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Abstract

We propose an approach for biomedical
information extraction that marries the ad-
vantages of machine learning models, e.g.,
learning directly from data, with the ben-
efits of rule-based approaches, e.g., inter-
pretability. Our approach starts by train-
ing a feature-based statistical model, then
converts this model to a rule-based vari-
ant by converting its features to rules, and
“snapping to grid” the feature weights to
discrete votes. In doing so, our proposal
takes advantage of the large body of work
in machine learning, but it produces an in-
terpretable model, which can be directly
edited by experts. We evaluate our ap-
proach on the BioNLP 2009 event extrac-
tion task. Our results show that there is
a small performance penalty when con-
verting the statistical model to rules, but
the gain in interpretability compensates for
that: with minimal effort, human experts
improve this model to have similar perfor-
mance to the statistical model that served
as starting point.

1 Introduction

Due to the deluge of unstructured data, informa-
tion extraction (IE) systems, which aim to trans-
late this data to structured information, have be-
come ubiquitous. For example, applications of IE
range from parsing literature (Iyyer et al., 2016)
to converting thousands of cancer research pub-
lications into complex proteins signaling path-
ways (Cohen, 2015).

By and large, in academia most of these ap-
proaches are implemented using machine learning
(ML). This choice is warranted: generally, ML ap-
proaches, where the machine learns directly from

the data, perform better than approaches where hu-
man domain experts encode the structure to be ex-
tracted manually. For example, the top systems
in the BioNLP event extraction shared tasks have
consistently been ML-based approaches (Kim et
al., 2009; Kim et al., 2013). However, this is only
part of the story: most of these models cannot be
easily understood by their users, and, by and large,
cannot be modified without retraining. This “tech-
nical debt” of ML (Sculley et al., 2014) is better
understood in industry: Chiticariu et al. (2013)
report that 67% of large commercial vendors of
natural language processing (NLP) software focus
on rule-based IE, and an additional 17% on hy-
brid systems that combine rule-based and ML ap-
proaches.

In this paper we focus on interpretable models
for information extraction, i.e., models that: (a)
can be understood by human users, and (b) can be
directly edited and improved by these users. In
particular, we focus on deterministic, rule-based
models. Here, we introduce a novel approach to
generate such models, which maintains both the
advantages of ML such as learning from data, and
the benefits of interpretability such as allowing hu-
man domain experts to directly edit and improve
these models. Specifically, our contributions are:

(1) We introduce a simple strategy that converts
statistical models for IE to rule-based models. We
call the proposed algorithm SnapToGrid. Our ap-
proach works in three steps. First, we train a
statistical model for the task at hand. Here we
experiment with logistic regression, but the pro-
posed method is, in principle, independent of the
underlying statistical model. Further, our strat-
egy can operate over multiple classifiers that are
part of the same IE system (e.g., one classifier
to identify event triggers, and another to identify
event arguments). Second, we convert features
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to rules implemented in Odin, a modern declar-
ative rule language (Valenzuela-Escarcega et al.,
2016; Valenzuela-Escarcega et al., 2015). We
also discard most of the statistical information ac-
quired previously, by converting feature weights
to discrete votes, which guarantees interpretabil-
ity (hence the SnapToGrid name). Third, human
domain experts inspect and manually improve the
generated model, under certain time constraints.

(1) We evaluate our approach on the BioNLP 2009
core event extraction task, and demonstrate that
the resulting interpretable model has similar per-
formance to the statistical model that served as
starting point.

2 Approach

Our motivation for this work is to keep the human
domain expert in the loop when building IE sys-
tems. We show in Section 3 that this is beneficial,
even when the domain experts have limited time to
work on the task and no access to data other than
the model itself. To achieve this “human in the
loop” goal we propose the following three-step al-
gorithm:

1. Train a statistical model for the IE task at
hand (Section 2.1). The model may consist
of several statistical classifiers. For exam-
ple, for the BioNLP event extraction task, the
most common approach involves two classi-
fiers: one to identify event triggers, and a
following classifier to identify event partici-
pants. One restriction is that these classifiers
be feature-based classifiers, e.g., logistic re-
gression, rather than the classifiers based on
latent representations, e.g., neural networks.

