SHEF-MIME: Word-level Quality Estimation Using Imitation Learning

Daniel Beck Andreas Vlachos

Gustavo H. Paetzold

Lucia Specia

Department of Computer Science
University of Sheffield, UK
{debeckl, a.vlachos, gpaetzoldl,l.specia}l@sheffield.ac.uk

Abstract

We describe University of Sheffield’s sub-
mission to the word-level Quality Estima-
tion shared task. Our system is based on
imitation learning, an approach to struc-
tured prediction which relies on a classifier
trained on data generated appropriately to
ameliorate error propagation. Compared
to other structure prediction approaches
such as conditional random fields, it al-
lows the use of arbitrary information from
previous tag predictions and the use of
non-decomposable loss functions over the
structure. We explore these two aspects
in our submission while using the baseline
features provided by the shared task organ-
isers. Our system outperformed the con-
ditional random field baseline while using
the same feature set.

1 Introduction

Quality estimation (QE) models aim at predicting
the quality of machine translated (MT) text (Blatz
et al., 2004; Specia et al., 2009). This prediction
can be at several levels, including word-, sentence-
and document-level. In this paper we focus on
our submission to the word-level QE WMT 2016
shared task, where the goal is to assign quality la-
bels to each word of the output of an MT system.

Word-level QE is traditionally treated as a struc-
tured prediction problem, similar to part-of-speech
(POS) tagging. The baseline model used in the
shared task employs a Conditional Random Field
(CRF) (Lafferty et al., 2001) with a set of baseline
features. Our system uses a linear classification
model trained with imitation learning (Daumé I1I
et al., 2009; Ross et al., 2011). Compared to the
baseline approach that uses a CRF, imitation learn-
ing has two benefits:

772

e We can directly use the proposed evaluation
metric as the loss to be minimised during
training;

e It allows using richer information from pre-
vious label predictions in the sentence.

Our primary goal with our submissions was to
examine if the above benefits would result in bet-
ter accuracy than that for the CRF. For this reason,
we did not perform any feature engineering: we
made use instead of the same features as the base-
line model. Both our submissions outperformed
the baseline, showing that there is still room for
improvements in terms of modelling, beyond fea-
ture engineering.

2 Imitation Learning

A naive, but simple way to perform word-level
QE (and any word tagging problem) is to use an
off-the-shelf classifier to tag each word extracting
features based on the sentence. These usually in-
clude features derived from the word being tagged
and its context. The main difference between this
approach and structure prediction methods is that
it treats each tag prediction as independent from
each other, ignoring the structure behind the full
tag sequence for the sentence.

If we treat the observed sentence as a sequence
of words (from left to right) then we can modify
the above approach to perform a sequence of ac-
tions, which in this case are tag predictions. This
setting allows us to incorporate structural informa-
tion in the classifier by using features based on
previous tag predictions. For instance, let us as-
sume that we are trying to predict the tag ¢; for
word w;. A simple classifier can use features de-
rived from w; and also any other words in the sen-
tence. By framing this as a sequence, it can also
use features extracted from the previously pre-
dicted tags t1:-13-

Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 772-776,
Berlin, Germany, August 11-12, 2016. (©2016 Association for Computational Linguistics

This approach to incorporating structural infor-
mation suffers from an important problem: during
training it assumes the features based on previous
tags come from a perfectly predicted sequence (the
gold standard). However, during testing this se-
quence will be built by the classifier, thus likely
to contain errors. This mismatch between training
and test time features is likely to hurt the overall
performance since the classifier is not trained to
recover from its errors, resulting in error propaga-
tion.

Imitation learning (also referred to as search-
based structure prediction) is a general class of
methods that attempt to solve this problem. The
main idea is to first train the classifier using the
gold standard tags, and then generate examples by
using the trained classifier to re-predict the train-
ing set and update the classifier using these new
examples. The example generation and classifi-
cation training is usually repeated. The key point
in this procedure is that because the examples are
generated in the training set we are able to query
the gold standard for the correct tags. So, if the
classifier makes a wrong prediction at word w; we
can teach it to recover from this error at word w;y1
by simply checking the gold standard for the right
tag.

