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Abstract

In this paper we present our winning sys-
tem in the WMT16 Shared Task on Cross-
Lingual Pronoun Prediction, where the ob-
jective is to predict a missing target lan-
guage pronoun based on the target and
source sentences. Our system is a deep re-
current neural network, which reads both
the source language and target language
context with a softmax layer making the
final prediction. Our system achieves the
best macro recall on all four language
pairs. The margin to the next best system
ranges between less than 1pp and almost
12pp depending on the language pair.

1 Introduction

Automatic translation of pronouns across lan-
guages can be seen as an subtask of the full ma-
chine translation. In the pronoun translation task
the special challenge is posed by anaphora res-
olution as well as differing gender marking in
different languages. The WMTI16 Shared Task
on Cross-Language Pronoun Prediction strives to
seek for methods to address this particular prob-
lem (Guillou et al., 2016).

This shared task includes two language pairs,
English-French and English-German, and both
translation directions, so in total four different
source-target pairs must be considered. In the
target language side selected set of pronouns are
substituted with replace, and the task is then
to predict the missing pronoun. Furthermore, the
target side language is not given as running text,
but instead in lemma plus part-of-speech tag for-
mat. This is to mimic the representation which
many standard machine translation systems pro-
duce and to complicate the matter of standard

* Both authors contributed equally to this work.
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Source: That ’s how they like to live .

Target: ce|PRON étre|VER comme|ADV

cela| PRON que|PRON REPLACE 3 aimer|VER
vivre|VER .|.

Figure 1: An example sentence from the English
to French training data, where the REPLACE _3 is
a placeholder for the word to be predicted.

language modeling. An example of an English-
French sentence pair is given in Figure 1. Further-
more, the training data as provided by the organiz-
ers of the the task includes automatically produced
word-level alignments between the source and the
target language.

In this paper we describe the pronoun prediction
system of the Turku NLP Group. Our system is
a deep recurrent neural network with word-level
embeddings, two layers of Gated Recurrent Units
(GRUs) and a softmax layer on top of it to make
the final prediction. The network uses both source
and target contexts to make the prediction, and no
additional data or tools are used beside the data
provided by the organizers. The system has the
best macro recall score in the official evaluation
on all four language pairs.

2 Related work

This shared task is a spiritual successor to an
earlier cross-lingual pronoun prediction shared
task (Hardmeier et al., 2015). The systems sub-
mitted to the earlier task provide us with a good
view of the recent related work on the problem.
The earlier task received altogether six system
description papers. The organizers identify two
main approaches used by the participants. Teams
UEDIN (Wetzel et al., 2015) and MALTA (Pham
and van der Plas, 2015) explicitly tried to resolve
anaphoras in the text and using the information to
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| thought that it was quite superb . je|PRON avoir|VER trouver|VER REPLACE tout|ADV a|PRP fait|NOM ...

Figure 2: The architecture of our recurrent neural network system.

help predict the pronoun. On the target side the context is read in the left

Other teams relied more on the context, for ex-  and right direction starting from the replace to-
ample UU-Tiedemann (Tiedemann, 2015) used a  ken, and the replace token itself is not included
linear SVM with features from the context of the  in the context window. As the training data in-
pronoun. IDIAP (Luong et al., 2015) went on  cludes word-level alignments between the source
to use a naive-bayes classifier with features from  and target language, we are able to identify the
contextual noun-phrases. WHATELLES (Callin  source language counterpart for the missing pro-
et al., 2015) used a neural network approach with ~ noun. This pronoun is used as a starting point for
features from preceding noun-phrases. source context reading to both left and right di-

It is to be noted that the last year’s task was won ~ rection the same way as in the target side. How-
by a language model baseline, provided by the or-  ever, in the source side the aligned pronoun is al-
ganizers. Our system fits the second category of ~ ways included in both context windows. If the
systems, those relying on the context to predict ~replace token is aligned to multiple source side
the pronoun. None of the systems participating in ~ words (the pronoun to be translated can be con-
the shared task seem to be using explicit sequence sidered as a multi-word expression), reading the

classification approaches. right-side context always starts from the left-most
alignment, and vice versa.
3 Network Starting from the input of the network, our

system has five sets of 90-dimensional embed-
ding matrices; embeddings for source language
Our system is a deep recurrent neural network  words, separate embeddings for the target lan-
model with learned token-level embeddings, two  guage lemmas, part-of-speech tags and combina-
layers of Gated Recurrent Units (GRUs), a dense  tion of lemmas and part-of-speech tags. In addi-
network layer with rectified linear unit (ReLU) ac-  tion we have separate embeddings for source lan-
tivation, and a softmax layer. Our network archi-  guage pronouns aligned with the unknown target
tecture is described in Figure 2. pronoun. Context windows are then sequences

The first layer on the bottom of the Figure 2 il-  of indices for these different token-level embed-
lustrates how source and target contexts are read.  dings, except the aligned source language pro-

3.1 Architecture
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noun, which is always just one index as the tokens
are concatenated if the alignments refers to multi-
ple source language words. Thus, the network has
a total of nine inputs, two different directions for
each set of context embeddings, and the aligned
source language pronoun. As we do not use exter-
nal data sources, these embeddings are randomly
initialized.

