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Abstract

This paper aims to re-think the role of the
word similarity task in distributional se-
mantics research. We argue while it is a
valuable tool, it should be used with care
because it provides only an approximate
measure of the quality of a distributional
model. Word similarity evaluations as-
sume there exists a single notion of sim-
ilarity that is independent of a particular
application. Further, the small size and
low inter-annotator agreement of existing
data sets makes it challenging to find sig-
nificant differences between models.

1 Introduction

Distributional models of lexical semantics have re-
cently attracted considerable interest in the NLP
community. With the increase in popularity, the
issue of evaluation is becoming more important.
While extrinsic (task-based) evaluations are in-
creasingly common, the most frequently used fam-
ily of evaluation procedures (intrinsic evaluations)
attempt to directly measure the “inherent” qual-
ity of a word representation. This often takes the
form of computing the extent to which a model
agrees with human-provided word or phrase simi-
larity scores.

This paper highlights the theoretical and prac-
tical issues with the word similarity task, which
make it a poor measure of the quality of a dis-
tributional model. We investigate five commonly
used word similarity datasets, RG (Rubenstein
and Goodenough, 1965), MC (Miller and Charles,
1991), ws353 (Finkelstein et al., 2001), MEN
(Bruni et al., 2014) and SimLex (Hill et al.,
2015). Our contributions are as follows. We ar-
gue that the notion of lexical similarity is diffi-
cult to define outside of the context of a task and
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without conflating different concepts such as “sim-
ilarity” or “relatedness”. We show inter-annotator
agreement at the word similarity task is consider-
ably lower compared to other tasks such as docu-
ment classification or textual entailment. Further-
more, we demonstrate that the quality of a model,
as measured by a given word similarity data set,
can vary substantially because of the small size
of the data set. Lastly, we introduce a simple
sanity check for word similarity data sets that
tests whether a data set is able to reliably iden-
tify corrupted word vectors. These findings can
be adopted as guidelines for designers of eval-
uation data sets. The code for our experiments
is available at github.com/mbatchkarov/
repeval2016.

2 Definition of Similarity

The notion of similarity is challenging to define
precisely. Existing word similarity data sets typ-
ically contain a broad range of semantic rela-
tions such as synonymy, antonymy, hypernymy,
co-hypernymy, meronymy and topical relatedness.
Earlier word similarity work such as WS353 does
not attempt to differentiate between those. In con-
trast, more recent work such as MEN and SimLex
distinguishes between “similarity” and “related-
ness” and provide human annotators with more
specific instructions as to what makes words simi-
lar.

However, all data sets considered in this pa-
per assume that there exists a single gold-standard
score for each pair of words, which can vary con-
siderably across data sets, depending on what no-
tion of similarity is used. For example, the pair
“chicken-rice” has a normalised score of 0.14 in
SimLex and 0.68 in MEN, while “man—woman”
scores 0.33 and 0.84 respectively.

We argue that every downstream application de-
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fines its own kind of similarity. Words are there-
fore not inherently similar or dissimilar. For exam-
ple, “good acting” and “cluttered set” are highly
dissimilar in terms of the sentiment they express
towards a theatrical play. However, they are very
similar in the context of detecting news items re-
lated to the theatre, as both phrases are highly in-
dicative of theatre-related content. It is often un-
clear what kind of similarity is useful for a down-
stream problem in advance. Indeed, it has been
shown that being able to learn the notion defined
by a particular word similarity task does not nec-
essarily translate to superior extrinsic performance
(Schnabel et al., 2015). This argument parallels
that of von Luxburg et al. (2012, p 2), who argue
that “[d]epending on the use to which a clustering
is to be put, the same clustering can either be help-
ful or useless”. The quality of an unsupervised al-
gorithm can therefore only be assessed in the con-
text of an application.

3 Subjectivity and task difficultly

When human judges annotate word pairs for simi-
larity, the distinctions in meaning they are asked
to make are often very subtle, especially in the
absence of context. For instance, the normalised
similarity scores provided by 13 annotators for the
pair “tiger—cat” range from 0.5 to 0.9 in WS353.
This results in low inter-annotator agreement even
between native speakers. This section analyses the
variation in similarity scores produced by different
annotators, and compares the agreement score for
the first 13 annotators of WS353 and the two au-
thors of MEN to typical agreements reported in the
NLP literature for tasks such as document classifi-
cation and textual entailment.

