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Abstract 

Detecting phenotype descriptors in text 
and linking them to ontology concepts is 
a challenging task. Current state-of-the 
art concept recognizers struggle with 
several issues due the variety of human 
expressiveness. Here we present initial 
results of creating a dictionary of lexical 
variants for the Human Phenotype Ontol-
ogy. This work is a smaller but important 
part of a larger project with a goal to im-
prove recall in phenotype concept recog-
nizers.  

1 Introduction 

Phenotype descriptions (i.e., the composite of 
one’s observable characteristics/traits) are im-
portant for our understanding of genetics. These 
descriptions enable the computation and analysis 
of a varied range of issues related to the genetic 
and developmental bases of correlated characters 
(Mabee et al., 2007). Scientific literature con-
tains large amounts of phenotype descriptions, 
usually reported as free-text entries.  

Concept Recognition (CR) is the identification 
of entities of interest in free text and their resolu-
tion to ontological concepts with the aim of lev-
eraging structured knowledge from unstructured 
data. Linking from the literature to ontologies 
such as the Human Phenotype Ontology (HPO) 
has gained a substantial interest from the text 
mining community (e.g., Uzuner et al., 2012; 
Morgan et al., 2008). Although phenotype CR is 
similar to other tasks such as gene and protein 
name normalization, it has its specific domain 

issues and challenges (Groza et al., 2015). In 
contrast to gene and protein names, phenotype 
concepts are characterized by a wide lexical var-
iability. As a result, simple methods like exact 
matching or standard lexical similarity usually 
lead to poor results.  Additional challenges in 
performing CR on phenotypes include the use of 
abbreviations (e.g., defects in L4-S1) or of meta-
phorical expressions (e.g., hitchhiker thumb).  

Consequently, phenotype CR is an ongoing re-
search area with a demand for improvement. For 
example, systems such as OBO Annotator 
(Taboada et al., 2014), NCBO Annotator 
(Jonquet et al., 2009) and Bio-Lark (Groza et al., 
2015) have been evaluated with maximum preci-
sion, recall and F-score values of 0.65, 0.49 and 
0.56 respectively (Groza et al., 2015).  

Here we present initial results of experiments 
designed to address the lexical variability of 
phenotype terms. We generate a dictionary of 
lexical variants for all HPO tokens. When com-
pleted, such a dictionary will help improve, in 
particular, the low recall of phenotype CR sys-
tems.  

Generating lexical variants for HPO tokens is 
a fairly challenging task. For example, grouping 
similar words with classical similarity metrics 
such as the Levenshtein distance (even when us-
ing a high threshold) might group words with 
different meaning like zygomatic (a cheek bone) 
and zygomaticus (cheek muscle) into one lexical 
cluster. On the other hand, less similar words 
with same meaning like irregular nouns (e.g. 
phalanx, phalanges, or femur, femora) might be 
grouped into different clusters. Here, we experi-
ment with the NLM Lexical Variant Generator 
(LVG) (The Lexical Systems Group, 2016) to 
generate lexical variants.  
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2 Methods 

To generate the dictionary of lexical variants, we 
extracted all concept names and their synonyms 
from the HPO. The text was then tokenized and a 
cluster of lexical variants was created for each 
token. Tokens with overlapping lexical variants 
were merged into one cluster. We manually ana-
lyzed the clusters for their quality and coverage, 
and performed a preliminary automatic evalua-
tion. In addition, we identified those parts of 
phenotype terms that display the largest lexical 
variability. For the latter, we used the following 
two additional ontologies: Foundational Model 
of Anatomy (FMA) (Rosse and Mejino, 2003), 
and the Phenotype and Trait Ontology (PATO) 
(Gkoutos et al., 2009).  Details of data and meth-
ods used are described in the following sections. 

2.1 The Human Phenotype Ontology 

The HPO’s primary goal is to offer a tool that 
allows large-scale computational analysis of the 
human phenotype (Köhler et al., 2014). The HPO 
is often used for the annotation of human pheno-
types and has repeatedly been adopted in bio-
medical applications aiming to understand con-
nection between phenotype and genomic varia-
tions. Some examples of using the HPO are ap-
plications such as linking human diseases to an-
imal models (Washington et al., 2009), describ-
ing rare disorders (Firth et al., 2009), or inferring 
novel drug indications (Gottlieb et al., 2011).  

