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Abstract

This paper describes the submission of
Johns Hopkins University for the shared
translation task of ACL 2016 First Con-
ference on Machine Translation (WMT
2016). We set up phrase-based, hierar-
chical phrase-based and syntax-based sys-
tems for all 12 language pairs of this year’s
evaluation campaign. Novel research di-
rections we investigated include: neural
probabilistic language models, bilingual
neural network language models, morpho-
logical segmentation, and the attention-
based neural machine translation model as
reranking feature.

1 Introduction

The JHU 2016 WMT submission consists of
phrase-based systems, hierarchical phrase-based
systems, and syntax-based systems. In this pa-
per we discuss features that we integrated into our
system submissions. We also discuss the experi-
ments we did with morphological pre-processing
and neural reranking.

The JHU phrase-based translation systems for
our participation in the WMT 2016 shared trans-
lation task1 are based on the open source Moses
toolkit (Koehn et al., 2007). We built upon strong
baselines of the Edinburgh-JHU joint WMT sub-
missions from the last year (Haddow et al., 2015),
the Edinburgh syntax-based system submissions
from the last year (Williams et al., 2015) as well as
recent research in the field (Vaswani et al., 2013;
Devlin et al., 2014). We also used the Apache
Joshua translation toolkit (Post et al., 2015) to
build hierarchical systems for two language tasks.

1http://www.statmt.org/wmt16

2 Moses Phrase-Based Systems

The phrase based system builds on the joint JHU-
Edinburgh system from last year (Haddow et al.,
2015). This year, we included Och clusters in var-
ious feature functions in the official submission.
In addition, we included a large language model
based on the CommonCrawl monolingual data and
a neural network joint model.

2.1 Basic Configuration

We trained our systems with the following set-
tings: a maximum sentence length of 80, grow-
diag-final-and symmetrization of GIZA++ align-
ments, an interpolated Kneser-Ney smoothed 5-
gram language model with KenLM (Heafield,
2011) used at runtime, hierarchical lexicalized re-
ordering (Galley and Manning, 2008), a lexically-
driven 5-gram operation sequence model (OSM)
(Durrani et al., 2013) with 4 count-based sup-
portive features, sparse domain indicator, phrase
length, and count bin features (Blunsom and Os-
borne, 2008; Chiang et al., 2009), a distortion limit
of 6, maximum phrase-length of 5, 100-best trans-
lation options, compact phrase table (Junczys-
Dowmunt, 2012) minimum Bayes risk decoding
(Kumar and Byrne, 2004), cube pruning (Huang
and Chiang, 2007), with a stack-size of 1000
during tuning and 5000 during test and the no-
reordering-over-punctuation heuristic (Koehn and
Haddow, 2009). We optimize feature function
weights with k-best MIRA (Cherry and Foster,
2012).

We used POS and morphological tags as addi-
tional factors in phrase translation models (Koehn
and Hoang, 2007) for the German-English lan-
guage pairs. We also trained target sequence mod-
els on the in-domain subset of the parallel corpus
using Kneser-Ney smoothed 7-gram models. We
used syntactic preordering (Collins et al., 2005)
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Language Pair Sentences
German–English 19,074
Czech–English 19,074
Finnish–English 1,500
Romanian–English 943
Russian-English 9,006
Turkish–English 500

Table 1: Tuning set sizes for phrase-based system

and compound splitting (Koehn and Knight, 2003)
for the German-to-English systems. We did no
language-specific processing for any other lan-
guage.

The systems were tuned on a very large tuning
set consisting of the test sets from 2008-2014, with
a total of 19,074 sentences (see Table 1). We used
news-test 2015 as development test set. Signifi-
cantly less tuning data was available for Finnish,
Romanian, and Turkish.

2.2 Och Clusters

As in last year’s system, we use word classes in
four feature functions: (i) the language model, (ii)
the operation sequence model, (iii) the reordering
model, and the (iv) sparse word translation fea-
tures.

