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Abstract

Most existing corpus-based approaches to
semantic representation suffer from inac-
curate modeling of domain-specific lexical
items which either have low frequencies or
are non-existent in open-domain corpora.
We put forward a technique that improves
word embeddings in specific domains by
first transforming a given lexical item to a
sorted list of representative words and then
modeling the item by combining the em-
beddings of these words. Our experiments
show that the proposed technique can sig-
nificantly improve some of the recent word
embedding techniques while modeling a
set of lexical items in the biomedical do-
main, i.e., phenotypes.

1 Introduction

Semantic representation is one of the oldest, yet
most active, research areas in Natural Language
Processing (NLP) owing to the central role it plays
in many applications (Pilehvar and Navigli, 2015).
The field has experienced a resurgence of inter-
est in recent years with the introduction of low-
dimensional continuous space models that lever-
age neural networks for learning semantic repre-
sentations. Word2vec (Mikolov et al., 2013) is
a good example which despite its recent inven-
tion has found its way prominently into literature,
mainly thanks to its ability to be quickly and ef-
fectively trained on large amounts of text.
However, since most of these corpus-based
techniques base their representation only on the
co-occurrence statistics derived from text corpora,
they fall short of effectively modeling lexical items
for which not many statistical clues can be ob-
tained from the underlying corpus. Several at-
tempts have been made to improve word embed-
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dings with the help of knowledge derived from
other resources (Yu and Dredze, 2014; Bian et al.,
2014; Faruqui et al., 2015) or by including arbi-
trary contexts in the training process (Levy and
Goldberg, 2014). However, most of these tech-
niques still suffer from another deficiency of word
embeddings that they inherit from their count-
based ancestors: they conflate the different mean-
ings of a word into a single vector representa-
tion. Attempts have been made to tackle the
meaning conflation issue of word-level represen-
tations. A series of approaches cluster the context
of a word prior to representation (Reisinger and
Mooney, 2010; Huang et al., 2012; Neelakantan
et al., 2014) whereas others exploit lexical knowl-
edge bases for sense-specific information (Rothe
and Schiitze, 2015; Chen et al., 2014; Iacobacci et
al., 2015; Camacho-Collados et al., 2015).

We propose a model that addresses both these
issues through a mapping of a lexical item to
a sorted list of representative words that brings
about two advantages. Firstly, it pinpoints with an
inherent disambiguation the meaning of the given
lexical item at a deeper semantic level. Secondly,
by casting the representation of the item as that
of a set of potentially more frequent words, our
approach can provide a more reliable represen-
tation of domain-specific items based on signif-
icantly more statistical knowledge. Our experi-
ments show that the proposed model can provide a
considerable improvement over some of the state-
of-the-art word embedding approaches in a se-
mantic similarity-based task.

Data. The final goal of this paper is to improve
the semantic representation of domain-specific
terms and phrases which usually have low fre-
quencies (or are non-existent) in open-domain cor-
pora and hence have a lower chance of being ef-
fectively modeled by existing word representation
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techniques. Therefore, for our experiments we re-
trieved terms and phrases from a domain-specific
ontology in the biomedical domain. Specifically,
as our dataset in the experiments we opted for Hu-
man Phenotype Ontology (Sebastian Khler, 2014,
HPO) which is a standardized vocabulary of phe-
notypic abnormalities encountered in human dis-
ease. Semantic modeling of phenotypes has sev-
eral applications in the biomedical domain such
as profiling heritable diseases or understanding the
genetic origins of diseases (Collier et al., 2013).

2 Improved Semantic Representation

In this section we explain how our technique
builds on top of pre-trained word embeddings to
provide a more accurate semantic representation.

2.1 Disambiguation

As mentioned in the Introduction, one of the draw-
backs of word-level representations is that they
conflate different meanings of a word into a sin-
gle vector. Our technique constructs a more accu-
rate semantic representation of a lexical item by
constraining its semantics through a set of rele-
vant words. Interestingly, we achieve this on the
basis of the same set of word-level representa-
tions. To this end, we first disambiguate the con-
tent word(s) in a given lexical item. In our experi-
ments, we used Babelfy (Moro et al., 2014) which
is a state-of-the-art WSD system based on the Ba-
belNet sense inventory. BabelNet is a merger of
Wikipedia and WordNet, among other resources
(Navigli and Ponzetto, 2012). Let t = flexion con-
tracture of digit be the phrase we are interested in
modeling. The disambiguation phase transforms
the phrase to three BabelNet concepts correspond-
ing to the intended meanings of the content words
{flexion, contracture, and digit}. Disambiguating
with respect to BabelNet provides us with an addi-
tional benefit: it links a content word to the corre-
sponding Wikipedia page of its intended meaning,
giving us the chance to draw additional context for
improving its representation.