Most terms in the HPO contain descriptions of 
clinical abnormalities and additional sub-
ontologies are provided to describe inheritance 
patterns, onset/clinical course and modifiers of 
abnormalities.  

Below is an example of part of a term in the 
OBO format: 

 
id: HP:0000260 
name: Wide anterior fontanel 
def: "Enlargement of the anterior fontanelle with respect to age-
dependent norms." [HPO:curators] 
synonym: "Large anterior fontanel" EXACT [] 
… 
xref: UMLS:C1866134 "Wide anterior fontanel" 
is_a: HP:0000236 ! Abnormality of the anterior fontanelle 
property_value: HP:0040005 "Enlargement of the `anterior fonta-
nelle` (FMA:75439) with respect to age-dependent norms." 
xsd:string {xref="HPO:curators"} 

 
Terms in HPO usually follow the Entity-

Quality formalism where they combine anatomi-
cal entities with qualities (Mungall et al., 2007) 
For instance, in the above example, anterior fon-
tanelle describes an anatomical entity with the 
quality wide. Entities can usually be grounded in 

ontologies such as the FMA, while qualities usu-
ally belong to the PATO. It is assumed that rich 
lexical variability comes from the quality part of 
phenotype terms – due to their wide spread usage 
in common English. 

For this study, we used the OBO versions of 
the HPO Apr 2016 and the PATO Nov 2015 on-
tologies, and the FMA OWL version 3.2.1.  

2.2 Pre-processing text in ontologies 

We extracted labels and synonyms for all HPO, 
PATO and FMA terms. The OWL API (Horridge 
and Bechhofer, 2011) was used for parsing. 

After a manual inspection of a random subset 
of names and synonyms, we developed a simple 
tokenizer that broke each name and synonym 
into series of lower case tokens. The following 
characters were removed: . / ( ) ‘ > < : ; and the 
space and backslash characters were then used as 
delimiters. We ignored numbers and short tokens 
(< 3 characters). The final set contained 8,098 
HPO; 1,959 PATO and 8,502 FMA tokens. 

2.3 Generating clusters of lexical variants 

We use the NLM Lexical Variant Generator 
(LVG), 2016 release (The Lexical Systems 
Group, 2016) to create lexical variants for the 
HPO tokens. LVG is a suite of utilities that can 
generate, transform, and filter lexical variants 
from the given input. Its intention is to create 
robust indexes and to transform user queries into 
retrievable entries from those indexes. Although 
LVG focuses on biomedical terms, it is not spe-
cialized for phenotype domain. 

There are more than 60 functions (flow com-
ponents) in LVG and each function has a set of 
parameters. In this work, the following two func-
tions were used with the LVG Java API: 
- Generating inflectional variants (IVs), which 

include the singular and plurals for nouns, 
the various tenses of verbs, the positive, su-
perlative and the comparative of adjectives 
and adverbs.  

- Generating derivational variants (DVs), 
which are terms that are related to the origi-
nal term but do not necessarily, share the 
same meaning. Often, the derivational vari-
ant changes syntactic category from the orig-
inal term. Only DVs with the same prefix as 
the original token (i.e., first two characters) 
were considered. 

Both IVs and DVs can be generated with two 
methods: a) using an internal dictionary, and b) 
using a set of predefined rules. When generating 
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lexical variants, we experimented with the fol-
lowing three configurations (Cs): 
- C1: Generating IVs using the dictionary. 
- C2: Generating IVs DVs using the diction-

ary. 
- C3: Generating IVs and DVs using the dic-

tionary first, and using the set of rules for 
those tokens that did not have any variants in 
the dictionary.  

Generating lexical variants for HPO tokens 
can be described with the following algorithm: 
 
Generate lexical variants for HPO:   
 
N: number of HPO terms 
Hi: single HPO term  
S: set of names and synonyms for an HPO term 
T: set of unique tokens 
M: number of tokens 
Tj: single token 
IDj: set of dictionary based IVs for Tj 
DDj: set of dictionary based DVs for Tj 
IRj: set of rule based IVs for Tj 
DRj: set of rule based DVs for Tj 
V: sets of lexical variants 
Vk: single set of lexical variants, where 0 < k < 4 
C: sets of clusters 
Ck: single set of clusters, where 0 < k < 4 

For i = 1 to N do: 
   Extract name/synonyms for Hi and save them into S 
   Tokenize S and save unique tokens into T 
Initialize C1, C2 and C3 
For j = 1 to M do: 
   Initialize V1, V2 and V3 