2. Convert the statistical model into an inter-
pretable, rule-based model (Section 2.2):

(a) First, we convert the features to rules in
the Odin language.

(b) Then, we assign to each rules “votes”
for a given class, by “snapping to grid”,
i.e., converting to discrete values, the
weights computed by the above statisti-
cal model.

3. Domain experts edit the produced rule-based
model directly, aiming to improve its quality
with respect to both coverage and precision
(Section 2.3).

We detail this process in the rest of this section,
focusing on the BioNLP core event extraction task
as the domain of interest.

2.1 Step 1: Build Statistical Model

Our statistical model is inspired by the top per-
forming approach at the 2009 evaluation (Björne
et al., 2009). The approach is summarized in Fig-
ure 1. Similar to (Björne et al., 2009), our ap-
proach consists of two classifiers: the first clas-
sifier detects and labels event trigger words in the
input text; the second classifiers extracts and la-
bels relations between event triggers and potential
event participants, which can be either Protein en-
tities or other event triggers. Both classifiers are
implemented using multi-class logistic regression
(LR), but our conversion process (Steps 2 and 3)
is independent of the underlying statistical model,
so, in principle, other feature-based classifiers that
assign explicit weights to features could be used,
e.g., perceptron, or linear support vector machines.

The Trigger Classifier

The first classifier sequentially labels each word
in the input text as a trigger for a specific BioNLP
event class, or as Nil otherwise. We implemented
the following features:

Surface features: These features include the
original and lemmatized words, and the
presence of the word in a gazetteer of
known event triggers (constructed automati-
cally from the training data). These features
are generated for the word being classified, as
well as the words surrounding it inside a win-
dow of n tokens. We used two windows in
our experiments, with n = 1 and n = 4. Fur-
ther, bag-of-words features are generated for
the windows and for the sentence as a whole.

Syntactic features: These features capture the
syntactic dependencies (both incoming and
outgoing) directly connected to the token.
All syntactic information was represented us-
ing Stanford dependencies (De Marneffe and
Manning, 2008), and was generated using the
CoreNLP toolkit (Manning et al., 2014). For
each of these paths, we generate two different
versions: one containing just the label and di-
rection of the syntactic dependencies, and an-
other including also the destination words.

57



CD2	signaling	induces	phosphoryla4on	of	CREB	in	primary	lymphocytes.	

In
pu

t	
O
ut
pu

t	

Protein	

Phosphoryla4on	+Reg	 Classifier	#1:		
detects	event	triggers	

Classifier	#2:		
detects	rela4ons	
between	triggers	and	
en44es	or	other	events	

Protein	

Theme	

Theme	Cause	

Figure 1: Architecture of the statistical model for the BioNLP core event extraction task.

Entity features: These features encode the num-
ber of other entities surrounding the token,
both inside a window and in the sentence as a
whole.

The Event Participant Classifier
This classifier pairs all the triggers detected by the
previous classifier with other named entities (Pro-
teins in this case) or event triggers that occur in
the same sentence. These pairs are then classi-
fied into one of the possible participant relations,
or Nil indicating that there is no relation between
the pair. This classifier uses the following features:

Syntactic features: These features are based on
the shortest path connecting the two men-
tions (trigger and candidate participant) in the
Stanford syntactic dependency graph. Two
versions of the shortest path are used: a lex-
icalized one (capturing the words along the
path), and an unlexicalized one.

Surface features: These features include: the or-
der of the two mentions in text, their distance
in terms of tokens, the number of entities and
triggers in the sentence, the parts of speech
and words of the mentions, and the number
of triggers and entities between the mentions.

Consistency features: These features encode the
labels of the two mentions jointly, as well as
the labels of their superclasses. For example,
the features <Regulation, Phosphorylation>
and <Regulation, Event> are generated for
a relation between a Regulation event trigger
and a Phosphorylation trigger as its theme.
These feature capture selectional preferences
for arguments, e.g., the Theme of a regulation
event should be another event.

Graph features: The parent, children, and sib-
lings of the mentions in the syntactic depen-
dency graph.

