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Abstract

This article describes the Aalto University
entry to the English-to-Finnish news trans-
lation shared task in WMT 2016. Our seg-
mentation method combines the strengths
of rule-based and unsupervised morphol-
ogy. We also attempt to correct errors in
the boundary markings by post-processing
with a neural morph boundary predictor.

1 Introduction

Using words as translation tokens is problem-
atic for synthetic languages with rich inflection,
derivation or compounding. Such languages have
very large vocabularies, leading to sparse statistics
and many out-of-vocabulary words. Differences
in morphological complexity between source and
target languages also complicate alignment.

A common method for alleviating these prob-
lems is to segment the morphologically richer side
as a pre-processing step. Over-segmentation is
detrimental, however, as longer windows of his-
tory need to be used, and useful phrases become
more difficult to extract. It is therefore important
to find a balance in the amount of segmentation.

We consider the case that there are linguistic
gold standard segmentations available for the mor-
phologically complex target language. Even if
there is no rule-based morphological analyzer for
the language, a limited set of gold standard seg-
mentations can be used for training a reasonably
accurate statistical segmentation model in a super-
vised or semi-supervised manner (Ruokolainen et
al., 2014; Cotterell et al., 2015).

While using a linguistically accurate morpho-
logical segmentation in a phrase-based SMT sys-
tem may sound like a good idea, there is evi-
dence that shows otherwise. In general, over-
segmentation seems to be a larger problem for

NLP applications than under-segmentation (Vir-
pioja et al.,, 2011). In the case of SMT, lin-
guistic morphs may provide too high granularity
compared to the second language, and deteriorate
alignment (Habash and Sadat, 2006; Chung and
Gildea, 2009; Clifton and Sarkar, 2011). More-
over, longer sequences of units are needed in
the language model and the translation phrases to
cover the same span of text.

An unsupervised morphological segmentation
may alleviate these problems. A method based
on optimizing the training data likelihood, such
as Morfessor (Creutz and Lagus, 2002; Creutz
and Lagus, 2007; Virpioja et al., 2013), ensures
that common phenomena are modeled more ac-
curately, for example by using full forms for
highly-frequent words even if they consist of mul-
tiple morphemes. Data-driven methods also allow
tuning the segmentation granularity, for example
based on symmetry between the languages in a par-
allel corpus (Gronroos et al., 2015).

To combine the advantages of linguistic seg-
mentation and data-driven segmentation, we pro-
pose a hybrid approach for morphological segmen-
tation. We optimize the segmentation in a data-
driven manner, aiming for a similar granularity as
the second language of the language pair, but re-
stricting the possible set of segmentation bound-
aries to those between linguistic morphs. That is,
the segmentation method may decide to join any of
the linguistic morphs, but it cannot add new seg-
mentation boundaries to known linguistic morphs.

We show that it is possible to improve on the lin-
guistically accurate segmentation by reducing the
amount of segmentation in an unsupervised man-
ner.

1.1 Related work

Rule-based and statistical segmentation for SMT
have been extensively studied in isolation (Virpi-
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Figure 1: A pipeline overview of training of the system and using it for translation. Main contributions
are hilighted with numbers 1-3. ORM is short for Omorfi-restricted Morfessor.

oja et al., 2007; Fishel and Kirik, 2010; Luong et
al., 2010), and also the use of system combina-
tion to combine their strengths has been examined
(De Gispert et al., 2009; Rubino et al., 2015; Piri-
nen et al., 2016).

Prediction of morph boundary types has been
used in conjunction with compound splitting.
Stymne and Cancedda (2011) apply rule-based
compound splitting in the pre-processing stage,
and a conditional random field with rich linguistic
features for generating novel compounds in post-
processing. Coalescence of compound parts in the
translation output is promoted using POS-tag fea-
tures. Cap et al. (2014) extend the post-predictor
to also inflect the compound modifiers e.g. to add
a linking morpheme.

Stymne et al. (2013) investigate several methods
for splitting and merging compounds when trans-
lating into Germanic languages, and provide an ex-
tensive reading list on the topic.

2 System overview

An overview of the system is shown in Figure 1.
The three main contributions of this work are indi-
cated by numbered circles:

1. Combining rule-based morphological seg-
mentation (Omorfi) to data-driven morpho-
logical segmentation (Morfessor).

290

2. Rescoring n-best lists with TheanoLM
(Enarvi and Kurimo, 2016).

3. Correcting boundary markings with post-
processing predictor.

Our system extends the phrase-based SMT sys-
tem Moses (Koehn et al., 2007) to perform seg-
mented translation, by adding pre-processing and
post-processing steps, with no changes to the de-
coder.