2.2 Representative list

Let the set of disambiguated concepts for a lex-
ical item ¢ be C;. We further enrich this set by
adding all the BabelNet concepts that have a se-
mantic link (in the semantic network of BabelNet)
to any of the concepts in C;. Let the enriched
set of concepts be C;. Our goal here is to map
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C; to a set of most relevant words that can repre-
sent its semantics. We achieve this by exploiting
the fact that these concepts are linked to relevant
Wikipedia articles. Let D; be the set of Wikipedia
articles retrieved for ¢ (i.e., the set of articles that
are associated with the concepts in C;). We ana-
lyze the textual content of these articles by lever-
aging the method proposed by Camacho-Collados
et al. (2015) and retrieve a sorted list of salient
words. Specifically, we use lexical specificity and
contrast word frequency statistics between D; and
all articles in Wikipedia. Lexical specificity (La-
fon, 1980) is a statistical measure based on the
hypergeometric distribution which can be used to
compute the semantic importance of an arbitrary
vocabulary word w for D, as:

Spec(H; h; G g) = —logioP(X > g) (1)

where H and h are the respective aggregate fre-
quencies of all words in all Wikipedia articles and
Dy, and G and g are the respective frequencies of
w in all Wikipedia articles and D;. For a given
lexical item ¢, we construct the set of semantically
representative words R; by keeping the words that
are relevant to D; with a minimum confidence of
99% according to the hypergeometric distribution,
ie., P(X >0.01).

For our example phenotype flexion contracture
of digit, the representative list R; comprises of
around 1300 weighted words, with the top ones
being muscle, finger, spasticity, toe, hand, pa-
tient, and spastic. Please note that our technique
mapped an ambiguous term digit to a set of more
semantically constrained keywords such as finger,
toe, and hand. This enables us to construct a
sense-specific representation of the word by lever-
aging word-level representations.

2.3 Vector construction

So far, we mapped a given lexical item ¢ to a set of
relevant concepts C; and obtained for this set the
sorted list Ry = {ry,..., 7, } of the most seman-
tically representative words. The final step is to
construct a vector representation V; for ¢. We do
this by combining the vectors for the words in R;.
Let V(z) be the vector representation given by a
model such as Word2vec for the word x. We com-
pute the weight for the i dimension of the vector
Vi, 1.e., v;, as:

m
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sim. Flexion contracture of digit

sim. Bipolar affective disorder sim. Chaotic rapid conjugate ocular movements

0.94
0.92
0.91

Flexion contracture of finger
Flexion contracture of thumb
Congenital finger flexion contractures 0.85 Psychosis

0.80 Personality disorder
0.85 Schizophrenia

0.85 Abnormal conjugate eye movement
0.80 Jerky ocular pursuit movements
0.76 Slow saccadic eye movements

sim.

Hydranencephaly (A defect of development of the brain characterized by replacement of greater portions of the cerebral hemispheres [...].)

0.81
0.79
0.77

Porencephaly (A disorder of the brain in which a cyst or cavity filled with cerebrospinal fluid develops in the cerebral hemisphere.)
Dandy-walker malformation (A congenital brain malformation typically characterized by incomplete formation of the cerebellar vermis, dilation of [...].)
Ventriculomegaly (An increase in size of the ventricular system of the brain.)

Table 1: The most similar phenotypes (among 11,591) to four phenotypes in the HPO database together
with their similarity scores. We also show the definitions for more technical terms in parentheses.

where V(r); is the weight of the 5" dimension of
the base vector for the j*" word in R; and e~V is
a decay function (with the decay constant \) that
gives more importance to the higher ranking terms
in R¢. In our experiments, we did not perform a
tuning on the value of \ which was set to é Please
note that the dimensionality of V; is identical to
that of the base word representations, i.e., n. Table
1 shows the top-3 most similar phenotypes for four
phenotypes in the HPO ontology when Word2vec
was used as the base representation.

3 Experiments

We evaluate our model in the semantic representa-
tion of phenotypes in the HPO ontology.

3.1 Dataset

As of February 2016, the HPO ontology comprises
of 11,591 phenotypic abnormalities. Each of these
concepts is provided with a title (with an average
length of four words) and about 35% of all these
concepts are associated with synonymous titles
(by average, each of these concepts has 1.94 syn-
onyms). For example, Keratoconjunctivitis sicca
is a phenotype for which three synonymous titles
are provided by the ontology: Dry eye syndrome,
Keratitis sicca, and Xerophthalmia.

3.2 Tasks

Based on the ontological structure of HPO, we
propose two tasks in the framework of semantic
similarity measurement.

Synonym identification. Let P be the set of
all phenotypes in the HPO ontology. Let P*
{p1, .., Pk} (C P) be the subset of k& phenotypes
for which at least one synonymous phenotype is
provided in HPO and S, = {s;,, ..., s}, } be the
set of [ synonymous phenotypes for phenotype p;.
Given a s, , the task here is simply to identify the
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corresponding phenotype (i.e., p;). In other words,
the system has to identify the set of synonymous
phenotypes to a given phenotype. Specifically, we
compare the representation of s, with those of
all the phenotypes in P, obtaining a sorted list of
most similar phenotypes. Ideally, the concept con-
taining the synonymous title should appear at the
top of this list. The higher the rank of p; for a
given s, the better has the system captured the
semantics of the phenotypes. For this task we have
7193 synonymous titles (Y5, |S,,|) that are to
be matched with their corresponding phenotypes
(among a total of 11,591 phenotypes).

