
Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 51–59,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Data-Driven Spelling Correction using Weighted Finite-State Methods

Miikka Silfverberga Pekka Kauppinenb Krister Lindénb

Department of Modern Languages, University of Helsinki
ampsilfve@iki.fi, bfirstname.lastname@helsinki.fi

Abstract

This paper presents two systems for
spelling correction formulated as a se-
quence labeling task. One of the systems
is an unstructured classifier and the other
one is structured. Both systems are imple-
mented using weighted finite-state meth-
ods. The structured system delivers state-
of-the-art results on the task of tweet nor-
malization when compared with the recent
AliSeTra system introduced by Eger et al.
(2016) even though the system presented
in the paper is simpler than AliSeTra be-
cause it does not include a model for input
segmentation. In addition to experiments
on tweet normalization, we present exper-
iments on OCR post-processing using an
Early Modern Finnish corpus of OCR pro-
cessed newspaper text.

1 Introduction

Spelling correction is one of the most widely ap-
plied language technological utilities. The most
obvious application of spelling correction is as
a writer’s aid. However, many natural lan-
guage processing applications can also benefit
from a spelling correction component. For ex-
ample, many existing NLP systems are trained on
newswire which tends to closely adhere to ortho-
graphical and grammatical norms. These systems
may incur a substantial hit in performance when
they are applied to noisy domains like social me-
dia. When spelling correction is applied as a pre-
processing step, performance can be better. Dig-
itization of documents is another domain where
spelling correction is useful. Digitization often
aims to transform physical documents into digi-
tal representations which support free text search.
This requires the use of an optical character recog-

input A m . c
output A nn ε e

Figure 1: Post-editing as sequence labeling. The
input to the post-editor is ”Am.c” and the correct
output is ”Anne”. This representation corresponds
to the 1-to-n alignment of Bisani and Ney (2008)
because each input symbol is associated with a
possibly empty sequence of outputs.

nition (OCR) engine. Depending on the quality of
the engine and source documents, this can succeed
to varying degrees. Spelling correction can be ap-
plied as a post-processing step in order to improve
quality.

Spelling correction is an instance of the more
general task of string-to-string translation. In
spelling correction, the objective is to transform
a possibly erroneous input string, for example
a misspelling or OCR error, into a correct out-
put string. Like many string-to-string translation
tasks, spelling correction can be formulated as se-
quence labeling: the correction system receives a
string of input symbols and associates each input
symbol with a (possibly empty) sequence of out-
put symbols as shown in Figure 1. The input to the
correction system can represent a line of text or an
isolated word. We will only consider the case of
isolated word correction in the present work.

This paper presents two models for supervised
spelling correction. Both treat the task as sequence
labeling but one of the models is structured and the
other one is unstructured. Both systems are imple-
mented as finite-state machines and are trained on
data consisting of word pairs aligned at character
level.

Our unstructured model is a finite-state trans-
ducer compiled from a set of weighted context-
sensitive replace rules that are used to generate

51

correction candidates from input strings. These
substitutions and their contexts are extracted from
training data. This approach was first presented by
Lindén (2006) for generating multilingual spelling
variants of scientific and medical terms originating
from Latin and Greek, but it also suitable for other
tasks involving probabilistic string-to-string trans-
lation.

Our structured model is an averaged perceptron
tagger. We represent the classifier as a composi-
tion of two weighted finite-state machines which
incorporate the unstructured and structured fea-
tures and parameters of the tagger. When these are
combined with an input string, the resulting finite-
state machine encodes all correction candidates
with their respective weights assigned by the tag-
ger. The finite-state implementation allows us to
extract a given amount of the best scoring correc-
tion candidates using well-known and efficient al-
gorithms that are widely available. The finite-state
implementation also allows for restricting candi-
dates to those found in a dictionary.

The paper is structured in the following way.
Section 2 presents earlier approaches to spelling
correction and the more general task of string-to-
string translation. In Section 3, we present the un-
structured and structured models used for spelling
correction. In Section 4, we present the features
utilized by the correction systems and in Section 5,
we show how the systems can be implemented us-
ing finite-state methods. In Section 6, we present
the data sets used in the experiments and in Sec-
tion 7, we present the experimental setup of the
paper and the results of the experiments. Finally,
we discuss the results in Section 8 and conclude
the paper in Section 9.