The standard pre-processing steps not specified
in Figure 1 consist of normalization of punctua-
tion, tokenization, and statistical truecasing. All
of these were performed with the tools included in
Moses. The pre-processing steps are followed by
morphological segmentation.

In addition, the parallel data was cleaned and
duplicate sentences were removed. Cleaning was
performed after morphological segmentation, as
the segmentation can increase the length in tokens
of a sentence.

The post-processing steps include rescoring of
the n-best list, boundary prediction and desegmen-
tation. These are followed by the standard post-
processing steps, reversing the pre-processing
steps: detruecasing and detokenization.



System Tokens Segmentation

Words 3 hy6tyajoneuvojen tekniset tienvarsitarkastukset
[commercial vehicles’] [technical] [roadside inspections]

Omorfi 11 hy6ty@ ajo@ neuvo +j +en teknise +t tien@ varsi@ tarkastukse +t
[utility] [drive] [counsel] [+PI] [+Gen] [technical] [+Pl] [road] [side] [inspection] [+Pl]

ORM 5 hy6tyajoneuvo +jen tekniset tienvarsi@ tarkastukset

[commercial vehicle] [+Pl +Gen] [technical] [roadside] [inspections]

Source 6 technical roadside inspection of commercial vehicles

Table 1: Worked example of two-stage morphological segmentation, beginning with rule-based Omorfi
segmentation and followed by Omorfi-restricted Morfessor (ORM). The glosses below the segmentations
show approximate meaning of the segments (P1 = plural suffix, Gen = genitive suffix).

2.1

An example of the morphological segmentation is
shown in Table 1.

Morphological segmentation

2.1.1 Omorfi segmentation

We begin the morphological segmentation by ap-
plying the segmentation tool from Omorfi (Piri-
nen, 2015). Hyphens removed by Omorfi are rein-
troduced.

Omorfi outputs 5 types of intra-word bound-
aries, which we mark in different ways. Com-
pound modifiers, identified by the WB or wB
boundary type, are marked with a reserved sym-
bol ‘@’ at the right edge of the morph. Suf-
fixes, identified by a leading morph boundary
MB or derivation boundary DB, are marked with
a ‘“+’ at the left edge. Boundaries of the type
STUB (other stemmer-type boundary) are removed.
This marking scheme leaves the compound head,
or last stem of the word, unmarked. E.g.
“yli{WB}voimai{STUB}s{MB}i{MB}a” is marked
as ”yli@ voimais +i +a”.

Words not identified by Omorfi are collected
in a separate vocabulary, and treated as unseg-
mentable.

2.1.2 Restricted Morfessor Baseline

In order to force the Morfessor method to fol-
low the linguistic morphs produced by Omorfi, we
added some new features to the Morfessor Base-
line implementation by Virpioja et al. (2013). The
new extension, Restricted Morfessor Baseline, is
able to remove any of the given intra-word bound-
aries, but cannot introduce any new ones.

The standard training algorithm of Morfessor it-
erates over the word forms, testing whether to split
the corresponding string to two parts or leave it as
it is. If the string is split, the testing descends re-
cursively to the substrings. The segmentation de-

291

cisions are stored in a binary tree structure, where
each node corresponds to a string. The root nodes
are full word forms and leaf nodes are morphs.

The middle nodes are substrings shared by sev-
eral word forms, which means that if two word
forms have different restrictions on the same sub-
string, some of the restrictions may be violated.
While the amount of violations was in practice
very small, we ensured that no restrictions were
violated in the end by applying the recursive al-
gorithm only for the two first epochs, and then
switching to Viterbi training.

In Viterbi training, each word is re-segmented
to the most likely segmentation given the current
model parameters using an extension of the Viterbi
algorithm. We modified the implementation of
Virpioja et al. (2013) to remove the previous seg-
ments of the word from the parameters before re-
analyzing the word, and re-adding the segments of
the new optimal segmentation afterwards. Addi-
tive smoothing with smoothing constant 1.0 was
applied in the Viterbi search.

Prior to the Viterbi training, we flattened the tree
structure so that the root nodes (word forms) link
directly to the leaf nodes (morphs), thus remov-
ing any shared substrings nodes that are not actual
morphs. This way all word forms are segmented
independently and all the restrictions are followed.

