSE implements optional feature selection us-
ing a chi-squared test on individual parameters
against the class variable. The highest ranking fea-
tures are then filtered based on the percentage of
features desired.

2.3.2 Classifier parameters

Classification uses either a support vector machine
(SVM) or logistic regression. When using the
SVM, the linear kernel is used due to lower time
complexity. The multi-class classification uses a
one-vs-one approach. The additional parameters
of the SVM that are optimised are the penalty pa-
rameter C, class weighting approach and whether
to use the shrinking heuristic. The class weighting
is important as the negative samples greatly out-
number the positive samples for most problems.

2.3.3 Stochastic parameter optimisation

VERSE allows adjustment of the various param-
eters including the set of features to generate, the
classifier to use and the associated classification
parameters. The optimisation strategy involves
initially seeding 100 random parameter sets. After
this initial set, the top 100 previous parameter sets
are identified each iteration and one is randomly
selected. This parameter set is then tweaked as
follows. With a probability of 0.05, an individ-
ual parameter is changed. In order to avoid local
maxima, an entirely new parameter set is gener-
ated with a probability of 0.1. For the subtasks, a
500 node cluster using Intel X5650s was used for
optimisation runs.

The optimal parameters are determined for the
entity extraction, relation extraction and each pos-
sible modification individually. In order to balance
precision and recall equally at each stage, the F1-
score is used.

2.4 Filtering

Final filtering is used to remove any predictions
that do not fit into the task specification. Firstly
all relations are checked to see that the types of
the arguments are appropriate. Any entities that
are not included in relations are removed. Finally,
any modifications that do not have appropriate ar-
guments or were associated with removed entities
are also trimmed.

Feature Name Target
unigrams Entire Sentence

unigrams & parts-of-speech Entire Sentence
bigrams Entire Sentence

skipgrams Entire Sentence
path edges type Dependency Path

unigrams Dependency Path
bigrams Dependency Path

unigrams Each Entity
unigrams & parts-of-speech Each Entity

nearby path edge types Each Entity
lemmas Each Entity

entity types Each Entity
unigrams of windows Each Entity

is relation across sentences N/A

Table 1: Overview of the various features that
VERSE can use for classification

2.5 Evaluation

An evaluation system was created that generates
recall, precision, and associated F1-scores for en-
tities, relations and modifications. The system
works conservatively and requires exact matches.
It should be noted that our internal evaluation sys-
tem gave similar but not exactly matching results
to the online evaluation system for the BB3 and
SeeDev subtasks.

K-fold cross-validation is used in association
with this evaluation system to assess the success
of the system. The entity, relation and modifica-
tion extractors are trained separately. For the BB3
and SeeDev subtasks, two-fold cross-validation is
used, using the provided split of training and de-
velopment sets as the training sets for the first
and second fold respectively. For the GE4 task,
five-fold cross-validation is used. The average F1-
score of the multiple folds is used as the metric of
success.

3 Features

For each generated candidate, a variety of features
(controllable through a parameter) is calculated.
The features focus on characteristics of the full
sentence, dependency path or individual entities.
The full-set is shown in Table 1. It should also be
noted that a term frequency-inverse document fre-
quency (TFIDF) transform is also an option for all
bag-of-words based features.
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Figure 3: Dependency parsing of the shown sen-
tence provides (a) the dependency graph of the
full sentence which is then reduced to (b) the de-
pendency path between the two multi-word terms.
This is achieved by finding the subgraph which
contains all entity nodes and the minimum num-
ber of additional nodes.

3.1 Full sentence features

N-grams features (unigrams and bigrams) use a
bag-of-words approach to count the word occur-
rences across the whole sentence. The words are
transformed to lowercase but notably are not fil-
tered for stop words. A version combining the in-
dividual words with part-of-speech information is
also used. A bag-of-words vector is also gener-
ated for lemmas of all words in the sentence. Skip-
gram-like features are generated using two words
separated by a fixed window of words are also
used to generate features. Hence the terms ”reg-
ulation of EGFR” and ”regulation with EGFR”
would match the same features of ”regulation *
EGFR”.

3.2 Dependency path features

The dependency path is the shortest path between
the two entities in a dependency parse graph and
has been shown to be important for relation ex-
traction (Bunescu and Mooney, 2005). Features
generated from the set of edges and nodes of the
dependency graph include a unigrams and bigrams
representation. The specific edge types in the de-
pendency path are also captured with a bag-of-
words vector. In order to give specific informa-
tion about the location of the entity in the depen-

dency path, the types of the edges leaving the en-
tity nodes are recorded separately for each entity.