2 Related Work

Spelling correction is an old NLP task. The earli-
est approaches used plain edit distance combined
with a lexicon. The edit distance approach was
refined by Brill and Moore (2000) who added
weights for edit operations. These systems ig-
nored the context of the edit operation, which can
nevertheless be quite useful.

Dreyer et al. (2008) investigate string-to-string
translation which is a more general task than
spelling correction. In order to incorporate symbol
contexts into their models, they formulate string-
to-string translation as a sequence labeling task.
Their sequence labeling model is discriminative

and the alignment between the input and output
string is a latent variable. Dreyer et al. (2008) im-
plement their model as a finite-state machine. This
model is similar to ours but we do not treat the
alignment between input and output strings as a
latent variable. Instead, the training data for our
model is aligned in advance.

Another interesting approach is presented by
Xu et al. (2014) who learn a number of weighted
rewrite rules from data. They use a log linear
model to combine the rules and treat the alignment
of the input and output forms as a latent variable
like Dreyer et al. (2008). This system is reminis-
cent of ours because we also implement our two
systems using rewrite rules. However, again, we
do not treat the alignment of the input and output
strings as a hidden variable.

Hulden and Francom (2013) compare two FST
based methods for Spanish-language tweet nor-
malization. The first method relies on a hierarchi-
cally arranged set of unweighted context-sensitive
replace rules, while their other approach utilizes
a noisy-channel FST model on the input string.
These operations and their weights are extracted
from the training data set. The authors report a
somewhat better performance for the unweighted
rule-based method, with a final accuracy of 60 %,
but note that there is no theoretical obstacle that
would prevent the inclusion of contexts in the
weighted model.

Han and Baldwin (2011) present a method
for recognizing and correcting out-of-vocabulary
words in tweets and SMSs. They perform a set of
normalization processes to the input word to make
the relationship between the incorrect form and the
correct form more transparent and generate a set
of candidates within a certain edit distance. In ad-
dition to comparing orthographic forms, they also
consider the phonetic realization of the input word
and find correction candidates whose pronuncia-
tion is within a certain edit distance from the pro-
nunciation of the input word.

In recent work, Eger et al. (2016) survey four
systems for string-to-string translation on spelling
correction of Tweets and normalization of histor-
ical Latin text. (1) The Sequitur system (Bisani
and Ney, 2008) implements a joint generative
model on input and output strings using gra-
phones, which are units consisting of one input
symbol and a possibly empty sequence of output
symbols. (2) The DirecTL+ (Jiampojamarn et al.,

52

2010) represents the translation task as a pipeline
of a string segmentation system, which splits the
input string into character sequences, and a dis-
criminative sequence labeling system which trans-
lates the character sequences into output symbols.
DirecTL+ utilizes joint character n-grams in the
discriminative sequence labeling system. (3) The
AliSeTra system is based on the work of Eger
(2012). Like DirecTL+, it also views string-to-
string translation as a pipeline of segmentation
and sequence labeling. (4) The final system sur-
veyed by Eger et al. (2016) represents the string-
to-string translation task as a series of contex-
tual edit operations on the input string (Cotterell
et al., 2015). The operations are compiled into
a weighted finite-state machine. The edit oper-
ations are weighted using a probabilistic model
which resembles the maximum entropy Markov
model (MEMM) (McCallum et al., 2000). This
system is similar to our structured system but we
use a different feature set and estimate weights us-
ing the average perceptron algorithm. This avoids
the well-known label bias problem (Lafferty et al.,
2001) associated with MEMMs.

Systems 1, 2 and 3 surveyed by Eger et al.
(2016) form an interesting contrast to our systems
because we do not use segmentation of the input
string. In this sense, our system is simpler.

Eger et al. (2016) present experiments on
spelling correction both for the individual systems
discussed in the paper and also various combi-
nations of the systems. The AliSeTra system is
shown to give the best performance of all indi-
vidual surveyed systems on both Twitter data and
historical Latin. We also present experiments on
the Twitter data used by Eger et al. (2016) and
show that our structured system delivers at least
the same level of performance as the AliSeTra sys-
tem.