Limitations
Not all of the above features can be represented
as rules in the current implementation of the cho-
sen rule language. Currently1, Odin rules capture
paths (over sequences or directed graphs) that are
anchored at both ends (e.g., from an event trig-
ger to an event argument) (Valenzuela-Escarcega
et al., 2015; Valenzuela-Escarcega et al., 2016).
Because of this, Odin cannot represent the follow-
ing information: bag-of-word features, syntactic
paths that are not anchored at both ends (such as
dependencies connected only to event trigger can-
didates), and features that count occurrences of to-
kens or entities in text. In Section 3 we analyze the
performance drop when such features are removed
from the model.

2.2 Step 2: Convert the Statistical Model to a
Rule-based Model

Once the statistical model is constructed, we em-
ploy the lossy process below to convert it to an
interpretable one.

Converting Features to Rules
First, we convert the features encoded in
the statistical model to rules in the Odin
language (Valenzuela-Escarcega et al., 2015;
Valenzuela-Escarcega et al., 2016). In general,
the features previously introduced consist of con-
junctions of information bits, each of which cor-
responds to a different rule fragment. For ex-
ample, for the classification of event participants,
one such conjunction captures the type of the ex-
pected trigger (e.g., Phosphorylation), combined

1As of June 2016
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-  name: phospho_event 
 label: Phosphorylation 
 pattern: | 
  trigger:Phosphorylation 

      theme:Protein = >nsubjpass 

1"Figure 2: Example of a rule for event participant
classification that is built from a single feature.
The feature captures the passive nominal subject
(nsubjpass) outgoing (>) from a Phosphoryla-
tion trigger and landing on a Protein. The bold font
indicates the rule output, i.e., the nominal subject
is the theme of a Phosphorylation event.

with the syntactic path that connects the trigger
with the participant candidate (e.g., an outgoing
passive nominal subject – nsubjpass), and a se-
mantic constraint for the type of named entity of
the participant (e.g., Protein). These are imme-
diately translatable to Odin rules, as illustrated in
Figure 2.

Importantly, the rules encode output informa-
tion as well, e.g., the recognized event partic-
ipant serves as a theme for a Phosphorylation
event in Figure 2. At this stage, this information
is exhaustively generated from all possible clas-
sifier labels (e.g., for the classification of event
participants these labels are the cartesian product
of {theme, cause} and possible event labels
{Phosphorylation, Binding, . . . }). Of
course, some of these outputs do not apply. For ex-
ample, it is highly unlikely that the rule shown in
Figure 2 produces the cause of a Regulation event.
We quantify the confidence in these outputs in the
next stage of the algorithm.

Converting Weights to Votes

Feature weights are unbounded continuous values
that are difficult to interpret and manually mod-
ify. For this reason, we would ideally prefer to
exclude them completely from the interpretable
model. Conceptually, this is simple: we could
use the weights to choose the most likely output
label for a rule (from the options generated pre-
viously), and discard them afterwards. However,
our early experiments demonstrated that this per-
forms poorly, because it forces the algorithm to ig-
nore the inherent ambiguity of language, which is
captured by the statistical model through weights.
For example, the trigger classifier learns that “re-
cruits” serves as trigger for two different events,
Binding and Localization, and, consequently, as-
signs different weights to the two labels based on
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Figure 3: Weights of the two classifiers converted
to votes (trigger classifier – top, participant clas-
sifier – bottom). Each histogram bin receives a
number of votes (positive or negative) equal to its
offset from 0.

the amount of evidence seen in training. During
inference, the most likely class is chosen by ag-
gregating the weights of all features that apply.

Given this observation, we chose to preserve
the weights, but convert them from the original
unbounded continuous values to discrete “votes”
(positive or negative) that are then used during in-
ference to resolve conflicts. This achieves two
things. First, we increase the interpretability of
the model: humans can now interpret these dis-
crete votes, which mimic a Likert scale (Likert,
1932). Second, by keeping and using these dis-
cretized votes, we preserve some of the statistical
power of the model. We show in Section 3 that
some performance is indeed lost in this conver-
sion, but the loss is small and the gain in inter-
pretability compensates for that.