Once the sequence of context words are turned
into embeddings, they are given to the first layer
of GRUs, which output is given as a sequence to
the second layer of GRUs. The second GRU layer
then reads the input sequence and outputs the last
vector produced, i.e. a fixed-length representation
of the input sequence. In all GRUs we use 90-
dimensional internal representation.

All these eight products of the recurrent lay-
ers, are concatenated together with the embedding
for the aligned source language pronoun and given
to a 256-dimensional dense neural network layer,
with ReLU activation function!. This vector is
then fed to a layer with softmax activation and an
output for each possible output pronoun to make
the final prediction.

While our model relies on learned embeddings
instead of predefined set of features, a process
similar to feature engineering takes place while
designing the system architecture. The design
choices were made in a greedy manner and mostly
the system was built additively, testing new fea-
tures and adding the promising ones to the final
system. Since not all design choice combinations
were properly tested during the system develop-
ment, we include a short evaluation of different
settings in Section 4.1.

3.2 Training the system

Only the training data provided by the shared task
organizers is used to train our system. The data
is based on three different datasets, the Europarl
dataset (Koehn, 2005), news commentary corpora
(IWSLT15, NCv9), and the TED corpus’. We
used the whole TED corpus only as development
data, and thus our submitted systems are trained on
the union of Europarl and news commentary texts,
which are randomly shuffled on document level.
The total size of training data for each source—
target pair is approximately 2.4M sentences, hav-
ing 590K-760K training examples depending on

'Dense layer with tanh activation was also tested, but
ReLU turned out to give better results.
http://www.ted.com
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the pair. The vocabulary sizes, when training
with the full training data are listed in Table 1.
The large number of aligned pronouns for French-
English and English-French language pairs is be-
cause of the alignments for the pronoun were often
multiple token in length.

In previous studies using only in-domain data
has provided competitive performance (Tiede-
mann, 2015; Callin et al., 2015), and as Europarl
can be seen as out-of-the-domain data, in Section 4
we compare the performance of our system when
trained using only in-domain data.

Since the main metric in the official evaluation
is macro recall, our primary submission is trained
to optimize that. This is done by weighting the
loss of the training examples relative to the fre-
quencies of the classes, so that misclassifying a
rare class is seen by the network as more serious
mistake than misclassifying a common class. This
scheme produces outputs with more emphasis on
rare classes, rather than going after the most com-
mon ones. The contrastive submission is trained
in the standard way, where each example is seen
as equal.

In both our submissions exactly the same sys-
tem architecture is used for all four language pairs,
and no language-dependent optimization was car-
ried out. However, the number of epochs used in
training differs, and the prediction performance on
the development set was used to decide the opti-
mal number of epochs for each language pair.

The system was implemented in Keras (Chollet,
2015), and trained and developed on the CSC clus-
ter’ of NVidia Tesla 40KT GPUs. Only one GPU
was used to train a single network. Depending on
the settings of the network and training data size a
single training epoch took 25 minutes to an hour,
and all networks were trained in 9 hours. Usu-
ally the performance of the network peaked within
the first 5 training epochs when evaluated on the
development set, and most often reached perfor-
mance very close to the maximum within three
training epochs. All networks were evaluated on
the development set after each training epoch, and
the model with the highest macro recall was se-
lected for evaluation.

The practical, time-wise, predictive perfor-
mance of our system is reasonable and doesn’t re-
quire the use of a GPU. Predicting a test set for
an individual language pair takes on a 6-core Intel

Swww.csc. fi



Target POS  Target Word Target Word-POS  Source Word  Aligned Pronouns Pronouns
de-en 15 170,484 181,531 539,980 9 9
en-de 15 446,645 454,175 198,244 6 5
fr-en 34 171,633 182,763 220,204 18,960 8
en-fr 39 158,755 179,299 199,774 7174 8

Table 1: The vocabulary sizes of the models
De-En En-De Fr-En En-Fr

Architecture MacroR Micro F | MacroR  MicroF | Macro R Micro F | Macro R Micro F
primary 73.91 75.36 64.41 71.54 72.03 80.79 65.70 70.51
no stacking 65.63 75.98 61.84 73.37 68.84 77.74 70.00 74.26
only in-domain | 59.18 75.36 50.72 66.06 57.80 74.09 58.09 65.15
short context 61.29 73.50 65.66 71.80 65.84 79.59 69.27 70.51
cross-sentence 60.76 70.81 46.91 49.61 60.46 78.05 61.33 69.17
contrastive 72.60 80.54 58.39 72.85 66.54 85.06 61.46 72.39
no stacking 65.35 79.30 59.71 76.76 61.23 81.71 70.88 77.75

Table 2: Macro recall and micro F-score for all our system combinations evaluated on the test set. In
the primary section, the systems are trained to optimize macro recall, and in the contrastive section,
the systems are optimized without preference towards rare classes. In no stacking, only one layer of
GRUs is used. Only in-domain refers to a version where the Europarl data was not used in training, and
short-context refers to a version in which the context window was set to 5. Cross-sentence refers to a
version where the context was expanded also beyond the current sentence.