3 Models

In the following, we present the unstructured and
structured models used for spelling correction.
Both models express the probability p(y|x) of a
normalization sequence y = (y1, ..., yT) given an
input sequence x = (x1, ..., xT).

The input sequence x and output sequence y are
formally required to have the same length. In prac-
tice, each element of y can, however, consist of a
number of characters. This allows modeling of in-
sertions and deletions. For example in Figure 1,

the input sequence is (A, m, ., c) and the output
sequence is (A, nn, ε, e). This corresponds to a
deletion . → ε and a substitution m → nn. The
model cannot directly express the substitution of
two consecutive input symbols with one output,
for example nn → m. This can, however, be ex-
pressed indirectly using a deletion and subsequent
substitution as in n→ ε and n→ m.

The parameters of the models are estimated in a
supervised manner using training data consisting
of pairs of input and output strings. In order to
accelerate training, we use aligned training data
(consisting of symbol pairs) instead of treating the
alignment of input and output strings as a latent
variable.

3.1 Unstructured Classifier
This classifier represents the conditional proba-
bility p(y|x) of a normalization y = (y1, ..., yT)
given an input x = (x1, ..., xT) in an unstructured
manner, that is

p(y|x) =
T∏

t=1

p(yt|x, t)

This corresponds to making the assumption that
output symbols yt and yu (t 6= u) are independent
given the input x.

To determine the probabilities p(yt, |x, t), we
first map each input position (x, t) to a context
L � xt � R, where L and R are regular languages,
and the input position (x, t) matches L � xt � R,
that is

x1 ... xt−1 � xt � xt+1 ... xT ∈ L � xt �R.

The � symbol is a special symbol which does not
occur in any input string or output string.

We then define

p(yt|x, t) = p(yt|L � xt �R)

where the probability p(yt|L�xt �R) is estimated
from the training data simply by counting occur-
rences of output symbols z in positions which
match L � xt �R. More precisely,

p(z|L � xt �R) =

|{(x, t) matches L � xt �R and yt = z}|
|{(x, t) matches L � xt �R}|

Every input position encountered during test
time should be mapped to a unique context. There-
fore, the collection of contexts L�xt �R is chosen

53

in such a way that it forms a partition of Σ∗�Σ�Σ∗,
where Σ is the set of all input symbols. In Sec-
tion 4, we give a more detailed explanation of how
these contexts are chosen.

3.2 Peceptron Tagger
Our structured spelling correction system is for-
mulated as a traditional averaged perceptron tag-
ger (Collins, 2002) as shown in Equation 1. Given
an input sequence x of length T , the model assigns
a score s(·) for each output sequence y of length
T as determined by the model parametersw and a
vector valued feature extraction function φ. The n
best normalization candidates given by the system
can be extracted by finding the n highest scoring
outputs y.

s(x, y;w) =
T∑

t=1

w · φ(yt−2, yt−1, yt, x, t) (1)

The labels y−1 and y0 required for Equation 1 are
word boundary symbols.

4 System Specification

This section presents the contexts used for the un-
structured correction system and the features used
by the structured correction system.

4.1 Contexts for the Unstructured Classifier
As explained in Section 3.1, the unstructured nor-
malization model maps each input position (x, t)
to a context L � xt � R. These contexts form a
partition of Σ∗ � Σ � Σ∗.

The inventory of contexts is controlled by
hyper-parameters which are determined using
held-out data: nTH which is a minimum number
of context occurrences in the training data. An-
other parameter is lC which is the length of the
maximal right-hand context. We have set the value
of lC as 2 based on preliminary experiments.

If xt−1xtxt+1...xt+lC occurs at least nTH times
in the training data,

Σ∗xt−1 � xt � xt+1...xt+lC Σ∗

is chosen as context. If it occurs fewer times, each
of the sub-strings xt−1xtxt+1...xt+k, where 0 ≤
k < nC is considered in turn. The longest one
that occurs at least nTH times in the training data
is used to define a context. If none of them occur
more than nTH times, the single symbol xt is used
to define the context.

