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Abstract

This paper presents the contribution of
the Unbabel team to the WMT 2016
Shared Task on Word-Level Translation
Quality Estimation. = We describe our
two submitted systems: (i) UNBABEL-
LINEAR, a feature-rich sequential linear
model with syntactic features, and (ii)
UNBABEL-ENSEMBLE, a stacked combi-
nation of the linear system with three dif-
ferent deep neural networks, mixing feed-
forward, convolutional, and recurrent lay-
ers. Our systems achieved F* x FPAP
scores of 46.29% and 49.52%, respec-
tively, which were the two highest scores
in the challenge.

1 Introduction

Quality estimation is the task of evaluating a trans-
lation system’s quality without access to refer-
ence translations (Specia et al., 2013; Bojar et al.,
2015). This paper describes the contribution of the
Unbabel team to the Shared Task on Word-Level
Quality Estimation (QE Task 2) at the 2016 Con-
ference on Statistical Machine Translation (WMT
2016). The task aims to predict the word-level
quality of English-to-German machine translated
text, by assigning a label of OK or BAD to each
word in the translation.

Our system’s architecture is inspired by the re-
cent QUETCH+ system (Kreutzer et al., 2015),
which achieved top performance in the WMT
2015 Word Level QE task (Bojar et al., 2015).
QUETCH+ predicts the labels of individual words
by combining a linear feature-based classifier with
a feedforward neural network (called QUETCH,
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for QUality Estimation from scraTCH). The linear
classifier is based upon Luong et al. (2014) and
uses the baseline features provided in the shared
task. The QUETCH neural network is a multi-
layer perceptron, which takes as input the embed-
dings of the target words and the aligned source
words, along with their context, and outputs a bi-
nary label for the target word. The combination is
done by stacking the scores of the neural network
and the linear classifier as additional features in
another linear classifier.
Our main contributions are the following:

We replaced the word-level linear classifier in
QUETCH+ by a sentence-level first-order se-
quential model. Our model incorporates rich
features for label unigrams and bigrams, de-
tailed in §2.1-2.2.

We included syntactic features that look
at second-order dependencies between target
words. This is explained in §2.3.

We implemented three different neural systems,
one extension of the original QUETCH model
and two recurrent models with different depth.
These are detailed in §3.1-3.3.

e We ensembled multiple versions of each neural
system for different data shuffles and initializa-
tions as additional features for the linear system,
via a stacking architecture. This is detailed in

§4.

The following external resources were used:
part-of-speech tags and extra syntactic depen-
dency information were obtained with Turbo-
Tagger and TurboParser (Martins et al., 2013),!

"Publicly available on http://www.cs.cmu.edu/
~ark/TurboParser/.
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trained on the Penn Treebank (for English) and on
the version of the German TIGER corpus used in
the SPMRL shared task (Seddah et al., 2014). For
the neural models, we used pre-trained word em-
beddings from Polyglot (Al-Rfou et al., 2013) and
embeddings obtained from a trained neural MT
system (Bahdanau et al., 2014).

2 Linear Sequential Model

Our starting point is a discriminative feature-based
linear sequential model. The input is a tuple z :=
(s,t, A), where s = s1...s)/ is the source sen-
tence, t = 1 ...ty is the translated sentence, and
AC {(mn)|1l <m < M, 1 <n< N}
is a set of word alignments. The goal is to pre-
dict a label sequence y = 1, .. ., yn, where each
y; € {BAD, OK}. This is done as follows:

Y= argm;xx (1)

N+1

N
Zw Sulz,yi) + Z w - (2, Yi, Yi-1),
=1 i=1

where w is a vector of weights, f,(x,y;) are un-
igram features (depending only on a single out-
put label), f(z, y;,y;—1) are bigram features (de-
pending on consecutive output labels), and yq and
YN +1 are special start/stop symbols.

A detailed description of the features used in
our submitted systems is provided below. The
weights for these features are learned by run-
ning 50 epochs of the max-loss MIRA algorithm
(Crammer et al., 2006) with C' = 0.001. The cost
function takes into account mismatches between
predicted and gold labels, with a higher cost on
false positives (cpp = 0.8) and a lower cost on
false negatives (cpy = 0.2), to compensate for
the fact that there are fewer BAD labels than OK
labels in the data. These values were tuned on the
development set.