Generate dictionary based inflectional variants for 
Tj and save them into IDj 

   If IDj is empty then do: 
Generate rule based inflectional variants for Tj 
and save them into IRj 

Generate dictionary based derivational variants for 
Tj and save them into DDj 
If DDj is empty then do: 

Generate rule based derivational variants for Tj 
and save them into DRj 

V1 = IDj  
V2 = IDj + DDj 
V3 = IDj + DDj + IRj + DRj 
For k = 1 to 3 do: 

If a cluster in Ck has a variant from Vk then do: 
Put variants from Vk into the existing cluster 

Else do: 
Create a cluster from Vk in Ck 

 
2.4 Inspecting/evaluating lexical clusters 

For each configuration we calculated the cover-
age of extended tokens (i.e., the number of to-

kens for which at least one variant was found), 
and manually inspected lexical variants for 10 
randomly selected tokens. In addition, we in-
spected clusters for the following two specific 
tokens of interest that are known to be problem-
atic in phenotype CR: phalanx and shortening. 
The former is an irregular noun that changes to 
phalanges in plural form, while the latter repre-
sents a participle that is usually not correctly 
normalized for our need. For example, we would 
expect short and shortening in the same cluster 
(short finger vs. shortening of the finger). We 
also inspected variants for zygomatic and zygo-
maticus that should not be in the same cluster. 

In addition to the manual inspection, we also 
performed a preliminary automatic evaluation of 
the clusters. The HPO has been integrated into 
Unified Medicine Language System (UMLS) 
Metathesaurus (Humphreys et al., 1998) since 
the 2015AB version (Dhombres et al., 2015). 
This potentially gives new synonyms for the 
HPO terms. The synonyms can contain lexical 
variants of the HPO term tokens. For example, 
acute promyelocytic leukemia, does not contain 
any synonyms in the HPO. However, UMLS 
contains the synonyms acute promyelocytic leu-
kaemia. Similarly, ascending aortic aneurysm 
has no HPO synonyms, while we can find aneu-
rysm of ascending aorta in UMLS. Therefore, 
we developed an algorithm for counting those 
HPO terms that increased the coverage of tokens 
in UMLS synonyms for these terms (e.g., the 
above two terms would be counted). 

As mentioned in section 2.1, it is assumed that 
most tokens with rich lexical variability are asso-
ciated with the quality part of HPO terms. To test 
this assumption, we finally examined coverage 
of the HPO tokens in the FMA and the PATO. 
We then analyzed lexical cluster sizes for these 
tokens. In case the assumption is true, we expect 
the cluster sizes of PATO tokens (i.e. quality) 
larger than tokens found in FMA (i.e. entity).  

3 Results and discussion 

Table 1 summarizes the number of variants, 
the number of clusters, the average number of 
variants in each cluster and the number of tokens 
with no variants (NV) for different configura-
tions.   
Table 1: Results summary for each configuration 

 #Variants #Clusters Average	 #NV 
C1 13,471 6,355 2.12	 877 
C2 18,080 5,620 3.22	 877 
C3 29,602 6,480 4.57	 0 
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The same tokens with no variants were found 
using only the dictionary in C1 and C2, which 
implies that these tokens are not covered with 
LVG’s dictionary. After the manual examination 
of generated clusters we can identify some ex-
amples of tokens without generated variants as 
follows: spelling errors (e.g., accesory, dermiti-
tis), latin words (e.g., ambiguus), chemical com-
pounds (e.g., 23-diphosphoglycerate), abbrevia-
tions (eg., gnrh, pirc),  roman numbers (e.g., xii, 
xiii), and ordinal numbers (e.g., 1st, 2nd). Using 
the rule-based approach in C3 generated variants 
for these tokens. 

Examining the clusters showed that C1 gener-
ated several disjoint clusters that should be 
merged. Some examples are tokens like abdomen 
and abdominal, abnormal and abnormality, ex-
ternal and externally, and yellow and yellowish. 
As for the tokens of our particular interest, phal-
anx contained the following variants in the same 
cluster: phalange, phalanges, phalanx, and phal-
anxes; while shortening was clustered with the 
following variants: shorten, shortened, shorten-
ing, and shortenings and was missing words like 
short, shorter and shortest. Variants for zygomat-
ic and zygomaticus were in separated clusters in 
all three approaches. 