For each context L�xt�R, we include a number
of back-off contexts. For example, let Σ∗a � xt �
b c Σ∗ be a context, then back-off contexts are the
following contexts.

Σ∗ a � xt � b Σ∗

Σ∗ a � xt � Σ∗

Σ∗ � xt � Σ∗

In order to ensure that no two contexts overlap, we
need to modify the contexts slightly:

Σ∗ a � xt � b [Σ− c] Σ∗

Σ∗ a � xt � [Σ− b] Σ∗

Σ∗ [Σ− a] � xt � Σ∗

4.2 Features for the Perceptron Tagger
The structured correction system extracts unstruc-
tured and structured features from the input and
output context of letters. Unstructured features
associate the output in a single position with let-
ters in the input. In contrast, structured features
associate output letters with each other. Given
an input string x = (x1, ..., xT) and an output
string y = (y1, ..., yT), the unstructured features
extracted at position t are

1. (xt, yt)

2. (xt−1, xt, yt) and (xt, xt+1, yt)

3. (xt−3, xt−2, xt−1, yt), (xt−2, xt−1, xt, yt),
(xt−1, xt, xt+1, yt), (xt, xt+1, xt+1, yt) and
(xt+1, xt+2, xt+3, yt)

In addition, we extract the structured features

1. (yt)

2. (yt−1, yt)

3. (yt−2, yt−1, yt)

The unstructured features are aimed at capturing
the context of edit operations. Meanwhile, the
structured features act as a language model.

5 Implementation

This section describes the finite-state implemen-
tation of our correction systems as weighted re-
place rules (Mohri and Sproat, 1996). Formally,
the systems can be seen as sets of weighted par-
allel replace rules. As explained below, we how-
ever implement them using a cascade of weighted
rules for efficiency reasons. This section will also
describe the combination of replace rules and lex-
icon which is used in some of the experiments.

54

5.1 Weighted Parallel Replace Rules
Consider the following rule in XFST syntax
(Beesley and Karttunen, 2003)

u→ ε::0.05 || u

The rule matches in a context where the input
contains two consecutive symbols u, deletes the
second of them and assigns a penalty weight of
0.05 ≈ − log(0.95). The HFST library (Lindén et
al., 2011) implements these weighted rules.

The unstructured system described in Section
3.1 uses a set of mutually exclusive features as
explained in Section 4.1. Conceptually, the sys-
tem can therefore be seen as a set of parallel re-
place rules (Kempe and Karttunen, 1996) acting
on the same input strings. Although this formula-
tion is theoretically pleasing and weighted paral-
lel replace rules are available through the HFST
interface (Lindén et al., 2011), preliminary ex-
periments revealed that compilation of the system
represented using parallel replace rules is slow in
presence of training data of realistic scope. How-
ever, the subset of parallel replace rules needed in
our two systems can be reformulated as normal
replace rules to take advantage of a sequence of
compose operations eliminating the speed issue in
practice, see Section 5.3.

5.2 Unstructured Rules
The formulation of the substitutions and the con-
texts as explained in 4.1 as parallel replace rules is
fairly straightforward. For instance, the substitu-
tion xt with z in the context Σ∗a � xt � b c Σ∗ is
accomplished by the rule

xt → z::w ‖ a b c

Rules are assigned log weights which correspond
to the probabilities p of the substitutions they ex-
press, i.e. w = −log(p).

As explained in 5.1, rules are formulated as mu-
tually exclusive by supplementing the contexts of
the backoff rules with a negative expression con-
taining the non-overlapping parts from the higher-
order rule. This expression effectively blocks the
lower-order rule if a higher-order rule can be ap-
plied instead. For instance, if the rule set contains
the higher-order rule

x→ z::0.4 ‖ x y z

and a backoff rule

a→ b::0.2 ‖ x y

the latter is rewritten as

a→ b::0.2 ‖ x y [? − z]

Note that deletions and insertions are treated
here as ordinary substitutions, and the empty
string ε is thus treated like any other symbol. The
weights for insertions such as ε → a and non-
insertions (ε → ε) are estimated accordingly. The
sole exception to this are context-free insertions
that, unlike other context-free substitutions, are
disallowed altoghether.

