
Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 740–744,
Berlin, Germany, August 11-12, 2016. c©2016 Association for Computational Linguistics

Word Clustering Approach to Bilingual Document Alignment
(WMT 2016 Shared Task)

Vadim Shchukin1,2 Dmitry Khristich2 Irina Galinskaya2

1Yandex School of Data Analysis,
2Yandex

{rj42,khristich,galinskaya}@yandex-team.ru

Abstract

Our participation in Bilingual Document
Alignment shared task at WMT16 focuses
on building a language-independent, scal-
able system for aligning documents based
on content as opposed to using webpage
meta information. The resulting system
is capable of producing scored n-best lists
of candidate pages and can therefore be
adapted to tasks where either precision or
recall is maximized. We conduct a series
of experiments that show the effectiveness
of the system without any specific tuning.

1 Introduction

Training statistical machine translation systems
involves using two kinds of textual data: mono-
and bilingual. While mining monolingual data is
rather straightforward, determining pairs of paral-
lel documents is a rather complicated task for a
variety of reasons.

First of all, the largest source of text docu-
ments — the World Wide Web — has most of its
parallel data in an unstructured form, meaning that
it is often impossible to determine parallel pairs
using meta info only. While a set of documents
within a particular webdomain may be structured,
the structure itself varies between domains and is
therefore hard to exploit. This lack of stucture in
the Web forces a mining system to compare ev-
ery source language document to every target lan-
guage document from the corpus, thus leading to
quadratic complexity and making such straightfor-
ward algorithms not applicable to mining parallel
data from large web corpora containing billions of
documents.

Existing parallel data mining approaches deal
with these problems in different ways.

Methods focused on meta info such as docu-
ment URL (Resnik and Smith, 2003), publication
dates or document structure, may work well on
small structured corpora but suffer from sparsity
and unreliability of meta info in the Web. One of
the advantages of such methods is a lesser com-
putational complexity — simple URL matching,
for example, can be performed in linear time and
doesn’t even require to store HTML bodies as it
only operates on URLs.

Another approach is to analyze document con-
tents only, making zero assumptions about the
document structure or meta info. This approach is
more versatile but at the same time more resourse-
demanding and tends to suffer from bad scala-
bility. Applying it to big Web corpora requires
implementation of special techniques that reduce
the quadratic complexity of a naive algorithm to
something manageable, preferrably making the
number of document comparisons linear.

2 Previous work

Our approach is based on two papers working with
different aspects of content-based document align-
ment. The first of them (Uszkoreit et al., 2010)
aims at reducing the amount of pairwise compar-
isons of documents, while the other (Fukushima et
al., 2006) speeds up the comparisons themselves.
We describe both methods below.

2.1 Shingles and near-duplicate detection
Uszkoreit et al. (2010) describe a large scale par-
allel data mining method.

First, the system transforms a given multilin-
gual input corpus into a monolingual one by trans-
lating every document into English using a base-
line statistical machine translation system.

After that, candidates of parallel document pairs
are extracted by applying a near-duplicate detec-
tion algorithm to the translated corpus. This re-

740

quires two different sets of n-grams (shingles) to
be extracted from each document:

• Matching n-grams are used to construct the
candidate sets, meaning that the system only
considers pairs of documents that have at
least one common matching n-gram. The key
trick here is that we discard every matching
n-gram whose frequency exceeds some fixed
threshold. If the order of matching n-grams is
sufficiently large, this operation prunes only
a small fraction of the matching n-grams, and
most importantly makes the number of pair-
wise document comparisons linear.

• Scoring n-grams are used only in the com-
putation of a score for a given pair of doc-
uments. Every scoring n-gram is assigned
a score equal to its inverse global document
frequency in the input corpus. As the score
of an n-gram is inversely proportional to its
frequency, scoring n-grams with very high
frequencies may be safely pruned, increasing
performance. The score of a pair of docu-
ments is computed as cosine similarity of two
corresponding vectors in the vector space of
scoring n-grams.