In the imitation learning literature the sequence
of predictions is referred to as trajectory, which is
obtained by running a policy on the input. Three
kinds of policy are commonly considered:

e expert policy, which returns the correct pre-
diction according to the gold standard and
thus can only be used during training,

e learned policy, which queries the trained
classifier for its prediction,

e and stochastic mixture between expert and
learned.

The most commonly used imitation learning al-
gorithm, DAGGER (Ross et al., 2011), initially
uses the expert policy to train a classifier and sub-
sequently uses a stochastic mixture policy to gen-
erate examples based on a 0/1 loss on the cur-
rent tag prediction with respect to the expert pol-
icy (which returns the correct tag according to the
gold standard). This idea can be extended by, in-
stead of taking the 0/1 loss, applying the same
stochastic policy until the end of the sentence and
calculating a loss over the entire tag sequence with
respect to the gold standard. This generates a
cost-sensitive classification training example and

773

Algorithm 1 V-DAGGER algorithm
Input training instances S, expert policy 7*, loss
function ¢, learning rate 3, cost-sensitive clas-
sifier C'SC, learning iterations N
Output learned policy 7y
1: CSC instances £ = ()
2: fori =1to N do

3 p=01-py"
4: current policy 7 = pr* + (1 — p)m;
5: for s € Sdo
6: > assuming 7" is the length of s
7: predict 7(s) = g1.1
8: for g, € w(s) do
9: get observ. features ¢7 = f(s)
10: get struct. features ¢ = f(91.4—1)
11 concat features ¢y = ¢?||p7
12: for all possible actions y! do
13: > predict subsequent actions
14: y£+1;T = 7(8;91:0-1, Y7
15: } ~ D> assess cost
16: cZ = g(@l:t—la yg7yz{,+1:T>
17: end for
18: E:EU(¢t,Ct)
19: end for
20: end for
21 learn m; = CSC(FE)
22: end for

allows the algorithm to use arbitrary, potentially
non-decomposable losses during training. This is
the approach used by Vlachos and Clark (2014)
and which is employed in our submission (hence-
forth called V-DAGGER). Its main advantage is
that it allows us to use a loss based on the fi-
nal shared task evaluation metric. The latter is
the F-measure on ’OK’ labels times F-measure on
’BAD’ labels, which we turn into a loss by sub-
tracting it from 1.

Algorithm 1, which is replicated from (Vlachos
and Clark, 2014), details V-DAGGER. At line 4
the algorithm selects a policy to predict the tags
(line 7). In the first iteration it is just the expert
policy, but from the second iteration onwards it
becomes a stochastic mixture of the expert and
learned policies. The cost-sensitive instances are
generated by iterating over each word in the in-
stance (line 8), extracting features from the in-
stance itself (line 9) and the previously predicted
tags (line 10) and estimating a cost for each pos-
sible tag (lines 12-17). These instances are then
used to train a cost-sensitive classifier, which be-

comes the new learned policy (line 21). The whole
procedure is repeated until a desired iteration bud-
get N is reached.

The feature extraction step at lines 9 and 10 can
be made in a single step. We chose to split it be-
tween observed and structural features to empha-
sise the difference between our method and the
CREF baseline. While CRFs in theory can employ
any kind of structural features, they are usually re-
stricted to consider only the previous tag for effi-
ciency (1st order Markov assumption).

3 Experimental Settings

The shared task dataset consists of 15k sentences
translated from English to German using an MT
system and post-edited by professional translators.
The post-edited version of each sentence is used
to obtain quality tags for each word in the MT
output. In this shared task version, two tags are
employed: an ’OK’ tag means the word is correct
and a 'BAD’ tag corresponds to a word that needs
a post-editing action (either deletion, substitution
or the insertion of a new word). The official split
corresponds to 12k, 1k and 2k for training, devel-
opment and test sets.

Model Following (Vlachos and Clark, 2014),
we use AROW (Crammer et al., 2009) for cost-
sensitive classification learning. The loss function
is based on the official shared task evaluation met-
ric: £ =1 — [F(OK) x F(BAD)], where F'is the
tag F-measure at the sentence level.

We experimented with two values for the learn-
ing rate 5 and we submitted the best model found
for each value. The first value is 0.3, which is the
same used by Vlachos and Clark (2014). The sec-
ond one is 1.0, which essentially means we use the
expert policy only in the first iteration, switching
to using the learned policy afterwards.