Figure 1 shows a kernel density estimate of the
distribution of similarity scores between judges for
MEN and WS353'. Both data sets exhibit unde-
sirable characteristics. The distribution of scores
assigned by both judges in MEN appears to be
bimodal, which suggests that the annotators are
operating on a three-point scale rather than on
a seven-point one. There is also a significant
amount of variation—the similarity assigned to a
word pair exceeds two points (out of seven) in
313 cases® (10.4%) and can vary by as many as
six points. WS353 exhibits a strong bias towards

"The other data sets used in this study do not provide the
annotations of each individual subject.
MEN contains a total of 3000 annotated pairs.
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Figure 1: Distribution of similarity scores between
annotators

high-similarity word pairs. However, individual
judges exhibit a bias towards similarity scores in
the middle of the spectrum. Variance is also high
— 535 individual annotations (10.3% of all cases)
for a given word pair differ by more than two
points (out of ten) from the mean score for that
pair’.

It is not possible to compare inter-annotator
agreement scores for word similarity and other
natural-language labelling tasks directly. Labels
in the former are on an ordinal scale, so agree-
ment is measured using Spearman’s rho (p). In
contrast, the labels in other tasks are often categor-
ical; agreement is typically measured using Co-
hen’s kappa (k). To address this issue, we convert
word similarity scores to discrete labels by placing
the continuous scores into equally sized bins. For
example, the range of similarity scores in WS353

3Wws353 contains 353 unique word pairs annotated by at

least 13 judges for a total of 5189 (word pair, annotation)
units.



is [0,10], and the bin boundaries are at [0, 5, 10]
when using two bins and at [0,3.33,6.66, 10]
when using three bins. The three-item continuous
labelling [2.1,5.8,7.9] is converted to [A, B, B|
when using two bins and to [A4, B, C| when using
three bins.

This conversion process suffers from two draw-
backs. First, order information is lost, so misplac-
ing an item in bin A instead of in bin B is consid-
ered as severe an error as misplacing an item from
bin A into bin F. This is less of an issue when
the bin count is small. Second, the number of bins
is a free parameter ranging between 1 (all items
in the same bin) and 7 or 10 (all items in original
bins)*. & is a decreasing function of the number
of bins because it becomes harder for annotators
to agree when there is a large number of bins to
choose from. This analysis is agnostic as to how
many bins should be used. We experiment with
values between 2 and 5.

The inter-annotator agreement of WS353 and
MEN (converted to Cohen’s x) is shown in Fig-
ure 2. Because « is only applicable when there
are exactly two annotators, we report an aver-
age r over all pairwise comparisons®. A s score
can be computed between each of the 91 pairs of
judges (“WS353-P”), or between each judge and
the mean across all judges (“WS353-M”) (as in
Hill et al. (2015, Section 2.3)). Mean agreement
ranges from x = 0.21 to k = 0.62.

For comparison, Kim and Hovy (2004) report
x = 0.91 for a binary sentiment task. Gamon
et al. (2005) report a x of 0.7-0.8 for a three-
way sentiment task. Wilson et al. (2005) report
r = 0.72 for a four-class short expressions senti-
ment task, rising to x = 0.84 if phrases marked as
“unsure” are removed. McCormick et al. (2008)
report £ = 0.84 for a five-way text classification
task. Stolcke et al. (2000) report « = 0.8 for a
42-label dialogue act tagging task. Toledo et al.
(2012) achieve x = 0.7 for a textual entailment
task, and Sammons et al. (2010) report £ = 0.8 to
+ = 1 for a domain identification task. All these
scores are considerably higher than those achieved
by WS353 and MEN.

*ws353 was annotated on a ten-point scale, whereas MEN
used a seven-point scale.

> Averaging is only needed for WS353, which has been
annotated by (at least) 13 judges. MEN only provides full
annotations for two judges.
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Figure 2: Inter-annotator agreement of WS353,
measured in Cohen’s x. Shaded region shows the
mean and one standard deviation around it. A stan-
dard deviation is not shown for MEN as only the
annotation of a single pair of raters are available.

4 Size of data set

Another issue with existing word similarity data
sets is their small size. This ranges from 30
to 3000 data points (Miller and Charles, 1991;
Rubenstein and Goodenough, 1965; Landauer and
Dumais, 1997; Finkelstein et al., 2001; Hill et al.,
2015; Huang et al., 2012; Luong et al., 2013;
Bruni et al., 2014). Moreover, they only feature a
“tidy” subset of all naturally occurring words, free
of spelling variation, domain-specific terminology
and named entities. The focus is predominantly
on relatively high-frequency words, so the quality
of the model cannot be quantified fully. In con-
trast, typical distributional models “in the wild”
have a vocabulary of tens or hundreds of thousands
of types.