In the next stage, candidate sets are built using
matching n-grams, then pairs of documents from
every set are scored using scoring n-grams, pro-
ducing scored n-best lists for every document.

In the final stage, pairs are symmetrized, leaving
only those where each document is a part of the
other’s n-best list.

The described method scales well as all steps
can be parallelized, has linear computational com-
plexity and provides high quality on big unstruc-
tured collections of documents. However, its qual-
ity is dependent on the quality of the baseline ma-
chine translation system and using a high quality
baseline usually makes the first step — translation
of every document in corpus — a very computa-
tionally complex task.

2.2 Word clustering

Fukushima et al. (2006) present an approach to the
task of judging whether a pair of texts is parallel or
not. The proposed algorithm scores a pair of doc-
uments based on the number of word pairs from
the documents that are mutual translations of each
other.

In the first step, the algorithm maps every noun
from both languages to a special ’semantic ID’
(non-nouns are ignored). The goal is to assign the
same ID to every pair of words that are translations
of each other.

To assign semantic IDs, the algorithm builds a
word graph using a bilingual dictionary: nodes
represent words and edges connect pairs of words
that are translations of each other. Then, a thresh-
old on the size of a connected component is se-
lected and every component larger than the thresh-
old is recursively divided into two smaller parts
with an equal number of nodes. The process con-
tinues until every component is smaller than the
threshold.

Graph partitioning is performed using a simple
greedy algorithm. For a given connected compo-
nent, it divides nodes into two equal groups such
that the number of edges between the groups is
minimized.

After the partitioning is complete, every com-
ponent is assigned a unique semantic ID.

In the next step, every document from the cor-
pus is preprocessed, converting each word to its
corresponding semantic ID. The converted repre-
sentations are then used to compare pairs of docu-
ments.

The method is reported to significantly speed up
the document comparison without losing accuracy.

One of the disadvantages of this method is that
it treats all edges of the word graph equally, while
in reality some of the translations are more proba-
ble, and therefore more valuable than the others.

3 Our approach

The outline of our method is as follows. First, we
run a bilingual word clustering algorithm similar
to the one described in Section 2.2. Then, we pre-
process the bilingual input corpus converting each
word to its cluster ID. This operation produces a
’monolingual’ corpus in a ’language’ of cluster
IDs which we then use as input data for the near-
duplicate detection algorithm described in Section
2.1, thus skipping the computationally expensive
step of machine-translating the entire input corpus.

Our approach to the bilingual word clustering
problem is described in detail below.

3.1 Weighted word clustering

To form word clusters, we require a phrasetable
of the corresponding translation direction as input

741

data. This phrasetable can be built from the paral-
lel data mined using some simple baseline method
like URL mathching or, alternatively, the previous
iteration of our algorithm.

In the first stage, we filter the phrasetable keep-
ing only phrases where both source and desti-
nation parts consist of a single word. The re-
sult is used to form a graph with words as nodes
and phrases as edges. Previously, Fukushima et
al. (2006) used a dictionary as input and built
an unweighted word graph. Our approach is to
make a weighted graph using statistics from the
phrasetable, namely phrase observation counts:

• Nsrc(f) — the count of the source phrase f ,

• Ntgt(e) — the count of the target phrase e,

• N(f, e) — the co-occurence count of the
source phrase f and the target phrase e.

The resulting graph will most likely have one
giant connected component containing most of the
graph’s vertices. Therefore, to form meaningful
word clusters some of the edges have to be re-
moved. We propose to use a variation of layered
graph clustering algorithm (Algorithm 1).

It is an iterative process that takes some graph
G as input and examines all connected compo-
nents one by one. If the current component sat-
isfies some fixed clustering criterion, a new word
cluster is formed, assigned a unique ID and the
component is removed from the graph. Otherwise,
it takes a fraction of the edges of the current graph
that have the worst weights, removes them, and
runs recursively on the new graph. The process
continues until the graph is empty.