5.3 Cascaded Weighted Rewrite Rules
In order to avoid the slow compilation of gen-
eral parallel replace rules, we can reformulate the
problem using a cascade of replace rules. In or-
der to maintain the correct semantics of the sys-
tem in a cascaded setting, we formulate the input
and output in such a way that rules no longer per-
form translation of the input string. Instead the in-
put already encodes all possible outputs and rules
simply assign weights to alternative output can-
didates. In practice, we represent inputs as se-
quences of pairs separated1 by a special symbol
• which is neither an input nor a potential output
symbol. Let us look at the following regular ex-
pression in Xerox syntax:

• # # • t [t|th|O] • e [e|c|O] • # # •
The • symbol unambiguously outlines the se-
quence of input and output symbol pairs. The
first pair of the sequence contains the word bound-
ary symbols #. Before feature extraction, we pad
the aligned strings with this auxiliary symbol in
order to formulate correspondences occurring in
string-inital and and string-final positions.The sec-
ond pair of the sequence contains an input symbol
t and a set of potential output symbols, of which
the O symbol denotes a deletion.

Using this representation, rules can be reformu-
lated as weighting expressions. For example, the
rule

O→ O::0.05 || t ? • e •
assigns a penalty of 0.05 to a deletion of the sec-
ond of the input symbols in our example above.

Features are composed into a weighted trans-
ducer W . Given an input I in the format presented
above, an n-best algorithm (Allauzen et al., 2007)
can extract the best scoring paths of I ◦W , from
which the output strings are extracted.

1The inventory of pairs is extracted from the training data

55

5.4 Structured Rules

The structured classifier uses both unstructured
and structured features. As seen above, un-
structured features can be compiled into replace
rules. Structured features can also be formulated
as rules. For example, the following rule assigns a
penalty to the output sequence ”thh”:

h→ h:: −33126 || ? t • ? h • ? •

Both the unstructured and the structured sys-
tems apply rules in the same way. Unstructured
and structured features are composed respectively
giving us two weighted transducers U and S.
Given an input I in the format presented above,
we extract the best scoring paths from I ◦ U ◦ S.

5.5 Minimization of Transducers with
Weights in the Tropical Semiring

We use finite-state machines with weights in the
tropical weight semiring as defined by Allauzen et
al. (2007). Because we use a series of composi-
tions spanning several thousands of rule transduc-
ers for compiling the unstructured and structured
feature transducers U and S, efficient determiniza-
tion and minimization algorithms are crucial.

The minimization algorithm presented by
Mohri and Sproat (1996) is available through
the HFST interface and applicable to transduc-
ers with tropical weights where the weights are
non-negative. Unfortunately, the structured cor-
rection system incorporates both positive and neg-
ative weights.

One solution to this problem is provided by Eis-
ner (2003) who introduces a more general for-
mulation of transducer minimization which is ap-
plicable to transducers with tropical weights in
the entire range R ∪ {∞,−∞} and many other
weight classes as well. We have, however, re-
sorted to a simpler approach which is applicable
in the special case of tropical weights. After ep-
silon removal and determinization but before min-
imization, we traverse the transitions and the final
state of the transducer M once and find the min-
imal weight wmin. Subsequently, we increment
all transition and final weights in transducer M
by |wmin| which results in a transducer M+ with
non-negative weights.

Let wM(p) be the weight assigned by transducer
M to path p. It is easy to see that wM+(p) =
wM(p) + |p| · |wmin|, where |p| is the length of p.

We then apply conventional minimization result-
ing in a machine N+. Subsequently, we subtract
the weight |wmin| from each transition in N+ re-
sulting in a machine N . As long as M does not
contain any epsilon transitions, the length of each
path p must be preserved by minimization. There-
fore the total weight of each path p

wN (p) = wM (p) + |p| · |wmin| − |p| · |wmin|
= wM (p)

is also preserved. Consequently, the minimized
machine accepts the same weighted relation as the
original machine.

5.6 Using a Lexicon
Some of our experiments utilize a lexicon. Pre-
liminary experiments indicated that the lexicon
should be combined in different ways with the un-
structured and structured system.