Hypernym identification. Similarly to the pre-
vious experiment, a system’s task here is to iden-
tify the hypernym of a given phenotype. The aim
of this experiment is to have a broader evaluation
that can also cover all those concepts that do not
provide synonymous titles (the dataset comprises
of 11,590 phenotypes that have a hypernym).

3.3 Baselines

As baseline, we benchmark our improved repre-
sentations against Word2vec. We use the 300-
dimensional vectors trained on the Google News
corpus (about 100B tokens). We also report results
for the Word2vec vectors when retrofitted using
the approach of Faruqui et al. (2015) to the Para-
phrase Database (Ganitkevitch et al., 2013, PPDB)
and SNOMED-CT!. The latter is a comprehen-
sive clinical terminology from which we extracted
108K synonymous sets, each comprising an aver-
age of 2.7 synonyms. We also compare our rep-
resentations against the 300-dimensional GloVe
vectors (Pennington et al., 2014) trained on the
Wikipedia 2014 + Gigaword 5 corpus (6B tokens).

We were also interested in verifying how
Word2vec and GloVe would perform if trained on

"https://www.nlm.nih.gov/snomed/



System Description Mean rank Median rank First match
Word2vec . . 1343.6 11 22%
Word2vec (2nd order) Trained on open-domain data (Google News) 664.1 6 28%
Word2vec . . . 224.1 4 32%
Word2vec (2nd order) Trained on in-domain data (PubMed) 1982 3 36%
GloVe . . e . 1326.4 9 24%
GloVe (2nd order) Trained on open-domain data (Wikipedia + Gigaword) 673.5 6 28%
GloVe . . . 701.4 4 34%
GloVe (2nd order) Trained on in-domain data (PubMed) 493.5 3 36%
Word2vec Trained on Google News, retrofitted to PPDB 1357.4 8 26%
Word2vec Trained on Google News, retrofitted to SNOMED-CT 1346.2 9 25%
Random baseline Random selection of the synonymous phenotype 5473.0 5473.0 0%

Table 2: Evaluation results for the synonym identification task. We report mean and median rank (lower
better) and the percentage of phenotypes for which the rank was equal to one (first match; higher better).

an in-domain corpus. Thankfully, the biomedical
domain is a rich domain for which large amounts
of textual data are available. We retrieved a cor-
pus of 4B tokens from article abstracts indexed in
PubMed?. We then trained Word2vec and GloVe
with window size of 5 words and the same dimen-
sionality as the open-domain vectors (i.e., 300).
For Word2vec we opted for the skip-gram model.

3.4 Results and discussion

Table 2 shows the evaluation results. We report
mean and median rank of the target phenotype in
the sorted list of most semantically similar phe-
notypes as well as the percentage of target pheno-
types for which this rank was equal to one, i.e., the
synonymous title was computed as the most simi-
lar item (first match in the table). As a reference,
we also report the performance of a baseline which
randomly picks the target phenotype.

We can see that a considerable performance im-
provement was gained when our technique was
used for improving Word2vec and GloVe repre-
sentations trained on open-domain corpora. In-
terestingly, even when the vectors were trained
on an in-domain corpus (PubMed) that covers a
large portion of the phenotypes with high frequen-
cies, our model was still able to provide statisti-
cally significant improvements according to mean
rank over the vanilla Word2vec and GloVe.? The
retrofitting of the vanilla vectors improved median
rank and first match irrespective of the resource
but did not match the performance of our model.

The substantial improvement of our approach
in the open-domain setting should be attributed to

http://www.ncbi.nlm.nih.gov/pubmed/
3 According to t-test with 95% confidence interval.
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its mapping of domain-specific phenotypes with
lower frequencies to a set of more frequent rep-
resentative terms. In fact, only around 60% of
the unique tokens of the phenotypes in the HPO
ontology were covered by the vanilla Word2vec
and GloVe models, which left around 5% of all
the phenotypes with no representation. The token
coverage raised to 91% when the two models were
trained on PubMed, resulting in the generation of
representations for 99.7% of all phenotypes. In
this setting, the respective relative mean rank im-
provements of 11.4% and 29.7% of our approach
with respect to Word2vec and GloVe should be at-
tributed to the additional semantic information that
our model introduces to the vectors as well as the
more accurate representation of concepts, thanks
to the disambiguation phase and the semantically
constraining keywords.

For the hypernym identification task we ob-
served a very similar trend where our model im-
proved Word2vec and GloVe from the respective
mean ranks of 1034.1 and 1021.5 to 606.1 and
556.7 on the open-domain corpus and from 317.2
and 424.9 to 277.6 and 309.5 on PubMed.

4 Conclusions and future work

We proposed an approach for enhancing the rep-
resentation capability of existing word model-
ing techniques in specific domains and showed
that consistent improvement can be gained over
Word2vec and GloVe even when they are trained
on domain-specific corpora. We plan to enhance
our technique by making it sensitive to syntax and
different parts of speech, such as in the manner
of Baroni and Zamparelli (2010). We also plan
to carry out a deeper analysis to better understand



the potential of our model and to identify places in
which it can be improved.
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