2.1 Unigram Features

We used the following unigram features, taken
from the baseline features provided by the orga-
nizers (with some slight changes that are detailed
below). Each of the features below is conjoined
with the target label at each position.

e BIAS. A bias feature.

e WORD, LEFTWORD, RIGHTWORD. Lexical
features for the target word in the current, pre-
vious, and next positions.

e SOURCEWORD, SOURCELEFTWORD,
SOURCERIGHTWORD. Lexical features
for the source word aligned to the current
target word, and their left/right neighboring
words in the source sentence; these will all be
NULL if the target word is unaligned. If there
are multiple aligned source words, they are
all concatenated into a single SOURCEWORD
feature, and the contextual features are with
respect to the leftmost and rightmost aligned
source words, respectively.?

o L ARGESTNGRAMLEFT/RIGHT, SOURCE-
LARGESTNGRAMLEFT/RIGHT. The language
model features provided by the shared task
organizers, containing the length of the largest
n-gram on each direction observed in the target
and source language models.’

e POSTAG, SOURCEPOSTAG. Part-of-speech tag
of the current target word, and of the source-
aligned word, both predicted by TurboTagger
(Martins et al., 2013). The latter will be NULL
if the target word is unaligned, and a concate-
nation of POS tags if there are multiple aligned
source words.*

Following Kreutzer et al. (2015), we conjoined
some of the baseline features above as follows.

o WORD+LEFTWORD, WORD+RIGHTWORD.
Bilexical features including the target word in
the current position, conjoined with the previ-
ous/next target word.

e WORD+SOURCEWORD,
POSTAG+SOURCEPOSTAG. Features conjoin-
ing the source and target word/POS tag.

2.2 Bigram Features

We constructed rich bigram features which con-
join the label pair (for each pair of consecutive tar-
get words) with two copies of the features in §2.1:
one copy for the first word in the pair, and another
for the second word in the pair. Furthermore, we
also introduced the following trilexical features:

WORD-
Trilexical features

e WORDPAIR+LEFTWORD,
PAIR+RIGHTWORD.

This is slightly different from the baseline feature pro-
vided by the organizers of the shared task, which consider
the single source word aligned with the highest confidence.

3We did not use the provided backoff language model fea-
tures.

“This differs from the features provided by the organizers
in two ways: the POS tagger is different; and the SOURCE-
POSTAG can have multiple tags for many-to-one alignments.
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including the two target words in the current
position, conjoined with the target word in the
previous and next positions, respectively.

To understand the importance of these enriched
feature sets, we also tried a “simple bigram” model
using only a single indicator feature for the label
pair.

2.3 Syntactic Features

A major novelty in our quality estimation sys-
tem is the usage of syntactic features, which are
useful to detect grammatically incorrect construc-
tions. We used the following syntactic features
based on dependencies predicted by TurboParser
(Martins et al., 2013). With the exception of the
first one, all the syntactic features below were used
for unigrams only.

e DEPREL, WORD+DEPREL. The dependency
relation between the current target word and its
parent, as well as its conjunction with the target
word itself.

o HEADWORD/POSTAG+WORD/POSTAG.
Conjunction of the word/POS tag of the current
target word with the one of its syntactic head.

o LEFTSIBWORD/POSTAG+WORD/POSTAG,
RIGHTSIBWORD/POSTAG+WORD/POSTAG.
Same, but for the closest sibling in the left/right.

o GRANDWORD/POSTAG+HEADWORD/POSTAG
+WORD/POSTAG. Up to bilexical features
involving the grandparent, head, and current
target word/POS tag, including backed off
versions of these features.

2.4 Performance of the Linear System

To help understand the contribution of each group
of features in §2.1-2.3, we evaluated the per-
formance of different variants of the UNBABEL-
LINEAR system on the development set.

The results are shown in Table 1. As expected,
the use of bigrams improves the simple unigram
model, which is similar to the baseline model pro-
vided by the organizers. We can also see that the
rich bigram features have a great impact in the
scores (about 2.6 points above a sequential model
with a single indicator bigram feature), and that
the syntactic features help even further, contribut-
ing another 2.6 points. The net improvement ex-
ceeds 6.5 points over the unigram model.
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Features FFOoP % FpAP
unigrams only 39.27
+simple bigram 40.65
+rich bigrams 43.31
+syntactic 45.94

Table 1: Performance on the dev-set of several
configurations of the UNBABEL-LINEAR system.
The model with simple bigrams has a single BIAS
bigram feature, conjoined with the label pairs.