When using a lexicon, the unstructured system
returns the highest scoring correction candidate
which is found in the lexicon. If none of the candi-
dates are found in the lexicon, the system returns
the input form. In the unstructured system, the
task of an ouput language model is carried by the
lexicon alone.

The structured system extracts the N highest
scoring correction candidates and returns the high-
est scoring one of these that is found in the lexi-
con. If none of the candidates are found in the lex-
icon, the system returns the highest scoring can-
didate, which is plausible when part of the ouput
language model is encoded by the structured fea-
tures assuming that the lexicon is incomplete. This
setup was also used by Eger et al. (2016).

6 Data and Resources

We perform experiments on two data sets: a col-
lection of twitter spelling errors2 used by Eger et
al. (2016) and a corpus of Early Modern Finnish
scanned texts that have been processed using an
OCR engine. The data sets differ in the sense that
the Twitter data contains only spelling errors but
the Early Modern Finnish corpus contains a large
number of correctly recognized forms in addition
to OCR errors. Following Eger et al. (2016), we
use only the first 5000 word pairs from the Twitter
data set.

Both data sets consist of word pairs where the
first word is the original word and the second one

2Available from http://luululu.com/tweet/.

56

is its normalization. As our systems are trained on
aligned data, we used the grapheme to phoneme
translation system Phonetisaurus (Novak et al.,
2016) to align input and output strings used for
training.

The Finnish data used in our experiments con-
stitutes a part of a larger corpus of historical news-
papers and magazines (KLK) that has been digi-
tized by the National Library of Finland. Some
of this digitized material has been manually cor-
rected and edited at the Institute for the Languages
of Finland. Further correction has been carried out
via crowd-sourcing. Our data set consists of run-
ning text extracted from the OCR processed 19th-
century publications for which manually edited
material is available and comprises roughly 40 000
OCR processed word pairs.

We perform tenfold cross-validation on both
data sets. We divide the data sets into ten non-
overlapping parts D1, ..., D10 in the following
way. For each consecutive ten word pairs (starting
with the first), we assign the pair at position i to set
Di. We then form ten training, development and
test sets. The test set Ei is Di. The development
set Ui is Ti−1 when i > 1 and T10 when i = 1.
The training set Ti consists of the remaining par-
titions Dj . Hence training set T i, development set
Ui and test set Ei never overlap.

A lexicon is required for some of the exper-
iments. For Twitter data, we use the lexicon
ColLex.EN (Brück et al., 2014) following Eger
et al. (2016), and for the Finnish OCR data, we
use the OMorFi open-source Finnish morphologi-
cal analyzer (Pirinen, 2008).

For the task of correcting text written in Early
Modern Finnish, the OMorFi analyzer had to be
modified slightly to recognize capitalized variants
of all word forms as well as to accept some of
the more archaic spelling variants and vocabulary
found in Early Modern Finnish. We did this by
supplementing the acceptor with word forms ex-
tracted from the KLK corpus whose frequency
equals or exceeds 100. Word forms already ac-
cepted by OMorFi were given precedence.

7 Experiments

We perform experiments on the Twitter data and
Early Modern Finnish OCR data in the same man-
ner. For each data set, we measure the perfor-
mance of the unstructured and structured correc-
tion system using tenfold cross-validation on the

tp Number of erroneous inputs which are
corrected.

fp Number of correct inputs which are
changed to an incorrect output.

fn Number of erroneous input which are
not corrected.

Table 1: Definition of edit types.

data splits presented in Section 6. Our data sets
and code are available online.3

Both of the models presented in the paper incor-
porate hyper-parameters. We first set the hyper-
parameters using development data, then com-
bined the development and training data and use
the combination to train the final system which is
used to process the test data.

The FinnPos tagger toolkit (Silfverberg et al.,
2015) is used to train the models for the structured
system and the HFST Python interface (Lindén
et al., 2011) is used for constructing and operat-
ing finite-state machines. When training FinnPos
models, we used default settings for most hyper-
parameters. Only the number of training epochs
is determined using development data. For exper-
iments using a lexicon, we additionally use devel-
opment data to set the number of top correction
candidates N which are looked up in the lexicon
as explained in Section 5.6. For tweet normaliza-
tion, we use N = 80 and for Finnish OCR post
processing, we use N = 5.