Removing a constant fraction of edges during
every step makes the complexity of the algorithm
linear: Θ(E), where E is the number of the
edges in the graph, i.e. the number of single word
phrases in the input phrase table.

Whether the algorithm is capable of produc-
ing word clusters that have as many related (and
as few unrelated) words as possible, depends on
the choice of the weighting function and the con-
nected component criterion. The weighting func-
tion that worked well during our experiments on
various data, is as follows:

weight(f, e) =
N2(f, e)

Nsrc(f) ·Ntgt(e)
(1)

As for the connected component criterion — we
chose the one that simply checks that the compo-
nent has less than S nodes. S can be tuned on the
training set.

Algorithm 1 Weighted Word Clustering
Input: graph G, cluster size threshold S, fraction
of weak edges to remove F
Output: set of word clusters C

1: function CLUSTER(G, S, F)
2: C ← ∅
3: for each connected component c ⊆ G do
4: if |c| ≤ S then
5: C ← C ∪ {c}
6: else
7: remove F% of weak edges from c
8: C ← C ∪ CLUSTER(c, S, F)

9: return C

As we mentioned earlier, during the next step,
the generated cluster IDs are used to substitute all
the words in the input corpus.

Intuitively, this captures more information from
the original corpus than the actual machine trans-
lation used in (Uszkoreit et al., 2010), because
the result of the described transformation — a se-
quence of cluster IDs — represents many possible
translations of every source document into target
language and vice versa.

Besides, replacing machine translation with
our method significantly improves overall perfor-
mance of the system. First of all, the process is
less demanding memory-wise as it doesn’t require
loading of phrase tables, language models, etc.; in-
stead, only the cluster dictionary is used which is
small (<100Mb of plain text in total for both lan-
guages even when using a phrase table built on a
huge Web corpus). Second, it is also much faster
as it basically consists of a single hashtable lookup
per input word.

4 Data sets

The training data provided by WMT16 organizers
consists of a set of 1,624 EN-FR URL pairs from
49 webdomains and all the pages crawled from the
same domains. The crawled data for each page
consists of the URL, language ID, mime type, en-
coding, HTML and text, of which our system only
used URLs, language IDs and texts. The organiz-
ers also identified spans of French text and pro-
duced English translations using MT which we

742

also didn’t use.
As will be explained further, we did not perform

any specific parameter tuning and only used train-
ing data for quality analysis and to ensure that no
mistakes were made.

For testing, 203 additional crawls of new web-
domains were provided, distinct from the ones in
the training data in the same format. The final
evaluation was performed using a subset of 2402
URL pairs from the test data.

5 System details

Our system could use the provided training data in
two ways. First, we could mine parallel data from
it using some baseline algorithm to build the input
phrase table used in the word clustering algorithm.
Instead, we used an in-house phrasetable built
from a large Web corpus. Second, it could be used
to fine-tune parameters such as upper threshold on
word cluster size, but our experiments on multi-
ple data sets for different language pairs showed
that, once these parameters are set to some ade-
quate values, tuning them does not have a big im-
pact on the result, effectively making the system
language- and domain-independent.

The chosen parameter values are:

• maximum size of a word cluster = 90,

• order of matching n-grams = 5,

• order of scoring n-grams = 3,

• upper threshold on matching n-gram fre-
quency = 2000.

6 Results and analysis

Simple evaluation on the training data achieves a
recall of 81.47 (Here and below, test data results
are almost identical to train; for exact values on
test, please refer to the tables). However, analysis
of the results on the training set uncovered a num-
ber of problems in the data that made this result an
underestimation. Some of these problems are:

• incorrect language detection,

• empty pages or pages with crawling errors,

• duplicate and near-duplicate pages.