According to Table 1, the C2 approach gener-
ated more variants distributed into less clusters 
when compared to C1. Manual examination re-
vealed that several disjoint clusters from previ-
ous paragraph merged into larger clusters (ab-
domen and abdominal, abnormal and abnormali-
ty, and external and externally). The phalanx 
cluster gained a new variant phalangeal, which 
was previously in a different cluster. There was 
no change in the shortening cluster.  

Clusters in C3 extended tokens with no vari-
ants in LVG’s dictionary with rule generated 
terms. However, variants for tokens like spelling 
errors or ordinal numbers were incorrect. For 
example, accesory would be extended with vari-
ants like accesoryed and accesoryer. In addition, 
participles were not in correct clusters (e.g., 
shortening). Unfortunately, terms like brachyme-
somelia or trichromacy were also extended with 
wrong variants. This implies that rules defined in 
LVG might not be appropriate for phenotype 
terms and we must define our own rules. This 
investigation is left for future work.  

 Testing with UMLS, we found that 6,580 
(62%) of the HPO terms contained UMLS syno-
nyms. 16% of these terms increased the coverage 
of synonym tokens with new lexical variants, 
which indicates that the generated dictionary 

does include quality variants. We plan to investi-
gate the results in depth in the future.   

When testing the coverage of HPO tokens in 
the PATO and the FMA, we found that 10% and 
26% of the HPO tokens can also be found in the 
PATO and the FMA respectively. Figure 1 
shows ratios for different lexical cluster sizes of 
the overlapping tokens created with the C2 ap-
proach (minimum/maximum size of 1 and 11 
respectively). One can notice that the PATO to-
kens tend to form larger clusters, which indicates 
that these tokens have more lexical variants 
compared to the FMA tokens. This confirms the 
assumption from Section 2.1, that the quality part 
of phenotype term offers more lexical variability 
than the entity part.   

 

 
Figure 1: Distribution of lexical cluster sizes for those 
HPO tokens that were also found in the PATO/FMA.  

4 Conclusion 

In this paper we presented initial results for cre-
ating a dictionary of lexical variants of all tokens 
in the Human Phenotype Ontology. This task is a 
part of bigger project with aim to improve phe-
notype concept recognition. Using the NLM 
Lexical Variant Generator, we experimented 
with three configurations where different combi-
nations of inflectional and derivational variants 
were used to extend original HPO token space. 
We examined the clusters and performed a pre-
liminary automatic evaluation of these clusters. 
We also identified parts of phenotype terms that 
are likely to express more lexical variability.  

In the future, we are planning to perform a de-
tailed analysis of the generated clusters and im-
prove the automatic evaluation. As seen in the 
results section, there are some phenotype tokens 
that are not covered in external dictionaries such 
as LVG. We will try to identify patterns of these 
tokens and see how we can extend them with 
lexical variants. In addition, we will improve the 
quality of generated clusters with removing in-
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correct variants (e.g., results of spelling errors), 
or tokens that are actually not phenotypes.  

Focus of our future work will be the quality 
part of phenotype terms, since we showed that 
quality tokens display larger lexical variability 
than entity tokens. In addition, we have not man-
aged to automatically generate clusters for all 
participles.  

Reference 
Ferdinand Dhombres, Rainer Winnenburg, James T. 
Case, and Olivier Bodenreider. 2015. Extending the 
coverage of phenotypes in SNOMED CT through 
post-coordination. In Studies in Health Technology 
and Informatics, volume 216, pages 795–799. 

Helen V. Firth, Shola M. Richards, A. Paul Bevan, 
Stephen Clayton, Manuel Corpas, Diana Rajan, 
Steven Van Vooren, Yves Moreau, Roger M. Pettett, 
and Nigel P. Carter. 2009. DECIPHER: Database of 
Chromosomal Imbalance and Phenotype in Humans 
Using Ensembl Resources. American Journal of 
Human Genetics, 84(4):524–533. 

Georgios V. Gkoutos, Chris Mungall, Sandra D̈olken, 
Michael Ashburner, Suzanna Lewis, John Hancock, 
Paul Schofield, Sebastian K̈ohler, and Peter N. 
Robinson. 2009. Entity/quality-based logical 
definitions for the human skeletal phenome using 
PATO. In Proceedings of the 31st Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society: Engineering the 
Future of Biomedicine, EMBC 2009, pages 7069–
7072. 

Assaf Gottlieb, Gideon Y Stein, Eytan Ruppin, and 
Roded Sharan. 2011. PREDICT: a method for 
inferring novel drug indications with application to 
personalized medicine. Molecular systems biology, 
7(496):496. 