As an evaluation metrics, we use correction rate
(CR) defined as

CR =
tp− fp

tp + fn

where tp, fp and fn are defined in Table 1. Note
that when all input forms are incorrect (as in the
case of the Twitter data), CR corresponds exactly
to the evaluation metric word accuracy (WACC)
used by Eger et al. (2016) because the count fp is
0.

WACC =
tp

tp + fn

7.1 Results
Tables 2 and 3 show the results of the experiments
on the Finnish OCR data and Twitter data. We per-
form tenfold cross-validation and provide t-based
confidence intervals at the 95% level.

3https://github.com/mpsilfve/ocrpp

57

No lexicon (%) Lexicon (%)

UC 48.56± 2.00 57.80± 1.82
AliSeTra 68.38± 1.52 72.98± 2.01
PT 70.14± 1.43 74.66± 1.38

Table 2: Results for tweet normalization. UC
refers to the unstructured classifier presented in
Section 3.1, PT to the perceptron tagger presented
in Section 3.2 and AliSeTra to the system pre-
sented by Eger et al. (2016).

No lexicon (%) Lexicon (%)

UC 20.02± 1.29 21.58± 2.11
PT 32.05± 1.97 35.09± 2.08

Table 3: Results for Finnish historical OCR.

For the Finnish OCR data, the structured per-
ceptron correction system clearly outperforms the
unstructured system both without using a lexicon
and when using a lexicon. The difference in per-
formance is statistically significant in both cases
at the 95% confidence level. Because the AliSe-
Tra system is not freely available, we do not have
results for that system on the Finnish OCR data.

For the Twitter data, both AliSeTra and the
perceptron tagger deliver superior accuracy when
compared with the unstructured system. The av-
erage performance of the perceptron tagger in this
experiment is superior to the performance of the
AliSeTra system as reported by Eger et al. (2016).
The difference in performance is, however, not sta-
tistically significant. It should be noted that the
data splits used in this work differ from the splits
used by Eger et al. (2016).

8 Discussion

The advantage of the unstructured approach is that
relatively little time is required for training the er-
ror model (on the league of ten minutes for our
data sets). The drawback of the unstructured mod-
els used is that they accommodate a very limited
set of features which manifests as comparably low
normalization performance.

The performance of our structured system is at
least equal to recent work of Eger et al. (2016)
on tweet normalization even though our system is
simpler in the sense that we use a 1-to-n mapping
from inputs to outputs whereas Eger et al. (2016)
use an n-to-n alignment between the input and

output. The n-to-n alignment, however, requires
segmentation of the input as a preprocessing step.
This may induce errors which cannot be corrected
later. Treating the segmentation as a latent vari-
able following (Cotterell et al., 2015) could be a
solution but it carries the disadvantage of slow es-
timation and inference.

It should be noted that we use some additional
unstructured features compared with Eger et al.
(2016) which may explain our slight performance
advantage.

9 Conclusions

We have presented two systems for word based
spelling correction using finite-state methods. We
have shown that we reach state-of-the-art results
when compared with a recent system presented by
Eger et al. (2016) on the task of tweet normal-
ization. Additionally, we have presented experi-
ments on the task of OCR post-processing on a
corpus consisting of Early Modern Finnish news-
paper text.

10 Acknowledgments

We wish to thank the anonymous reviewers for
their valuable suggestions.

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-

jciech Skut, and Mehryar Mohri. 2007. Openfst: A
general and efficient weighted finite-state transducer
library. In Proceedings of the 12th International
Conference on Implementation and Application of
Automata, CIAA’07, pages 11–23, Berlin, Heidel-
berg. Springer-Verlag.

Kenneth R. Beesley and Lauri Karttunen. 2003. Fi-
nite State Morphology, volume 3 of CSLI Studies in
Computational Linguistics. CSLI Publications.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech Commun., 50(5):434–451, May.