Xeon CPU Im 55s, of which 9 seconds is used for
prediction and the rest for loading model weights
and building the network.

4 Results

In the official test evaluation results our primary
system has the best score across all language pairs
(see Table 3). In two language pairs, German—
English and English-French, we have a modest
improvement over the second best system. How-
ever, in the other two language pairs, the margin
is substantial, 11.9pp for the English—German pair
and 6.4pp for the French—-English pair. When we
look closer into class frequencies and system pre-
dictions, it can be seen that in these two pairs our
system benefits especially much from predicting
small classes relatively well.

In our primary submission, the system was op-
timized towards macro-averaged recall whereas in
our contrastive submission standard training met-
rics were used. Therefore the prediction accu-
racy is better in our contrastive submission than
it is in the primary submission by 1.3pp-5.2pp
depending on the language pair, but at the same
time macro recall decreases by 1.3pp—6.0pp. Yet,
in the two language pairs with a wide margin to
other teams, our contrastive system still achieves
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better macro recall than any other system. For
per-language scores for both our submissions, see
rows TurkuNLP for primary and TurkuNLP cont
for contrastive in Table 3.

4.1 Feature evaluation

We ran a small study of different system settings
to evaluate our design choices. Results are shown
in Table 2, where the performance is evaluated on
the official test set. In the test set evaluation our
primary system gives the highest score on two lan-
guage pairs, but loses to another system setting
in other two language pairs. Overall, the primary
system still performs best on average when mea-
sured on macro recall.

As stated in Section 3.1, both our submissions
are based on a version of the network with stacked
GRU units. In preliminary studies, the stacked ap-
proach increased the prediction performance and
this holds on the test set for all language pairs
except English-French. While on average the
stacked system performs 2.4pp better on macro re-
call, on the English-French pair the non-stacked
model performs 4.3pp better.

Another important feature is the size of the con-
text window. In previous work a rather small con-
text was noted to work relatively well (Tiedemann,



System Macro Recall

De-En En-De Fr-En En-Fr
TurkuNLP 7391 6441 72.03 65.70
TurkuNLP cont | 72.60 5839 66.54 61.46
UKYOTO 73.17* 52.50* 65.63* 62.44
limsi 59.32
UHELSINKI 69.76 4469 6298 57.50
UU-Hardmeier 50.36 60.63
uedin 48.72 61.62
UUPSALA 59.56 4743 62.65 4892
UU-Stymne 5928 52.12 3644  65.35%
baseline—x 4452 4786 4296 50.85
CUNI 60.42  28.26
UU-Cap 41.61
baseline-0 42.15 38.53 38.38 46.98
Idiap 36.36

Table 3: Scores for all primary systems and our contrastive system on the official test set evaluation
sorted by the average score across language pairs. For each language pair the best score is bolded and
the second best is marked with a star (our contrastive submission is not taken into account).

2015; Callin et al., 2015). However, in our sub-
mission systems the maximum size of the context
was set to 50, and in our development experiments
radically shorter context sizes hurt the prediction
performance of our system. However, in test set
evaluation both language pairs with English as the
source language seem to benefit from shorter con-
text, especially English-French pair which scores
3.6pp higher in macro recall than our primary sys-
tem, but also loses to the version with longer con-
text without stacking by 0.73pp in macro recall.
Other language pairs benefit from larger context
(see short context in Table 2).

In addition, we evaluate allowing the context
window to extend beyond the current sentence
boundary. The maximum context size is always
50, although when restricted to within one sen-
tence, it naturally rarely reaches it. In our primary
and contrastive submissions, the context was lim-
ited to include only the current sentence, and the
results using the context beyond the sentence are
in the row cross-sentence in Table 2. We can ob-
serve that no language pair seems to benefit from
a larger context on the test set.

As mentioned earlier, the Europarl dataset can
be considered as out-of-the-domain data. The in-
domain row in Table 2 refers to an experiment
where Europarl was discarded from the training
data and thus the system was trained only on in-
domain data. Naturally, the amount of training

data is then much smaller, the data size drops from
2.4M sentences to approx. 400K sentences. This
hurts the performance on all language pairs, indi-
cating that our method benefits from a lot of train-
ing data and might be indicative of its ability to
generalize to other domains.

5 Conclusion

In this paper we presented our system for the
cross-lingual pronoun prediction shared task. Our
system is based on recurrent neural networks and
token-level embeddings of the source and target
languages, and is trained without any external
data. Our system fared well in the shared task,
having the highest macro recall in all language
pairs. Our results suggest sequence classification
and recurrent neural networks to be an approach
worthy of consideration when tackling the prob-
lem. It is also worth noting that our system is
wholly language-agnostic and demonstrates that
an approach with very little custom-built features
can have a good performance on the task.

As the system is trained only using the official
training data without any external tools, it would
be interesting to test whether pre-trained token-
level embeddings would increase its performance.
Additionally, pre-training the network with mono-
lingual data could be considered.

Our system is openly available at https://
github.com/TurkuNLP/smt-pronouns.
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