The conversion from continuous weights to dis-
crete votes is a process similar to choosing the bins
in a histogram. In our case, we first construct a
histogram of all feature weights. Then, each his-
togram bin receives a number of votes equal to its
offset (positive or negative) from 0. For example,
all the weights in the second bin to the left of 0
receive two negative votes. Several methods have
been proposed for selecting the number of bins in
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a histogram, for example (Sturges, 1926; Doane,
1976; Freedman and Diaconis, 1981). Here, we
use the formula proposed by (Scott, 1979):

h = 3.5σ̂n−1/3 (1)

where h is the estimated bin width, n is the sample
size, and σ̂ is the estimated standard deviation. We
chose this formula because it gives a good com-
promise between retaining most of the informa-
tion in the weights while minimizing the number
of bins. The resulting binned weights for trigger
and relation features (generated using the BioNLP
2009 training corpus) are shown in Figure 3.

2.3 Step 3: Edit the Rule-based Model
The output of the previous two steps is a model
consisting of a set of rules. The association
between rules and output classes is measured
through votes that each matching rule gives to
each output label. The last step in our proposed
approach is to let human domain experts improve
this model by directly editing it. The experts had
complete freedom in the operations they were al-
lowed to do. For example, they could improve
the syntactic paths captured by the rules, or in-
crease/decrease the number of votes assigned to
a specific rule. The only constraints were: (a) they
were not allowed to look only at the learned rules
and not at the training data, and (b) they had to
complete the process within one hour. This setting
is of course artificial and unrealistic. We enforced
it in this work to demonstrate the interpretability
of the generated model.

3 Empirical Results

We analyze the performance of our approach on
the core event extraction dataset from the BioNLP
2009 shared task (Kim et al., 2009). All the results
reported in this section were measured on the de-
velopment partition of the dataset, which was not
used at all during training.2 To minimize overfit-
ting, we did not implement any feature selection
or other hyper parameter tuning process.

Table 2 lists the results of the complete statis-
tical model, i.e., using all features introduced in
Section 2.1, trained using L2-regularized LR. This
configuration generated 1,190,029 features with
non-zero weights. The table shows that this model

2The online scoring website, which would have allowed
us to also obtain scores on the official test partition, was down
due to updates during the development of this work.

Event Class Recall Precision F1
Gene expression 67.70 68.08 67.89
Transcription 57.32 50.00 53.41
Protein catabolism 71.43 68.18 69.77
Phosphorylation 68.09 68.09 68.09
Localization 69.81 74.00 71.84
Binding 31.85 25.57 28.37
Event Total 55.89 51.48 53.59
Regulation 17.16 33.33 22.66
Positive regulation 19.45 41.67 26.52
Negative regulation 14.29 36.36 20.51
Regulation Total 18.02 39.16 24.69
All Total 35.10 47.29 40.30

Table 1: Performance of the statistical model using
L2-regularized LR, and all available features.

Event Class Recall Precision F1
Gene expression 57.58 74.28 64.87
Transcription 40.24 57.89 47.48
Protein catabolism 61.90 86.67 72.22
Phosphorylation 51.06 82.76 63.16
Localization 47.17 92.59 62.50
Binding 18.15 34.62 23.81
Event Total 42.75 64.61 51.45
Regulation 8.28 40.00 13.73
Positive regulation 17.18 42.74 24.51
Negative regulation 7.14 40.00 12.12
Regulation Total 13.65 42.14 20.62
All Total 26.77 56.22 36.27

Table 2: Performance of the statistical model with
L2-regularized LR, using only features that can be
converted to rules.

achieved an overall F1 score of over 40 points,
which likely puts it in the top 5 or 6 (out of 24) sys-
tems that participated in the actual challenge.3 The
performance of this system could be further im-
proved by adding more features proposed in other
event extraction approaches (Miwa et al., 2010),
feature selection, hyper parameter tuning, etc.