We generated Och clusters (Och, 1999) — a
variant of Brown clusters — using mkcls. We
have to choose a hyper parameter: the number
of clusters. Our experiments and also prior work
(Stewart et al., 2014) suggest that instead of com-
mitting to a single value, it is beneficial to use
multiple numbers and use them in multiple feature
functions concurrently. We used 50, 200, 600, and
2000 clusters, hence having 4 additional interpo-
lated language models, 4 additional operation se-
quence models, 4 additional lexicalized reordering
models, and 4 additional sets of sparse features.

The feature functions for word classes were
trained exactly the same way as the correspond-
ing feature functions for words. For instance,
this means that the word class language model re-
quired training of individual models on the sub-
corpora, and then interpolation.

The computationally most expensive use of
word clusters is in the language model, and to
some degree the operation sequence model, both
in terms of RAM and decoding speed. However,
last year’s experiments also showed that they are
most effective there.

Language Tokens LM Size
Czech 6.7 billion 13GB
German 65.2 billion 107GB
English 65.1 billion 89GB
Finnish 2.9 billion 8GB
Romanian 8.1 billion 13GB
Russian 23.3 billion 41GB
Turkish 11.9 billion 23GB

Table 2: Sizes of the language model trained on
the monomlingual corpora extracted from Com-
mon Crawl.

2.3 Huge Language Model

This year, large corpora of monolingual data
were extracted from Common Crawl (Buck et al.,
2014). We used this data to train 5-gram Kneser-
Ney smoothed language models, pruning out 3–
5 gram singletons. We trained these models with
lmplz, as we did all other language models. We
compressed the language models with KenLM
with 4-bit quantization and use of the trie data
structure.

The resulting size of the language model is
listed in Table 2. The largest language model is the
German model at 107GB, trained on 65.2 billion
tokens, about an order of magnitude larger than
previous data.

2.4 Neural Network Joint Model

The bilingual neural network language model, or
neural network joint model for machine transla-
tion (NNJM), was first proposed in (Devlin et al.,
2014). The basic idea is to construct neural lan-
guage model as in (Vaswani et al., 2013), but in-
clude both the source and target side of the par-
allel corpus into the modeling context. Specifi-
cally, for a target word ti within context T and
S, a (n + 2m + 1)-gram NNJM will model:
P (ti | T ,S) where T = ti−n, ..., ti−1, and
S = sai−m, ..., sai , ..., sai+m (ai is the index of
the word that is aligned to target word ti).

We used the NPLM toolkit to build NNJMs for
German-English, Romanian-English and Russian-
English in both directions. We set the target side
context window size to 5 and source side window
size to 4. For all the NNJMs we built, the learning
rate was set to 1.0 and we trained the models for
10 epochs. We kept all the other parameter values
to their defaults.
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2.5 Domain-Weighted Neural Network
Probablistic Language Model

The neural probablistic language model (NPLM)
was proposed by Bengio et al. (2003), but was not
used inside the machine translation decoder until
Vaswani et al. (2013) resolved the efficiency is-
sues. It tries to approximate the same distribu-
tion as traditional language models with a feed
forward neural network. Since discrete words are
converted into continuous representations known
as word embeddings, it has the potential to han-
dle longer contexts without having to worry about
issues with smoothing.

We used the NPLM toolkit2 to build neural lan-
guage models. Because of time and computation
constraints we did not include these models in our
final submission, but we experimented with dif-
ferent parameters for the relatively small Roma-
nian monolingual data. We also tried different ap-
proaches to fine-tune the neural language model
against the target side of English-Romanian tun-
ing data, which will be discussed in this section.

The traditional way to handle domain relevance
is to build language models for different domains
of monolingual data separately, and then interpo-
late them by maximizing the probablity of a tuning
set. This is because (1) the parallel data does not
necessarily fit the domain of the monolingual data,
and (2) querying several different language mod-
els would incur too much computation. But for
NPLM, the non-linear layers make effective inter-
polation of different models less trivial.