Tudor Groza, S. Kohler, Sandra Doelken, Nigel 
Collier, Anika Oellrich, Damian Smedley, Francisco 
M. Couto, Gareth Baynam, Andreas Zankl, Peter N. 
Robinson, Sebastian Köhler, Sandra Doelken, Nigel 
Collier, Anika Oellrich, Damian Smedley, Francisco 
M. Couto, Gareth Baynam, Andreas Zankl, and Peter 
N. Robinson. 2015. Automatic concept recognition 
using the Human Phenotype Ontology reference and 
test suite corpora. Database, 2015(0):bav005–bav005. 

Matthew Horridge and Sean Bechhofer. 2011. The 
OWL API: A Java API for OWL ontologies. Semantic 
Web, 2(1):11–21. 

Betsy L. Humphreys, Donald a. B. Lindberg, Harold 
M. Schoolman, and G. Octo Barnett. 1998. The 
Unified Medical Language System: An Informatics 
Research Collaboration. Journal of the American 
Medical Informatics Association, 5(1):1–11. 

 

Clement Jonquet, Nigam H Shah, H Cherie, Mark a 
Musen, Chris Callendar, and Margaret-Anne Storey. 
2009. NCBO Annotator : Semantic Annotation of 
Biomedical Data. Iswc:2–3. 

Sebastian Köhler, Sandra C. Doelken, Christopher J. 
Mungall, Sebastian Bauer, Helen V. Firth, Isabelle 
Bailleul-Forestier, Graeme C M Black, Danielle L. 
Brown, Michael Brudno, Jennifer Campbell, David R. 
Fitzpatrick, Janan T. Eppig, Andrew P. Jackson, 
Kathleen Freson, Marta Girdea, Ingo Helbig, Jane A. 
Hurst, Johanna Jähn, Laird G. Jackson, et al. 2014. 
The Human Phenotype Ontology project: Linking 
molecular biology and disease through phenotype 
data. Nucleic Acids Research, 42(D1). 

Paula M. Mabee, Michael Ashburner, Quentin Cronk, 
Georgios V. Gkoutos, Melissa Haendel, Erik 
Segerdell, Chris Mungall, and Monte Westerfield. 
2007. Phenotype ontologies: the bridge between 
genomics and evolution. Trends in Ecology and 
Evolution, 22(7):345–350. 

Alexander A Morgan, Zhiyong Lu, Xinglong Wang, 
Aaron M Cohen, Juliane Fluck, Patrick Ruch, Anna 
Divoli, Katrin Fundel, Robert Leaman, Jörg 
Hakenberg, Chengjie Sun, Heng-hui Liu, Rafael 
Torres, Michael Krauthammer, William W Lau, 
Hongfang Liu, Chun-Nan Hsu, Martijn Schuemie, K 
Bretonnel Cohen, et al. 2008. Overview of 
BioCreative II gene normalization. Genome biology, 9 
Suppl 2(SUPPL. 2):S3. 

Chris Mungall, Georgios Gkoutos, Nicole 
Washington, and Suzanna Lewis. 2007. Representing 
phenotypes in OWL. In CEUR Workshop 
Proceedings, volume 258. 

Cornelius Rosse and José L V Mejino. 2003. A 
reference ontology for biomedical informatics: The 
Foundational Model of Anatomy. Journal of 
Biomedical Informatics, 36(6):478–500. 

M. Taboada, H. Rodriguez, D. Martinez, M. Pardo, 
and M. J. Sobrido. 2014. Automated semantic 
annotation of rare disease cases: a case study. 
Database, 2014(0):bau045–bau045. 

NLM The Lexical Systems Group. 2016. Lexical 
Tools, 2016, 
https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lvg
/2016/web/index.html, accessed June 2016. 

Özlem Uzuner, Brett R South, Shuying Shen, and 
Scott L DuVall. 2012. 2010 i2b2/VA challenge on 
concepts, assertions, and relations in clinical text. 
Journal of the American Medical Informatics 
Association : JAMIA, 18(5):552–6. 

Nicole L. Washington, Melissa A. Haendel, 
Christopher J. Mungall, Michael Ashburner, Monte 
Westerfield, and Suzanna E. Lewis. 2009. Linking 
human diseases to animal models using ontology-
based phenotype annotation. PLoS Biology, 7(11). 

190