For a fair comparison, we next trained the same
model but using only features that can be con-
verted to rules. As discussed, the features that
were removed include bag-of-word features and
features that count occurrences of tokens or enti-
ties in text. These results, summarized in Table 2,
show that the overall F1 score drops 4 points. This
suggests that rule languages need to be extended if
they are to have the same representational power
as feature-based models. Given that the focus of

3(Kim et al., 2009) report results on the official test par-
tition, which are not directly comparable with our results.
However, in the authors’ experience, the difference in scores
between the development and test partitions in this dataset
tend to be small. Since the 2009 evaluation, several works
have improved upon these results, with performance reach-
ing 58 F1 points, but using more complex methods, includ-
ing joint inference, coreference resolution, and domain adap-
tation (Miwa et al., 2012; Bui and Sloot, 2012; Venugopal et
al., 2014).
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Event Class Recall Precision F1
Gene expression 58.71 78.28 67.09
Transcription 37.80 55.36 44.93
Protein catabolism 61.90 86.67 72.22
Phosphorylation 46.81 84.62 60.27
Localization 56.60 88.24 68.97
Binding 16.13 33.33 21.74
Event Total 42.75 66.60 52.08
Regulation 8.88 65.22 15.62
Positive regulation 13.13 40.50 19.83
Negative regulation 8.16 55.17 14.22
Regulation Total 11.41 44.44 18.15
All Total 25.54 59.35 35.72

Table 3: Performance of the statistical model with
L1-regularized LR, using only features that can be
converted to rules.

this work is not on the design of rule-based lan-
guages for IE, we will use this latter model as the
starting point of our approach, ignoring (for now)
the performance penalty observed above.

Importantly, a system with more than 1 million
features is not interpretable. To address this, we
trained the same system using L1 regularization as
a form of feature selection. This reduced the num-
ber of features with non-zero weights by two or-
ders of magnitude: from over 1 million to 10,926.
The performance of this model is shown in Ta-
ble 3. The results demonstrate that this drastic re-
duction in the number of useful features came with
a small performance cost, of less than 1 F1 point.

Given this successful compression of the fea-
ture space, we next convert this L1-regularized
model to rules, using the approach discussed in
Section 2.2. The performance of the rule-based
model (before expert intervention!) is summa-
rized in Table 4. The table shows that the over-
all cost of “snapping to grid” the statistical model
is approximately 3 F1 points, which come from a
drop in recall. This happens because many fea-
ture weights associated with specific labels (such
as specific event triggers) have low values (due to
sparsity), and, after the discretization process, the
model can no longer prioritize these labels over the
Nil class. Interestingly, the same process yielded
a small increase in precision from 59% to 62%.

All in all, we consider a drop of 3 F1 points
for the gain of interpretability an acceptable trade-
off. To empirically demonstrate the value of in-
terpretability, we let two Linguistics PhD students
edit the generated rule-based model for one hour,
aiming to improve its generalization, robustness
to syntactic errors, and readability. The students
were familiar with the Odin language (Valenzuela-
Escarcega et al., 2015) so they could “read” the

Event Class Recall Precision F1
Gene expression 55.34 76.95 64.38
Transcription 28.05 53.49 36.80
Protein catabolism 57.14 85.71 68.57
Phosphorylation 40.43 90.48 55.88
Localization 45.28 88.89 60.00
Binding 12.90 33.33 18.60
Event Total 38.04 67.18 48.58
Regulation 5.33 75.00 9.94
Positive regulation 10.70 48.89 17.55
Negative regulation 5.61 55.00 10.19
Regulation Total 8.76 51.50 14.97
All Total 21.97 62.98 32.57

Table 4: Performance of the rule-based model be-
fore expert intervention.

model, and had a high-level understanding of the
BioNLP shared task (although they did not par-
ticipate in it). To guarantee that their recommen-
dations came from understanding the model rather
than other external factors, they were not given ac-
cess to the BioNLP dataset. Given the large num-
ber of rules at this point, the students tended to
randomly sample the rules in the model attempt-
ing to find repeated mistakes, rather than linearly
inspect the list of rules. Table 5 summarizes the
experts’ recommendations. As shown, several of
the experts’ suggestions involved removing or col-
lapsing rules, which reduced the number of rules
from 10,926 to 8,868.

