
Proceedings of the 1st Workshop on Evaluating Vector Space Representations for NLP, pages 67–71,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Evaluating Embeddings using Syntax-based Classification Tasks as a
Proxy for Parser Performance

Arne Köhn
Deparment of Informatics

Universität Hamburg
koehn@informatik.uni-hamburg.de

Abstract

Most evaluations for vector space models
are semantically motivated, e.g. by mea-
suring how well they capture word similar-
ity. If one is interested in syntax-related
downstream applications such as depen-
dency parsing, a syntactically motivated
evaluation seems preferable. As we show,
the choice of embeddings has a noticeable
impact on parser performance. Since eval-
uating embeddings directly in a parser is
costly, we analyze the correlation between
the full parsing task and a simple linear
classification task as a potential proxy.

1 Introduction

Many complex tasks in NLP are solved using em-
beddings as additional features. In some pipelines,
pre-trained embeddings are used as-is, in oth-
ers they are learned as an integral part of train-
ing the pipeline (examples for this would be e. g.
RNNLMs(Mikolov et al., 2010) or parsers that
learn their own embeddings (e. g. Chen and Man-
ning (2014))). We focus on the first type. If we
want to run a system that can be enhanced using
pre-trained embeddings, the question arises which
embedding actually works best.

Since it is computationally infeasible to evalu-
ate all embeddings on all pipelines, usually simple
tasks are used to demonstrate the strengths of em-
beddings and an embedding for use in a pipeline is
picked based on these proxy tasks. Most of these
tasks are semantically motivated and English domi-
nates as language of choice for the tasks. Last year,
we proposed a more syntactically motivated eval-
uation task syneval, which uses morpho-syntactic
information across a variety of languages (see Sec-
tion 2).

Morphological information helps syntactic
parsers, but usually there is no gold-standard infor-
mation available during parsing (with the exception
of parser evaluation). Using embeddings that are
good predictors of the missing morphological in-
formation should alleviate the problem of missing
morphology.

It is reasonable to assume that the classification
problems in syneval are a good proxy for syntax-
related tasks because they describe how well an
embedding is able to capture morphological in-
formation which is helpful to the parser. To test
this assumption, we evaluate the performance of
RBGParser (Lei et al., 2014; Zhang et al., 2014)
using different embeddings as additional features.
The parser performance using a specific embed-
ding should then reflect the embedding’s perfor-
mance on the classification tasks. We know that
embeddings yield only marginal improvements if
the parser also has access to gold standard morpho-
logical information but benefits significantly if no
morphological information is present (Lei et al.,
2014; Köhn et al., 2014). Therefore, we experi-
ment with stripping the information that is used as
classification target in syneval.

2 Syneval

In previous work, we proposed to make use of
treebanks to extract simple syntactic evaluation
tasks (Köhn, 2015) but somehow didn’t assign a
catchy name. We now make up for this and call
this approach syneval throughout this paper. For a
given syntactic feature type F (e.g. tense or case),
a classification task is created as follows: Let W
be the set of words forms and V ⊆ Rn the vector
space of a given embedding W → V . Using a
treebank where some words1 are annotated with

1Some words are not annotated with features of certain
types, e. g. nouns are usually annotated without tense markers.
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Figure 1: Accuracies for the proxy task syneval evaluated on Basque, English, French, German, Hungarian,
Polish, and Swedish. Note that dep was not evaluated on French. All results are from Köhn (2015).
Results for embeddings not discussed in this paper have been omitted.

a syntactic feature of the given type f ∈ F , we
combine the syntactic information with the word
vector v ∈ V of the word, obtaining a pair (v, f)
for each word. In other words, we perform an inner
join of the embedding and the syntactic annotation
on the word and project on V and F .

Note that there is no functional dependence
W → F because the same word form can have
different syntactic features depending on the con-
text. Therefore, there is also no functional depen-
dence between the word vectors and the syntactic
features.