While the first two kinds of errors mostly don’t
affect our system’s performance as long as there

train test
position count recall count recall
1 1482 91.26 2233 92.96
2 96 97.17 110 97.54
3 18 98.28 8 97.88
4 3 98.46 4 98.04
5 1 98.52 5 98.25
6 0 98.52 1 98.29
7 2 98.65 0 98.29
8 1 98.71 0 98.29
9 0 98.71 1 98.33
10 0 98.71 0 98.33
none 21 40
total 1624 2402

Table 1: Reference document positions and n-best
recall on the train and test data sets.

are no such errors in test set pairs, the third prob-
lem turns out to be quite serious.

Some duplicate pages have exactly the same
text content and only differ in some insignificant
parameter in the URL, some are redirects, oth-
ers only differ in a couple lines of boilerplate text
(e.g., ’page viewed X times’), etc. Naturally, such
sets of duplicates and near-duplicates negatively
affect results of systems based on content analy-
sis.

Also worth noting is the 1-1 rule enforced by
the competition, which doesn’t count pairs that in-
clude any of the URLs from the pairs accepted pre-
viously. This restriction significantly lowers the
recall if the data contains near-duplicates of the
pages from the reference pairs (which is almost
always the case when working with crawled web-
pages). Evaluating our system on training data
without the 1-1 rule yields a recall of 91.26.

To provide further analysis, we set our system
to output n-best lists of size 10 for every source
document. Table 1 shows the distribution of the
positions of the reference documents in the gen-
erated n-best lists. As you can see, considering 3
best condidates per source document yields a re-
call of 98.28 while 10-best recall is 98.71.

We further investigate 121 source documents
whose references were scored 2nd to 10th. For
these source documents we examine the intersec-
tion of the best scored candidate and the reference
document (see Figure 1).

The results show a big amount of full duplicates
(100% intersection) and near-duplicates (high val-

743

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

0 0
5 6 7

2
7 7

17 16

54

2 0
4 6

10 8 6
3

7

15

68

Intersection

D
oc

um
en

ts
train
test

Figure 1: Intersection of the top-1 and the ref-
erence document in 10-best lists where reference
document is on the 2nd - 10th place.

metric train test
1-1 rule recall 81.47 84.14
1-best recall 91.26 92.96
3-best recall 98.28 97.88
10-best recall 98.71 98.33
>80% similarity recall 96.61 96.71

Table 2: Quality on the training set using different
metrics.

ues of intersection) in the generated n-best lists.
This also brings us to a conclusion that most of the
time the best scored candidate is not completely
worthless but in fact can be used to mine parallel
sentences from as it is very similar to the refer-
ence.

Considering top-1 scored documents that are
not references but have 80% or more intersection
with the reference ’correct’ (which seems very
reasonable), will achieve a recall of 96.61.

The most notable results for the training and test
set are summarized in table 2.

7 Summary

We presented an effective, scalable and versatile
approach to mining parallel data from big corpora
of any nature. The method is based on textual con-
tent analysis and doesn’t make any assumptions
about the structure of the input data. Assuming
the required input phrase table already exists, the
system can work without any additional training
data. Additionally, the parameters of the algo-

rithm do not require any specific tuning, making
it language- and domain-independent. We demon-
strated that the system works well and achieves
high values of recall on the provided data.

References
Ken’ichi Fukushima, Kenjiro Taura, and Takashi

Chikayama. 2006. A fast and accurate method
for detecting English-Japanese parallel texts. In
Proceedings of the Workshop on Multilingual Lan-
guage Resources and Interoperability, MLRI ’06,
pages 60–67, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Philip Resnik and Noah A. Smith. 2003. The web
as a parallel corpus. Computational Linguistics,
29(3):349–380, September.

Jakob Uszkoreit, Jay M. Ponte, Ashok C. Popat, and
Moshe Dubiner. 2010. Large scale parallel docu-
ment mining for machine translation. In Proceed-
ings of the 23rd International Conference on Com-
putational Linguistics, COLING ’10, pages 1101–
1109, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

744