For each setting we run up to 10 iterations of
imitation learning on the training set and evaluate
the score on the dev set after each iteration. We
select our model in each learning rate setting by
choosing the one which performs the best on the
dev set. For § = 1.0 this was achieved after 10
iterations, but for 8 = 0.3 the best model was the
one obtained after the 6th iteration.

Observed features The features based on the
observed instance are the same 22 used in the
baseline provided by the task organisers. Given

774

a word w; in the MT output, these features are de-
fined below:
e Word and context features:
— w; (the word itself)
- Wi-1
- Wi+1
— w;" (the aligned word in the source)

src
- Wi

wiis
e Sentence features:
— Number of tokens in the source sentence
— Number of tokens in the target sentence
— Source/target token count ratio
e Binary indicators:
— wj is a stopword
— w; is a punctuation mark
— w; is a proper noun
— w; is a digit
e Language model features:
— Size of largest n-gram with frequency >
0 starting with w;
— Size of largest n-gram with frequency >
0 ending with w;
— Size of largest n-gram with frequency >
0 starting with w;"¢
— Size of largest n-gram with frequency >
0 ending with w;"¢
— Backoff behavior starting from w;
— Backoff behavior starting from w;_1
— Backoff behavior starting from w;41
e POS tag features:
— The POS tag of w;
— The POS tag of w;"¢
The language model backoff behavior features
were calculated following the approach in (Ray-

baud et al., 2011).

Structural features As explained in Section 2,
a key advantage of imitation learning is the ability
to use arbitrary information from previous predic-
tions. Our submission explores this by defining a
set of features based on this information. Taking
t; as the tag to be predicted for the current word,
these features are defined in the following way:
e Previous tags:
- ti—1
= li—2
- ti-3
e Previous tag n-grams:
— t;—9||ti—1 (tag bigram)
- ti—3|’ti—2Hti—1 (tag trigram)
o Total number of 'BAD’ tags in t1.4—1

Results Table 1 shows the official shared task re-
sults for the baseline and our systems, in terms of
F1-MULT, the official evaluation metric, and also
F1 for each of the classes. We report two versions
for our submissions: the official one, which had
an implementation bug' and a new version after
the bug fix.

Both official submissions outperformed the
baseline, which is an encouraging result consid-
ering that we used the same set of features as the
baseline. The submission which employed 8 = 1
performed the best between the two. This is in line
with the observations of Ross et al. (2011) in sim-
ilar sequential tagging tasks. This setting allows
the classifier to move away from using the expert
policy as soon as the first classifier is trained.

F1-BAD | F1-OK | FI-MULT

Baseline (CRF) 0.3682 0.8800 0.3240
Official submission

N=6,6=0.3 0.3909 0.8450 0.3303
N =10,8=1.0 | 0.4029 0.8392 0.3380
Fixed version

N=9,=0.3 0.3996 0.8435 0.3370
N=9,5=1.0 0.4072 0.8415 0.3426

Table 1: Official shared task results.

Analysis To obtain further insights about the
benefits of imitation learning for this task we per-
formed additional experiments with different set-
tings. In Table 2 we compare our systems with
a system trained using a single round of training
(called exact imitation), which corresponds to us-
ing the same classifier trained only on the gold
standard tags. We can see that imitation learning
improves over this setting substantially.

Table 2 also shows results obtained using the
original DAGGER algorithm, which uses a sin-
gle 0/1-loss per tag. While DAGGER improves
results over the exact imitation setting, it is outper-
formed by V-DAGGER. This is due to the ability
of V-DAGGER to incorporate the task loss into its
training procedure?.

In Figure 1 we compare how the F1-MULT
scores evolve through the imitation learning iter-
ations for both DAGGER and V-DAGGER. Even
though the performance of V-DAGGER fluctuates

!The structural feature ¢;_; was not computed properly.

2Formally, our loss is not exactly the same as the official
shared task evaluation metric since the former is measured at
the sentence level and the latter at the corpus level. Never-
theless, the loss in V-DAGGER is much closer to the official
metric than the 0/1-loss used by DAGGER.