2.1.3 Tuning the amount of segmentation

Omorfi-restricted Morfessor was tuned following
Gronroos et al. (2015) to bring the number of to-
kens on the Finnish target side as close as possi-
ble to the English source side. The corpus weight
hyper-parameter « was chosen by minimizing the
sentence-level difference in token counts between
the English and the segmented Finnish sides of the
parallel corpus.



2.2 Rescoring n-best lists

Segmentation of the word forms increases the dis-
tances spanned by dependencies that should be
modeled by the language model. To compensate
for this, we apply a strong recurrent neural lan-
guage model, TheanoLM. A recurrent language
model is able to use arbitrarily long contexts with-
out suffering from data sparsity, as opposed to n-
gram language models, which are limited to a short
context window. The additional language model is
used in a separate rescoring step, to speed up trans-
lation, and for ease of implementation.

The TheanoLM model was trained on morpho-
logically segmented data. Morphs occurring less
than 1000 times in the full monolingual data were
removed from the vocabulary, and replaced with
the tag <UNK>. To create a class vocabulary,
the morphs were embedded in a 300-dimensional
space using word2vec (Mikolov et al., 2013). The
embeddings were clustered into 2000 classes, us-
ing agglomerative clustering with cosine distance.
Due to TheanoLM limitations, only the Europarl
and News data (but not Common Crawl) were used
for training.

The TheanoLLM parameters were: 100 nodes in
the projection layer, 300 LSTM nodes in the hid-
den layer, dropout rate 0.25, adam optimization
with initial learning rate 0.01, and minibatch 16.

2.3 Morph boundary correction

One benefit of segmented translation is the ability
to generate new compounds and inflections, that
were not seen in the training data. However, the
ability can also lead to errors, e.g when an English
word frequently aligned to a compound modifier is
translated using such a morph, even though there
is no compound head to modify. The “dangling”
morph boundary marker will then cause the space
to be omitted, forming an incorrect compound with
whatever word happens to follow.

For example, the Finnish pronoun moni (many)
is also a frequent prefix, as in monitoimi- (multi-
purpose) or monikulttuurinen (multicultural). This
resulted in an erroneous novel compound in
moniliberaalien keskuudessa (“‘among the multi-
liberals), which was corrected by introducing a
space between moni and liberaalien, leading to a
correct translation (“many among the liberals™).

In the opposite type of error, compounds may be
translated as separate words, or hyphenated com-
pounds translated with the hyphen omitted.
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We trained a neural network predictor to cor-
rect such errors by predicting the boundary type
{space, empty, hyphen} as an additional post-
processing step before joining the tokens.

The neural network takes as input both a to-
ken level representation, in the form of the same
word2vec embeddings as used in rescoring, and a
character level representation windowed to 4 char-
acters before and after the boundary. The tokens
are encoded by a bidirectional network of Gated
Recurrent Units (Cho et al., 2014), while the char-
acters are encoded by a feed-forward network.

Even though the boundary markers in the trans-
lation output are unreliable, they are a strong clue.
Our predictor has access to the translated markers.
During training markers were randomly corrupted
to avoid relying too much on them.

2.4 Moses configuration

We used GIZA++ alignment.  As decoding
LMs, we used two SRILM n-gram models with
modified-KN smoothing: a 3-gram and 5-gram
model, trained from different data. Many Moses
settings were left at their default values: phrase
length 10, grow-diag-final-and alignment sym-
metrization, msd-bidirectional-fe reordering, and
distortion limit 6.

The feature weights were tuned using MERT
(Och, 2003), with BLEU (Papineni et al., 2002)
of the post-processed hypothesis against a devel-
opment set as the metric. 20 random restarts
per MERT iteration were used, with iterations re-
peated until convergence.

The rescoring weights were tuned with a newly
included script in Moses, which uses kb-MIRA in-
stead of MERT.