Interestingly an entity may span multiple nodes
in the dependency graph. An example of a de-
pendency path with the multi-word entities ”cox-
iella burnetii” and ”freshwater lakes” is shown in
Figure 3. In this case, the minimal subgraph that
connects all entity nodes in the graph is calcu-
lated. This problem was transformed into a mini-
mal spanning tree problem as follows and solved
using the NetworkX Python package (Hagberg et
al., 2008). The shortest paths through the graph
were found for all pairs of entity nodes (nodes as-
sociated with the multi-word entities). The path
distance between each pair was totalled and used
to generate a new graph containing only the entity
nodes. The minimal spanning tree was calculated
and the associated edges recovered to generate the
minimal subgraph. This approach would allow for
a dependency path-like approach for relations be-
tween more than two entities.

3.3 Entity features

The individual entities are also used to generate
specific features. Three different vectorised ver-
sions use a unigrams approach, a unigrams ap-
proach with parts-of-speech information and lem-
mas respectively. A one-hot vector approach is
used to represent the type of each entity. Unigrams
of words around each entity within a certain win-
dow size are also generated.

3.4 Multi-sentence and single entity features

VERSE is also capable of generating features for
relations between two entities that are in differ-
ent sentences. In this case, all sentence features
are generated for both sentences together and no
changes are made to the entity features.

The dependency path features are treated dif-
ferently. The dependency path for each entity is
created as the path from the entity to the root of
the dependency graph, generally the main verb of
the sentence. This then creates two separate paths,
one per sentence and the features are generated in
similar ways using these paths. Finally, a simple
binary feature is generated for relation candidates
that span multiple sentences.

For relation and modifications, candidates con-
tain only a single argument. The dependency path
is created in a similar manner to candidates of re-
lations that span across sentences.
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Parameter BB3 event SeeDev binary

Features

unigrams
unigrams POS

bigrams of dependency path
unigrams of dependency path

path edges types
entity types

entity lemmas
entity unigrams POS

path edges types near entities

unigrams
unigrams POS

path edges types
path edges types near entities

entity types

Feature Selection No Top 5%
Use TFIDF Yes Yes

Sentence Range 0 0
SVM Kernel linear linear

SVM C Parameter 0.3575 1.0 (default)
SVM Class Weights Auto 5 for positive and 1 for negative

SVM Shrinking No No

Table 2: Parameters used for BB3 and SeeDev subtasks

4 Results and discussion

The VERSE tool as described was applied to three
subtasks: the BB3 event subtask, the SeeDev bi-
nary subtask and the GE4 subtask.

4.1 Datasets

The BB3 event dataset provided by the BioNLP-
ST 16 organizers contains a total of 146 docu-
ments (with 61, 34 and 51 documents in the train-
ing, development and test sets respectively). These
documents are annotated with entities of the fol-
lowing types and associated total counts: bacte-
ria (932), habitat (1,861) and geographical (110).
Only a single relation type (Lives In) is annotated
which must be between a bacteria and habitat or a
bacteria and a geographical entity.

The dataset for the SeeDev binary subtask con-
tains 20 documents with a total of 7,082 annotated
entities and 3,575 relations. There are 16 entity
types and 22 relation types.

The GE4 dataset focuses on NFkB gene regu-
lation and contains 20 documents. After filtering
for duplicates and cleanup, it contains 13,012 an-
notated entities of 15 types. These entities are in
7,232 relations of 5 different types. It also contains
81 negation and 121 speculation modifications for
events. Coreference data is also provided but was
not used.

4.2 Cross-validated results

Both BB3 event and SeeDev binary subtasks re-
quired only relation extraction. VERSE was
trained through cross-validation using the param-
eter optimising strategy and the optimal parame-
ters are outlined in Table 2. Both tasks were split
into training and development sets by the competi-
tion organisers. The training set contained roughly
twice as many annotations as the development set.
We used this existing split for the two-fold cross-
validation. A linear kernel SVM was found to per-
form the best in both tasks. For both subtasks, re-
lation candidates were generated ignoring the ar-
gument types as shown in Figure 2.

The classifiers for the two tasks use two very
different sizes of feature vectors. The BB3 pa-
rameter set has a significant amount of repeated
unigrams data, with unigrams for the dependency
path and whole sentence with and without parts
of speech. This parameter set also does not use
feature selection, meaning that the feature vec-
tors are very large (14,862 features). Meanwhile,
the SeeDev parameters use feature selection to se-
lect the top 5% of features which reduces the fea-
ture vector from 7,140 features down to only 357.
This size difference is very interesting and war-
rants further exploration of feature selection for
other tasks.