775

FI-BAD | FI-OK | FI-MULT

Exact imitation 0.2503 | 0.8855 0.2217
DAGGER

N =10,8=0.3 | 0.3322 | 0.8483 0.2818
N=4=1.0 0.3307 | 0.8758 0.2897
V-DAGGER

N=9p3=03 0.3996 | 0.8435 0.3370
N=9p=1.0 0.4072 | 0.8415 0.3426

Table 2: Comparison between our systems (V-
DAGGER), exact imitation and DAGGER on the
test data.

0.36
0.34

0.32
0.30
0.28
0.26
0.24
0.22

0.36

F1-MULT

0.34
0.32
0.30
0.28

0.26 -/ — V-DAGGER |1
0.24 - - DAGGER

0.22 1 1 1 I I I I I
1 2 3 4 5 6 7 8 9 10

lterations

Figure 1: Metric curves for DAGGER and V-
DAGGER over the official development and test
sets. Both settings use 8 = 1.0.

more than that of DAGGER, it is consistently bet-
ter for both development and test sets.

Finally, we also compare our systems with sim-
pler versions using a smaller set of structural fea-
tures. The findings, presented in Table 3, show
an interesting trend. The systems do not seem to
benefit from the additional structural information
available in imitation learning and even a system
with no information at all ("None” in Table 3) out-
performs the baseline. We speculate that this is
because the task only deals with a linear chain of
binary labels, which makes the structure much less
informative compared to the observed features.

[F1-BAD [F1-OK [F1-MULT

5=0.3

None 0.3948 0.8536 0.3370
ti—1 0.3873 0.8393 0.3251
tic1 + ti—2||ti—1 0.3991 0.8439 0.3368
All 0.3996 0.8435 0.3370
B5=1.0

None 0.3979 0.8530 0.3394
ti—1 0.4089 0.8436 0.3449
tic1 + ti—2||ti—1 0.4094 0.8429 0.3451
All 0.4072 0.8415 0.3426

Table 3: Comparison between V-DAGGER sys-
tems using different structural feature sets. All
models use the full set of observed features.

4 Conclusions

We presented the first attempt to use imitation
learning for the word-level QE task. One of the
main strengths of our model is its ability to employ
non-decomposable loss functions during the train-
ing procedure. As our analysis shows, this was a
key reason behind the positive results of our sub-
missions with respect to the baseline system, since
it allowed us to define a loss function using the of-
ficial shared task evaluation metric. The proposed
method also allows the use of arbitrary informa-
tion from the predicted structure, although its im-
pact was much less noticeable for this task.

The framework presented in this paper could be
enhanced by going beyond the QE task and ap-
plying actions in subsequent tasks, such as auto-
matic post-editing. Since this framework allows
for arbitrary loss functions it could be trained by
optimising MT metrics like BLEU or TER. The
challenge in this case is how to derive expert poli-
cies: unlike simple word tagging, multiple action
sequences could result in the same post-edited sen-
tence.

Acknowledgements

This work was supported by CNPq (project SwB
237999/2012-9, Daniel Beck), the QT21 project
(H2020 No. 645452, Lucia Specia) and the EP-
SRC grant Diligent (EP/M005429/1, Andreas Vla-
chos).

References

John Blatz, Erin Fitzgerald, and George Foster. 2004.
Confidence estimation for machine translation. In
Proceedings of the 20th Conference on Computa-
tional Linguistics, pages 315-321.

Koby Crammer, Alex Kulesza, and Mark Dredze.

776

2009. Adaptive Regularization of Weight Vectors.
In Advances in Neural Information Processing Sys-
tems, pages 1-9.

Hal Daumé III, John Langford, and Daniel Marcu.
2009. Search-based structured prediction.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282-289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Sylvain Raybaud, David Langlois, and Kamel Smali.
2011. This sentence is wrong. Detecting errors in
machine-translated sentences. Machine Translation,

(D.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew
Bagnell. 2011. A Reduction of Imitation Learn-
ing and Structured Prediction to No-Regret Online
Learning. In Proceedings of AISTATS, volume 15,
pages 627-635.

Lucia Specia, Nicola Cancedda, Marc Dymetman,
Marco Turchi, and Nello Cristianini. 2009. Estimat-
ing the sentence-level quality of machine translation
systems. In Proceedings of EAMT, pages 28-35.

Andreas Vlachos and Stephen Clark. 2014. A New
Corpus for Context-Dependent Semantic Parsing.
Transactions of the Association for Computational
Linguistics, 2:547-559.