3 Neural Models

We next describe the three neural models imple-
mented by our team. Five instances of each model
were trained using different data shuffles, follow-
ing the idea of Jean et al. (2015), and also using
random initialization seeds (except for the model
in §3.1). These instances were incorporated to the
stacking architecture as different features, as will
be described in §4. For reporting purposes, the in-
stances of each model were also ensembled with
two strategies: majority voting, where each in-
stance contributes one vote, and averaged proba-
bility, where we average each instance’s predicted
probability of a word being BAD).

3.1 Feedforward Network

Our feedforward network is an adaptation of
QUETCH (Kreutzer et al., 2015). The model clas-
sifies each word as OK/BAD by using each tar-
get language word and the corresponding aligned
word from the source language as input. To in-
crease the context available to the model, the
words at the left and right of each target and source
word are provided as well. Each of the 6 words is
represented by a pre-trained word embedding, and
all are concatenated into a single vector. There is
a single hidden layer, which uses a hyperbolic tan-
gent (tanh) non-linearity. The model is trained
using stochastic gradient descent to maximize the
log-likelihood. During training, the loss function
is weighted to penalize BAD instances in order to
compensate for the asymmetry in OK/BAD labels
in the corpus.

All hyperparameters were tuned on the devel-
opment set. The best performance was attained by
using 64-dimensional Polyglot embeddings (Al-
Rfou et al., 2013), updated during training, and a
hidden layer size of 20. Words with no pre-trained
embeddings were initialized to a vector of zeros
and optimized during training. The BAD weight



was set to 3. Despite its simplicity, this model
provided a good performance when compared to
neural models using no extra features.

In order to adapt to this year’s shared task, sev-
eral improvements were introduced to QUETCH.
Similarly to the linear model, for many-to-one
alignments we included all aligned words in the
source (not just ones), with their corresponding
size one contexts (see footnote 2). To obtain a
fixed size vector, the average over the embed-
dings of each aligned word was used. A sec-
ond improvement was the addition of a convo-
lutional layer spanning 3 words after the hidden
layer. This aimed to expand the local context used
by QUETCH. Finally, a dropout of 20% after the
concatenation of the embeddings was applied. Of
the implemented improvements, dropout had the
largest effect, whereas including all aligned words
brought a small but consistent improvement.

When the five trained instances were ensem-
bled by average probability, this rather simple ap-
proach led to a large improvement in performance,
as shown in Table 2.

Model FPX x FpAP
Single Feed-forward Network (FFN) 41.74
5 FFN Ensemble (Majority Voting) 43.26
5 FFN Ensemble (Average Probability) 43.47

Table 2: Effect of intra-model ensembling of the
feed-forward network reproducing QUETCH.

3.2 Bilingual, Bidirectional Recurrent Model

We also implemented a bidirectional model which
takes target words and their aligned source words
as inputs, and outputs a OK/BAD tag for each tar-
get word. The internal representations of the bidi-
rectional model are then passed to a feedforward
network where the first layer performs a max-
out transformation with two pieces (Goodfellow
et al., 2013). Dropout is applied before multipli-
cation with the maxout layer’s weights. The max-
out layer is followed by two fully-connected layers
with 100 and 50 hidden units, respectively. tanh
is used as the non-linear function between layers.
During development, we validated that this model
improved performance over a vanilla feed-forward
network using the WMT 2015 English-to-Spanish
dataset.

Source and target word embeddings are initial-
ized with embeddings from an English-German
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neural machine translation (NMT) system (Bah-
danau et al., 2014), trained with all data from
the WMT 2015 English-to-German translation
task (Bojar et al., 2015). The vocabulary size is
100,000 for both English and German, and words
in the training data which do not occur in the NMT
vocabulary are mapped to an “unknown” token.
We experimented with tuning the embedding pa-
rameters during training, but found that leaving
them static led to better performance.

Gated Recurrent Units (GRU) are used for the
recurrent transitions (Chung et al., 2015). The
size of the hidden layers is fixed at 500, and the
embedding size is set to 200. Minibatch size is
fixed at 40. Dropout is applied to all feedforward
parameters of the models, but not to the param-
eters of the recurrent transitions. We tested the
impact of /5 regularization, and our best perform-
ing system uses both dropout and ¢ regulariza-
tion.> All recurrent models are optimized using
AdaDelta (Zeiler, 2012). The best model for each
training run was selected using early-stopping ac-
cording to the F}-product score of the model on
the development set. The intra-model ensembling
results are shown in Table 3.