Unfortunately, both classifiers performed best
with a sentence range of zero, meaning that only
relations within sentences could be detected. Ta-
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Fold 1 Fold 2 Average
Recall 0.552 0.610 0.581

Precision 0.469 0.582 0.526
F1-score 0.507 0.596 0.552

Table 3: Cross-validated results of BB3 event sub-
task using optimal parameters in Table 2

Fold 1 Fold 2 Average
Recall 0.363 0.386 0.375

Precision 0.261 0.246 0.254
F1-score 0.303 0.301 0.302

Table 4: Cross-validated results of SeeDev binary
subtask using optimal parameters in Table 2

bles 3 and 4 show the optimal cross-validated
results that were found with these parameters.
Notably, the F1-scores for the two folds of the
SeeDev dataset are very similar, which is surpris-
ing given that the datasets are different sizes.

For the GE4 subtask, the cross-validation based
optimisation strategy was used to find parameters
for the entity, relation and modification extractions
independently. Due to the larger dataset, filtering
was applied to the argument types of relation can-
didates as shown in Figure 2. Table 5 outlines
the resulting F1-scores from the five-fold cross-
validations. As these extractors are trained sepa-
rately, their performance in the full pipeline would
be expected to be worse. This is explained as any
errors during entity extraction are passed onto re-
lation and modification extraction.

4.3 Competition results

The official results for the BB3 and SeeDev tasks
are shown in Table 6. VERSE performed well
in both tasks and was ranked first for the BB3
event subtask and third for the SeeDev binary
subtask. The worse performance for the SeeDev
dataset may be explained by the added complexity
of many additional relation and entity types.

Table 7 shows the final results for the test set

Entities Relations Mods
Recall 0.703 0.695 0.374

Precision 0.897 0.736 0.212
F1-score 0.786 0.715 0.266

Table 5: Averaged cross-validated F1-score results
of GE4 event subtask with entities, relations and
modifications trained separately

BB3 event SeeDev binary
Recall 0.615 0.458

Precision 0.510 0.273
F1-score 0.558 0.342

Table 6: Final reported results for the BB3 event
and SeeDev binary subtasks

Entities Relations Mods
Recall 0.71 0.23 0.11

Precision 0.94 0.60 0.38
F1-score 0.81 0.33 0.17

Table 7: Final reported results for GE4 subtask
split into entity, relations and modifications results

for the Genia Event subtask using the online eval-
uation tool. As expected, the F1-scores of the rela-
tion and modification extraction are lower for the
full pipeline compared to the cross-validated re-
sults. Nevertheless, the performance is very rea-
sonable given the more challenging dataset.

4.4 Multi-sentence analysis

29% of relations span sentence boundaries in the
BB3 event dataset and 4% in the SeeDev dataset.
Most relation extraction systems do not attempt
to predict these multi-sentence relations. Given
the higher proportion in the BB3 set, we use this
dataset for further analysis of VERSE’s ability to
predict relations that span sentence boundaries. It
should be noted that some of these relations may
be artifacts due to false identification of sentence
boundaries by the CoreNLP pipeline.

Using the optimal parameters for the BB3 prob-
lem, we analysed prediction results using differ-
ent values for the sentence range parameter. The
performance, shown in Figure 4, is similar for re-
lations within the same sentence using different
sentence range parameters. However, as the dis-
tance of the relation increases, the classifier pre-
dicts larger ratios of false positives to true posi-
tives. With sentence range = 3, the overall F1-
score for the development set has dropped to 0.326
from 0.438 when sentence range = 1.

The classifier is limited by the small numbers
of multi-sentence relations to use as a training set.
With a suitable amount of data, it would be worth-
while exploring the use of separate classifiers for
relations that are within sentences and those that
span sentences as they likely depend on different
features.
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Figure 4: Analysis of performance on binary rela-
tions that cross sentence boundaries. The classifier
was trained on the BB3 event training set and eval-
uated using the corresponding development set.

5 Conclusion

We have presented VERSE, a full event extraction
system that performed very well in the BioNLP
2016 Shared Task. The VERSE system builds
upon the success of previous systems, particu-
larly TEES, in several important ways. It gives
full control of the specific semantic features used
to build the classifier. In combination with the
stochastic optimisation strategy, this control has
been shown to be important given the differing
parameter sets found to be optimal for the differ-
ent subtasks. Secondly, VERSE allows for feature
selection which is important in reducing the size
of the large sparse feature vectors and avoid over-
fitting. Lastly, VERSE can predict relations that
span sentence boundaries, which is certain to be
an important avenue of research for future rela-
tion extraction tasks. We hope that this tool will
become a valuable asset in the biomedical text-
mining community.
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