Eric Brill and Robert C. Moore. 2000. An improved
error model for noisy channel spelling correction.
In Proceedings of the 38th Annual Meeting on As-
sociation for Computational Linguistics, ACL ’00,
pages 286–293, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Tim Vor Der Brück, Alexander Mehler, and Zahurul
Islam. 2014. Collex.en: Automatically generat-
ing and evaluating a full-form lexicon for english.
In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Hrafn Loftsson, Bente

58

Maegaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14), Reykjavik, Ice-
land, may. European Language Resources Associa-
tion (ELRA).

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 Conference on Empirical Methods in
Natural Language Processing - Volume 10, EMNLP
’02, pages 1–8, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. Transactions of the Associ-
ation for Computational Linguistics, 3:433–447.

Markus Dreyer, Jason R. Smith, and Jason Eisner.
2008. Latent-variable modeling of string transduc-
tions with finite-state methods. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’08, pages 1080–
1089, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Steffen Eger, Tim vor der Brck, and Alexander Mehler.
2016. A comparison of four character-level string-
to-string translation models for (ocr) spelling error
correction. The Prague Bulletin of Mathematical
Linguistics, 105:77–99.

Steffen Eger. 2012. S-restricted monotone alignments:
Algorithm, search space, and applications. In Pro-
ceedings of COLING 2012, pages 781–798, Mum-
bai, India, December. The COLING 2012 Organiz-
ing Committee.

Jason Eisner. 2003. Simpler and more general mini-
mization for weighted finite-state automata. In HLT-
NAACL.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a# twitter.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 368–378.
Association for Computational Linguistics.

Mans Hulden and Jerid Francom. 2013. Weighted and
unweighted transducers for tweet normalization. In
Tweet-Norm@ SEPLN, pages 69–72. Citeseer.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2010. Integrating joint n-gram features
into a discriminative training framework. In Human
Language Technologies: Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, Proceedings, June 2-4, 2010, Los
Angeles, California, USA, pages 697–700.

André Kempe and Lauri Karttunen. 1996. Parallel re-
placement in finite state calculus. In Proceedings of
the 16th Conference on Computational Linguistics

- Volume 2, COLING ’96, pages 622–627, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Krister Lindén, Erik Axelson, Sam Hardwick,
Tommi A Pirinen, and Miikka Silfverberg. 2011.
HFSTFramework for Compiling and Applying Mor-
phologies. In Cerstin Mahlow and Michael Pi-
otrowski, editors, Systems and Frameworks for
Computational Morphology, volume 100 of Com-
munications in Computer and Information Science,
pages 67–85. Springer Berlin Heidelberg.

Krister Lindén. 2006. Multilingual modeling of cross-
lingual spelling variants. Inf. Retr., 9(3):295–310,
June.

Andrew McCallum, Dayne Freitag, and Fernando C. N.
Pereira. 2000. Maximum entropy markov mod-
els for information extraction and segmentation. In
Proceedings of the Seventeenth International Con-
ference on Machine Learning, ICML ’00, pages
591–598, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Mehryar Mohri and Richard Sproat. 1996. An effi-
cient compiler for weighted rewrite rules. In Pro-
ceedings of the 34th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 231–238,
Santa Cruz, California, USA, June. Association for
Computational Linguistics.

Josef Robert Novak, Nobuaki Minematsu, and Keikichi
Hirose. 2016. Phonetisaurus: Exploring grapheme-
to-phoneme conversion with joint n-gram models in
the wfst framework. Natural Language Engineer-
ing, FirstView:1–32, 4.

Tommi Pirinen. 2008. Automatic finite state mor-
phological analysis of Finnish language using open
source resources (in Finnish). Master’s thesis, Uni-
versity of Helsinki.

Miikka Silfverberg, Teemu Ruokolainen, Krister
Lindn, and Mikko Kurimo. 2015. Finnpos: an
open-source morphological tagging and lemmatiza-
tion toolkit for finnish. Language Resources and
Evaluation, pages 1–16.

Gu Xu, Hang Li, Ming Zhang, and Ziqi Wang. 2014.
A probabilistic approach to string transformation.
IEEE Transactions on Knowledge and Data Engi-
neering, 26(5):1–1.

59