A linear classifier is trained on (v, f) pairs to
predict the syntactic feature given the word embed-
ding. If the classifier yields a high accuracy, the
embeddings encode structure with respect to the
syntactic feature type. The vector space is parti-
tioned by the classifier into convex polytopes which
each represent one syntactic feature (such as NN
for the PoS classification task) and if the classifier
has a high accuracy, these polytopes accurately de-
scribe the features. Since the classifier does not
use any context features and a word vector can be
paired with different syntactic features, the upper
bound for classification accuracy can be approx-
imated by classification based on the word form.
The lower bound is the majority baseline, i.e. using
no features at all.

The syntactic features used in syneval are: pos
(the PoS of the word), label (the dependency la-
bel), headpos (the PoS of the word’s head) as well
as the morphological features case, gender, tense,
and number. Syneval results for a selected set of
embeddings are depicted in Figure 1.

Syneval has several advantages over other em-

bedding evaluation methods: First of all, it uses
several languages instead of being centered on En-
glish. It does not need manually generated data
such as similarity judgments as the treebanks used
for evaluation have already been built for other pur-
poses. Syneval covers much more lexical items
than other evaluations: SimLex-999 (Hill et al.,
2015, one of the larger word similarity corpora)
contains 1030 word forms whereas syneval per-
forms an evaluation on nearly 30.000 word forms
for English.

3 Data and Embeddings

To limit the amount of computation, we select
four languages out of the seven evaluated by Köhn
(2015), namely Basque, German, Hungarian, and
Swedish, and three embeddings out of six. Even
with these reductions, the experiments for this pa-
per needed about 500 CPU-days. All experiments
are performed on data from the SPMRL 2014 (Sed-
dah et al., 2014), using the full training set for each
language and the dev set for evaluation.

The embeddings are taken from Köhn (2015).
We use the ten-dimensional embeddings, as the
differences between the approaches are more pro-
nounced there, and we can be sure that the parser
does not drain in high dimensional features (Lei
et al. (2014) used 25 and 50 dimensional vectors).
Again, we limit the number of embeddings to three:
skip-gram using dependency contexts (dep, (Levy
and Goldberg, 2014)), GloVe (Pennington et al.,
2014), and word2vec using cbow (Mikolov et al.,
2013). In the syneval evaluation, dep performed
best, GloVe worst, and cbow in between (see Fig-
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dep cbow GloVe none dep cbow GloVe none
Basque +all 89.77 89.13 89.79 90.07 Hungarian +all 88.66 88.54 88.24 88.39

-case 89.43 88.12 88.30 88.41 -case 87.52 87.37 87.46 87.10
-tense 89.81 88.80 89.71 89.97 -tense 87.50 87.41 87.59 87.26

-number 89.88 88.86 89.26 89.86 -number 87.59 87.34 87.60 87.07
-PoS 88.22 86.39 87.94 87.99 -PoS 85.97 85.72 85.80 85.42

-all 85.51 80.99 81.68 79.24 -all 81.18 78.69 78.24 76.08

German +all 94.87 94.67 94.89 94.82 Swedish +all 85.17 85.06 84.83 85.17
-case 94.38 94.20 94.40 94.42 -case 85.20 84.94 84.97 85.15

-tense 94.87 94.66 94.81 94.76 -tense 84.94 84.94 85.27 85.15
-number 94.84 94.60 94.77 94.83 -number 85.07 84.81 85.06 85.19

-PoS 91.24 90.15 91.15 91.22 -PoS 79.53 78.21 78.65 78.68
-all 88.26 86.68 87.72 87.35 -all 76.55 73.79 73.41 71.11

Table 1: Unlabeled parsing accuracies using different embeddings as well as no embeddings with varying
amounts of gold-standard morphological information available. Results better than the second best by a
margin of at least .1 are highlighted.

ure 1). For some tasks, GloVe barely outperforms
the majority baseline, i.e. it does not contain much
information that can be extracted with a linear clas-
sifier.