3 Data

Our system participates in the constrained condi-
tion of the shared task. As parallel data, we used
the Europarl-v8 and Wikititles corpora, resulting
in 1 846 609 sentences after applying the Omorfi-
restricted Morfessor segmentation and cleaning.
As monolingual data, we used the Finnish
side of Europarl-v8, news.2014.fi.shuffled.v2,
news.2015.fi.shuffled and Common Crawl. The
total size of monolingual data after cleaning was
133 848 615 sentences, 2 135 919 860 morph to-
kens, and 11 771 367 morph types. Setting the
frequency threshold to 1000 occurrences for the



%BLEU, newstest

Example sentence

Configuration 2015 2016 Other applications could focus on muscle cells and insulin-producing cells, he added.
Omorfi-restricted Morfessor 10.77 11.27 Muissa sovelluksissa voi keskittyi lihas solujen ja insuliinia tuottavien solujen, hin lisisi.
+boundary correction 10.83 11.27 Muissa sovelluksissa voi keskittyi lihassolujen ja insuliinia tuottavien solujen, hin lisasi.
+rescoring 11.17 11.73 Muut sovellukset voivat keskitty4 lihas soluja ja insuliinia tuottavia soluja, hén lisési.
+rescoring +b0undary corr. 11.21 11.72 Muut sovellukset voivat keskittyd lihassoluja ja insuliinia tuottavia soluja, hén lisési.
Omorfi 10.00 10.59 Muut sovellukset voisi keskittya lihassolujen ja insuliinia tuottavien soluja, hin lisisi.
+boundary correction 10.07 10.61 Muut sovellukset voisi keskittyd lihassolujen ja insuliinia tuottavien soluja, hin lisési.
+rescoring  10.70 11.11 Muut sovellukset voivat keskittyi lihassoluja ja insuliinia tuottavien soluja, hin lisési.
+rescoring +boundary corr.  10.78 11.11 Muut sovellukset voivat keskittyé lihassoluja ja insuliinia tuottavien soluja, hin lisési.
Word baseline 10.48 10.65 Muut sovellukset voisivat keskittyi lihaksia ja insuliinia tuottavien solujen-, héin lisési.

Reference translation

Muut sovelluskohteet voisivat keskitty4 lihassoluihin ja insuliinia tuottaviin soluihin, hén lisdsi.

Table 2: Results of automatic evaluation, in BLEU percentage points.

TheanoLM morph lexicon reduced the number of
morph types to 121 735.

The complete monolingual data including the
Common Crawl was only used for creating the
morph lexicon and for training the 3-gram LM. For
the 5-gram LM, the TheanoLM and the boundary
predictor, the Common Crawl was omitted.

Because hyphenated compounds are much less
frequent than non-hyphenated words, we enriched
the training data for the boundary predictor by
adding the list of words compounds containing a
single hyphen and occurring more than 10 times in
the full monolingual corpus.

4 Results

Results are summarized in Table 2, together with
example translations produced by the different sys-
tem configurations.

The Omorfi-restricted Morfessor segmentation
leads consistently to an improvement over directly
using the Omorfi segmentation. For all config-
urations on the newstest2016 set, and for new-
stest2015 without rescoring, the improvement is
over +0.6 BLEU. On newstest2015 with rescoring,
the improvement is slightly smaller, +0.47 BLEU.

Adding the TheanoLM rescoring increases
BLEU between +0.4 and +0.7 BLEU. The in-
crease is larger for the more aggressively seg-
mented Omorfi system, supporting the conclusion
that a strong language model is needed to compen-
sate for the longer sequences.

In total, our best system results in a +1 BLEU
improvement over the word baseline.

Boundary prediction gave a modest improve-
ment of under +0.1 BLEU on the newstest2015
set, the effect on the newstest2016 set was neutral.
While the predictor works reliably for the correct
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Finnish text it was trained on, manual inspection
shows that the performance is erratic for disfluent
translation output. Even while the minor cosmetic
improvements are more common than errors, the
benefit is hard to quantify.

Due to a mistake during data pre-processing,
one of the n-gram language models penalizes the
use of numbers. The problem affects all the evalu-
ated systems and lowers the overall scores. How-
ever, it does not affect the increase in BLEU from
the use of Omorfi-restricted Morfessor or rescor-
ing. We verified this using BLEU of the test set
with all source sentences containing numbers re-
moved.

5 Conclusions

We propose a new morphological segmentation
method, combining the strengths of rule-based and
unsupervised morphology. We optimize the seg-
mentation in a data-driven manner, aiming to bal-
ance granularity between the two languages, while
restricting segmentation to a subset of the linguis-
tic morph boundaries. Using this segmentation, we
improve SMT quality over the linguistically accu-
rate segmentation.

Using a neural morph boundary predictor to cor-
rect errors in the boundary markings does not lead
to an improvement in BLEU.

In total, our best system results in a +1 BLEU
improvement over the word baseline.
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