Table 6 lists the performance of the resulting
model, after implementing the experts’ recom-
mendations. The table shows that most of the F1
loss has been recovered: the overall F1 score for
this system approaches 35 F1 points, and is less
than 1 F1 point behind the L1-regularized LR sta-
tistical model. In addition of reducing the number
of rules in the model, the experts’ recommenda-
tions increased recall by over 4%, which is more
than what was lost during the conversion to rules.
However, the precision of this configuration de-
creased by 11%, which we blame on the experts’
limited familiarity with the BioNLP task, and the
strict settings of the experiment (no access to data,
limited time). However, all in all, this experiment
demonstrates that the rule-based model produced
by the proposed approach is interpretable: the ex-
perts understood the model, and were able to im-
prove it, both with respect to its generalization
power and its readability.

Lastly, Figure 4 shows a learning curve for the
statistical model and the corresponding rule-based
model (before expert intervention). The curve
shows that the rule-based model follows closely

61



Suggested Change Description
Generalization

Add
/conj_(and|or|nor)|dep|cc|nn|prep_of/{,2}
to the end of Theme paths.

This transformation adds an optional modifier depen-
dency to capture event participants when they appear
either as nominal heads or modifiers. For example, be-
cause of this transformation, the model handles both
these phrases similarly: “phosphorylation of MEK” and
“phosphorylation of the MEK protein”

Ensure that all syntactic paths end in appos?. This change handles optional apposition to increase rule
coverage. For example, in the sentence “we found that
A20 binds to a novel protein, ABIN”, the word ABIN is
an appositive for the word protein, so ABIN can serve
as an argument in the binding event.

Replace all specific named entities with their label. For example, in rules such as
[word=phosphorylates] (?=MEK) that
reference a specific protein, this replaces the specific
protein (MEK) with the label Protein. This improves
rule generalization and, at the same time, reduces the
total number of rules.

Make the >nn dependency optional in
Theme:Protein = >nsubjpass >nn.

The output of this transformation is similar to the first
suggested change, i.e., the same rule captures event par-
ticipants when they appear either as nominal heads or
modifiers.

Robustness
Replace agent with /ˆ(agent|prep_by)$/. This modification is designed to account for a common

parsing error of passive sentences, where agent de-
pendencies are incorrectly parsed as prep_by.

Change ccomp to /(c|x)comp/ and acomp to
/(a|x)comp/.

Parsers often confuse clausal and adjectival comple-
ments with open clausal complements. This transfor-
mation allows the rules to be robust to these errors.

Readability
Merge rules when possible, e.g.
prep_of, prep_of nn, prep_of appos
become prep_of (nn? appos | nn appos? nn?)?.

This transformation collapses rules to improve readabil-
ity.

Eliminate trigger rules that are not sufficiently discriminative
(e.g., (?<=[lemma="be"]) [tag=/ˆ(V|N|J)/).

Some uninformative rules survived feature regulariza-
tion but should be removed, as with the example rule
which looks for any verb, noun, or adjective preceded
by any conjugation of the verb “be”. These rules inflate
the grammar without adding discriminative power.

Do not use word constraints. Only use lemma and tag fea-
tures in trigger rules for simple events (other than transcription
and binding).

This modification prefers lexical constraints on lemmas,
because they generalize better than constraints on actual
words.

Remove redundant constraints. For example, in patterns like
[incoming=nsubj & tag=/ˆN/] the POS
tag is redundant because it is implicitly defined through
the incoming dependency (nominal subject).

Table 5: Representative examples of the rule changes suggested by linguistic experts.

the behavior of its statistical counterpart, with a
small penalty of 1-2 F1 points throughout. As dis-
cussed before, this performance loss can be miti-
gated through interventions by domain experts.

4 Related Work

Most of the biomedical IE systems in academia
rely on supervised machine learning. This in-
cludes the top performing system at the BioNLP
2009 shared task (Björne et al., 2009), as well as
several following approaches that improve upon
its performance (Miwa et al., 2010; McClosky et
al., 2012; Miwa et al., 2012; Bui and Sloot, 2012;
Venugopal et al., 2014).