For practical applications, users need to under-
stand the entire distributional model, not just the
small fraction of it covered by an intrinsic eval-
uation. A side effect of using small evaluation
data sets is that the measured correlation scores
may vary significantly. However, variance is sel-
dom reported in the literature. To quantify it,
we train a word2vec model (Mikolov et al.,
2013) on a mid-2011 copy of English Wikipedia.
We use the CBOW objective with negative sam-
pling and a window size of 5, as implemented in
gensim (lv{ehﬁfek and Sojka, 2010). The model
is evaluated on five word similarity data sets—
MC, RG, WS353, SimLex and MEN. We compute
the empirical distribution of correlation with hu-
man scores by bootstrapping. Each data set is re-
sampled 500 times with replacement. The distri-



butional model is evaluated on each sample (Efron
and Tibshirani, 1994). Results are shown in Table
la. We also evaluate a baseline model that repre-
sents words as completely random vectors, sam-
pled from continuous uniform distribution 2/(0, 1)
(Table 1b).

Dataset Mean Std Min Max Size
MC 071 0.12 029 0095 30
RG 0.72 0.06 0.50 0.87 65
WS353 064 004 053 0.75 353
SimLex 0.31 0.03 023 039 999
MEN 0.67 001 064 0.70 3000
(a) word2vec vectors
Dataset Mean Std Min Max Size
MC -0.01 0.19 -0.53 0.55 30
RG 0.08 0.11 -028 041 65
WS353 -0.08 0.05 -0.24 0.10 353
SimLex 0.01 0.03 -0.09 0.12 999
MEN -0.02 0.02 -0.08 0.04 3000
(b) Random vectors
Table 1: Distribution of Spearman p between

model predictions and gold standard data set.

The mean correlation is in line with values re-
ported in the literature. However, standard de-
viation is strongly dependent on the size of the
gold-standard data set. Even for MEN, which is
the largest word similarity data set in this study,
the measured correlation varies as much as 0.06.
However, this fact is not often addressed in the lit-
erature. For instance, the difference between the
recently proposed Swivel (Shazeer et al., 2016)
and word2vec with negative sampling is less
than 0.02 on WS353, SimLex and MEN. Table 1
suggests that these differences may well not be sta-
tistically significant.

S Sensitivity to noise

In this section we propose a simple sanity check
for word similarity data sets, which we suggest is
used periodically while developing a data set. It
is based on the requirement that for a given eval-
uation method, good word representations should
perform measurably better than poor ones. One
method of reliably generating poor word vectors
is to start with a distributional model and decrease
its quality by adding random noise. The evalua-
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tion framework should be able to detect the dif-
ference between the original and corrupted mod-
els. Model performance, as measured by the eval-
uation method, should be a monotonically de-
creasing function of the amount of noise added.
In the extreme case, a completely random dis-
tributional model should achieve a correlation of
zero with the human-provided intrinsic similarity
scores (Table 1b).

Figure 3 shows an application of our proposal
to MC, RG and MEN. We add uniform random noise
U(—n,n) to all elements of all word vectors from
Section 4, where n € [0,3]. This is a consider-
able perturbation as the word vectors used have
have a mean L2 norm of 2.4. RG and MC do not
sufficiently capture the degradation of vector qual-
ity as noise is added because p may increase with
n. The variance of the measurements is also very
high. Both datasets therefore fail the sanity check.
MEN’s performance is considerably better, with
smaller standard deviation and correlation tending
to zero as noise is added. WS353 and SimLex
exhibit similar behaviour to MEN, but have higher
variance.

1.0
Dataset
MC

— RG
—— MEN

0.5

0.0

Spearman p

Noise parameter (n)

Figure 3: Word similarity noise test. Shaded
region shows one standard deviation around the
mean, which is estimated via bootstrapping.

6 Conclusion

This paper showed the word similarity task is con-
siderably more challenging for annotators than ex-
trinsic tasks such as document classification. Fur-
ther, the small size of existing word similarity data
sets results in high variance, making it difficult to
reliably differentiate between models. More fun-
damentally, the task assumes there exists a single
similarity score between a pair of words which is
independent of a particular application. These re-
sults challenge the value of intrinsic data sets as



a gold standard. We argue that word similarity
still has a place in NLP, but researchers should
be aware of its limitations. We view the task as
a computationally efficient approximate measure
of model quality, which can be useful in the early
stage of model development. However, research
should place less emphasis on word similarity per-
formance and more on extrinsic results such as
(Batchkarov, 2015; Huang and Yates, 2009; Mi-
lajevs et al., 2014; Schnabel et al., 2015; Turian
et al., 2010; Weston et al., 2015).
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