4 Using Embeddings in a Parser

To evaluate the benefit of using the embeddings
mentioned in the previous section in a parser, the
parser needs to fulfill several requirements: The
parser needs to work both with and without embed-
dings, it needs to use pre-trained embeddings, and
it should make use of morphological features. If
all these requirements are fulfilled, it is possible
to measure the benefit of different embeddings as
well as using embeddings at all, and whether mor-
phological information supersedes such benefits.

Based on the requirements, we chose RBGParser
for the evaluation. RBGParser uses embeddings
for scoring edges using low-rank tensors. To score
edges, the function uses the embedding, form,
lemma, pos, and morphological information of the
words as well as arc length and direction. In ad-
dition to the low-rank tensor, it uses the same fea-
tures as TurboParser (Martins et al., 2013) as well
as some features encoding global properties. Both
components are weighted using a hyperparameter
which we keep fixed at the default value. Since
the embeddings are only used in the tensor compo-
nent, the quality of the embeddings only affect this
component.

Nevertheless, we chose to use the whole parser
including all features instead of just measuring the

impact on the low-rank tensor component because
it is possible that improvements in this component
don’t translate to an improvement of the whole
parser.

5 Experiments

The basic idea is as follows: If an embedding en-
codes a morphological feature well, it should be a
good drop-in replacement of that feature. There-
fore, if we strip a morphological feature from the
data, using a well-performing embedding should
yield higher parsing accuracies than using a worse
performing one.

We use the following setups with each embed-
ding (as well as without embeddings):

• no case information (-case)
• no tense information (-tense)
• no number information (-number)
• no PoS information (-PoS)
• morphology (including PoS) completely

stripped (-all)
• all gold standard information as-is (+all)

We train RBGParser on the gold standard for
each language using the settings mentioned above,
i. e. stripping the morphological information corre-
sponding to the setting from both training and test
data. For each setting and language, we trained the
parser in for modes: Without Embeddings, with
dep, with GloVe, and with cbow. The resulting
accuracies are listed in Table 1. No embedding is
able to provide a benefit to the parser with complete
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gold-standard annotations (the +all rows), which is
consistent with previous findings.

Even when stripping morphological information,
the embeddings only yield relevant improvements
with respect to not using embeddings in -PoS and
-all settings. In both these cases, dep clearly outper-
forms the other embeddings, which is consistent
with the syneval results (Figure 1). In contrast,
cbow, which performs better than GloVe in syneval,
yields worse results than GloVe on average. Both
differences are significant (two-sided sign test; dep
6= glove: p < 0.05; GloVe 6= cbow: p < 0.01).
The absolute difference between dep and GloVe is
much larger than the absolute difference between
GloVe and cbow. The difference between GloVe
and cbow is especially striking in the -PoS case
where cbow outperforms GloVe by a large margin
in syneval but is consistently beaten in the parsing
task for every language, even those where cbow
outperforms GloVe in the +all case.

Stripping a single morphological feature (other
than PoS) has little impact on parsing accuracy. On
the other hand, stripping all morphological infor-
mation leads to much worse accuracies than just
parsing without PoS. This hints at some redundancy
provided by the morphological annotations.

6 Conclusions

Syneval and the downstream parser evaluation both
reveal large differences between the different em-
beddings. dep outperforms all other embeddings
in syneval for all tasks except number-Polish and
number-Spain and also is most helpful to the parser
with considerable margin. The embeddings are
only consistently helpful to the parser if no PoS-
tags are provided.

Despite the consistency of the dep result
between syneval and the parsing task, our findings
are inconclusive overall. On the one hand, the by
far best performing approach on the proxy task
also performed best for parsing, on the other hand
cbow performed worse than GloVe in the parsing
task despite performing better in the proxy task.
This indicates that there is helpful information
encoded that is not captured by the proxy task,
but which interestingly can not be realized when
parsing with full gold-standard morphological
annotation.

Code and data for this work is available under
http://arne.chark.eu/repeval2016.
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