However, rule-based approaches (Appelt et al.,

1993; Cunningham et al., 2002; Piskorski et al.,
2004; Li et al., 2011; Chang and Manning, 2014)
are preferable when the corresponding systems
have to be deployed for long periods of time,
during which they have to be maintained and
improved. This has been recognized in indus-
try (Chiticariu et al., 2013).

We bring together these two diverging direc-
tions by combining the advantages of ML with
the interpretability of rule-based approaches. By
representing the model as a collection of declara-
tive rules, experts can directly edit the model, thus
guaranteeing that the desired changes are actually
applied. This is in contrast with methods such as
active learning, in which the learning algorithm
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Event Class Recall Precision F1
Gene expression 60.39 70.49 65.05
Transcription 31.71 57.78 40.94
Protein catabolism 61.90 81.25 70.27
Phosphorylation 42.55 86.96 57.14
Localization 45.28 88.89 60.00
Binding 22.18 23.50 22.82
Event Total 43.74 54.31 48.46
Regulation 10.06 40.48 16.11
Positive regulation 12.80 44.89 19.92
Negative regulation 10.71 51.22 17.72
Regulation Total 11.91 45.17 18.86
All Total 26.27 51.71 34.84

Table 6: Performance of the rule-based model, af-
ter expert intervention.
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Figure 4: Learning curve showing the change in
F1 performance as a function of the amount of
training data. We compare the performance of
the L1-regularized logistic regression (shown us-
ing circles) with the rule-based model prior to the
expert intervention (shown using triangles).

presents the “human in the loop” with new ex-
amples to annotate (Thompson et al., 1999). Al-
though active learning may require less domain
expertise than our proposal, it generally does not
guarantee that the examples provided are actually
propagated in the model (the learning algorithm
may choose to override them with other data).

5 Conclusion and Future Work

We have proposed a simple approach that mar-
ries the advantages of machine learning models
for information extraction (such as learning di-
rectly from data) with the benefits of rule-based
approaches (interpretability, easier maintainabil-
ity). Our approach starts by training a feature-
based statistical model, then converts this model
to a rule-based variant by converting its features to
rules and its feature weights to discrete votes. In
doing so, our proposal learns from data similar to

other machine learning approaches, but produces
an interpretable rule-based model that can be di-
rectly edited by experts. Using the BioNLP 2009
event extraction task as a test bed, we show that
while there is a small performance penalty when
converting the statistical model to rules, the gain
in interpretability compensates for that.

In this work, we focused on building upon
feature-based classifiers, in particular logistic re-
gression, due to their potential extensions to dis-
tant supervision (DS), where training data is gen-
erated automatically by aligning a knowledge base
(KB) of known examples (e.g., known drug-gene
interactions) with text (e.g., scientific publica-
tions). Distant supervision has obvious applica-
tions to bioinformatics (Craven et al., 1999), but it
generally suffers from noise in the automatically-
generated annotations (Riedel et al., 2010). In fu-
ture work, we plan to combine our work with dis-
tant supervision by adapting our proposal to logis-
tic regression variants that are robust to the noise
introduced in DS (Surdeanu et al., 2012). This ex-
tension would make it possible to generate rules
even when no annotated examples are available, as
long as a suitable KB of known examples exists.

Another planned extension of this work focuses
on reducing the number of generated rules by
merging/collapsing similar paths into a single pat-
tern. This can be achieved by constructing a min-
imal deterministic acyclic finite-state automaton
(DAFSA) (Daciuk et al., 2000) with the paths that
are similar, and then converting the DAFSA into
a single pattern (Neumann, 2005). For example,
such approaches would collapse the two patterns:
dobj and dobj nn, into a single one: dobj
nn?. This is fundamental for the long-term main-
tainability of the rule-based model, because the
human experts would have to maintain consider-
ably fewer rules.

Lastly, we plan to improve the “snap to grid”
algorithm. Currently, the conversion of weights
to votes is implemented using Scott’s rule (Scott,
1979), which is one method among several avail-
able to choose a histogram’s bin size. Scott’s
method assumes that all bins have the same size,
which may not be the best solution if interpretabil-
ity is the goal. A potentially better approach is
to select the bin divisions in a way that retains as
much of the information contained in the weights
as possible, while minimizing the number of bins.
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