Model FPX x FPAP
Single Model (BBRM) 40.95
5 BBRN (Majority Voting) 41.52
5 BBRN (Average Probability) 41.31

Table 3: Effect of intra-model ensembling of the
Bilingual, Bidirectional Recurrent Model.

3.3 Multi-Feature Convolutional Recurrent
Network

Our second recurrent model uses both recurrent
and convolutional components, along with POS
tags obtained from TurboTagger for both target
and aligned source words. As in §3.2, an entire
sentence is fed at once to the network, which takes
as input the target words and the aligned source
words, both with their respective left and right
contexts, and the POS tags for each target and
source words, both with the two left and two right
tags (i.e., we use a convolution with a window of
size 3 for words and 5 for POS tags). The output
is a sequence of OK/BAD tags for the target words.

The first network’s layer are embeddings for all
the aforementioned inputs: word embeddings are

SPeak performance was obtained with dropout probability
set to 0.5, and /2 regularization coefficient o = 1074



initialized with Polyglot embeddings, as in §3.1,
and tag embeddings of size 50 are initialized ran-
domly. All are further trained along with the other
network parameters. For each input timestep, all
embeddings are concatenated and then passed to
two consecutive feedforward hidden layers with
200 units. A bidirectional GRU layer with 200
units is then applied across all timesteps. The re-
sulting representations are further passed to an-
other feedforward network consisting of two lay-
ers of 200 units, followed by a softmax layer
which classifies a target word as OK or BAD.

All activations besides softmax are rectified lin-
ear units (unlike the models in §3.1-§3.2, which
use tanh activations), and a dropout of 20% is
used in each layer. Optimization is carried out by
RMSProp.® As in §3.2, early-stopping based on
the Fi-product score over the development set was
used for selecting the best model of each training
run.

We verified empirically that shallower models
performed worse, while the new POS tags and spe-
cially the middle bidirectional GRU gave a boost
in score.

Model FPX x FpAP
Single Model (MFCRN) 44.33
5 MFCRN (Majority Voting) 46.58
5 MFCRN (Average Probability) 46.10

Table 4:  Effect of intra-model ensembling of
the multi-feature convolutional recurrent network
model.

Table 4 shows the average performance of five
trained instances and the ensembles performances
of these instances as described in §3, which also
led to large improvements as in the other models.

4 Stacking Architecture

As described in §3, each of the three neural models
produced five trained instances, yielding 15 pre-
dictions in total for every word in the training, de-
velopment and test datasets. For the three mod-
els, we used 10-fold jackknifing to obtain unbiased
predictions for the training set. We then plugged
these 15 predictions (as probability values) as ad-
ditional features in the linear model described in
§2. As unigram features, we used one real-valued
feature for every model prediction at each posi-
tion, conjoined with the label. As bigram features,

ST. Tieleman and G. Hinton, unpublished.
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FPS x B

Linear + 5 FFN 46.89
Linear + 5 BBLM 47.01
Linear + 5 MFCRN 48.58
Full Ensemble 49.25

Table 5: Performance of a stacked network en-
sembling each of the three deep models and the
linear model, and of a full ensemble (UNBABEL-
ENSEMBLE).

F1OK F1}3AD FloKXFlﬁAD
UNBABEL-LINEAR 87.48 52.92 46.29
UNBABEL-ENSEMBLE 8845 55.99 49.52

Table 6: Performance of the submitted systems
on the test set.

we used two real-valued features for every model
prediction at the two positions, conjoined with the
label pair.

The results obtained with this stacked archi-
tecture are shown in Table 5, where we compare
with smaller ensembles that stack each individ-
ual deep model with the linear one (using only
5 extra features instead of 15). We can see that
there is a clear benefit in combining all the deep
models, which suggests that these systems com-
plement each other by focusing on different qual-
ity aspects.

5 Final Results

Finally, we show in Table 6 the results obtained
in the test set for our two submitted systems,
UNBABEL-LINEAR and UNBABEL-ENSEMBLE.
As expected, the ensemble system gave an addi-
tional boost (>3 points) over the linear model,
which is consistent with the findings of the pre-
vious sections on the validation data.

6 Conclusions

We have presented a novel linear sequential model
which uses the baseline task features along with a
new set of syntactic features, leading to top perfor-
mance on the word-level quality estimation task.
Using this model as our baseline, we obtain further
improvements by including a version of the feed-
forward QUETCH system, as well as two novel re-
current models, as stacked features in the sequen-
tial linear model. Our final ensemble achieved the
best performance of all submitted systems.
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