To avoid interpolation and still accommodate
domain adapation, we explored two solutions:

• consolidate all the monolingual data and train
a large NPLM on the consolidated data
• fine-tune NPLM against the tuning corpus

The next natural question to ask is: how should
the fine-tuning be done? We hereby propose three
methods that we tried in our experiments:

1. Initialize with the weights obtained from
training, go through the tuning corpus like
training and back-propagate through all the
weights in the network;

2. Like method 1, but only back-propagate
through the last layer of the network. This
could alleviate the problem of overfitting to
the tuning data;

2http://nlg.isi.edu/software/nplm/

System newsdev2016b
baseline 23.1
w/o untuned nplm on all data 23.5 (+.4)
w/o untuned nplm on setimes2 23.2 (+.1)
w/o all data nplm + method 1 23.4 (+.3)
w/o all data nplm + method 2 23.8 (+.7)
w/o all data nplm + method 3 24.0 (+.9)

Table 3: Comparison of English-Romanian trans-
lation results of baseline system and systems with
tuned/untuned NPLMs

3. Take the interpolation weights w1, w2, ..., wn

of the traditional language model trained on
the same division of monolingual data with
word count c1, c2, ..., cn. Compute the nor-
malized interpolation weights as follows:

w̃i =
wi

ci

In place of weighting and combining multiple
language models, we will weight the train-
ing data and train a single language model
on the weighted data. For example, if lan-
guage model trained on corpus 1 has weight
1.0 and language model trained on corpus 2
has weight 1.5, we will repeat corpus 1 twice
and corpus 2 three times. We then train the
NPLM on this repeated and consolidated cor-
pus.

Note that this method only used tuning data
implicitly during the process of obtaining in-
terpolation weights for the traditional lan-
guage model.

Table 3 showed our English-Romanian trans-
lation results with NPLM trained on Romanian
monolingual data. For method 3, we obtained
the interpolation weights by first building lan-
guage model on Europarl and setimes data us-
ing KenLM, and then interpolate the two lan-
guage model against newsdev2016a data using
SRILM. According to the interpolation weights
obtained, we repeated setimes2 data for 108 times
and did not repeat Europarl data before consolida-
tion. Both the training and tuning were run for 5
epochs with a learning rate3 of 0.25.

3The original NPLM paper used learning rate of 1. But
in our experiments any learning rate more than 0.25 would
cause inf values in the final parameters.
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Language Pair Best 2015 Baseline w/ clusters w/ CC LM w/ both w/ NNJM w/ all & ttl100
English-Turkish - 7.8 8.2 +0.3 9.4 +1.6 8.9 +1.1
Turkish-English - 14.0 14.3 +0.3 13.9 –0.1 14.1 +0.1
English-Finnish 15.5 11.9 12.6 +0.7 12.2 +0.3 12.9 +1.0
Finnish-English 19.7 16.5 16.9 +0.4 16.4 –0.1 16.9 +0.4
English-Romanian - 23.4 24.6 +1.2 23.4 +0.0 23.5 +0.1 23.7 +0.4 23.5 +0.1
Romanian-English - 32.0 32.5 +0.5 32.5 +0.5 32.8 +0.8 32.0 +0.0 32.8 +0.8
English-Russian 24.3 23.9 25.0 +1.1 23.9 +0.0 24.9 +1.0 24.4 +0.5 25.2 +1.3
Russian-English 27.9 27.5 28.3 +0.7 28.1 +0.6 28.2 +0.7 27.8 +0.3 28.7 +1.2
English-Czech 18.8 18.2 19.2 +1.0 18.8 +0.6 19.6 +1.4
Czech-English 26.2 27.0 27.7 +0.6 27.7 +0.7 28.1 +1.1
English-German 24.9 22.7 23.0 +0.3 22.5 –0.2 22.7 +0.0 22.6 –0.1 22.9 +0.2
German-English 29.3 29.0 29.6 +0.6 29.6 +0.6 29.9 +0.9 29.6 +0.6 30.0 +1.0

Table 4: Phrase-Based Systems

NPLM generally improves the translation per-
formance, but tuning method 1 does not help com-
pared to the untuned version of the NPLM. Both
method 2 and method 3 improve the performance
even further. What’s also interesting is that al-
though we repeated setimes2 data so many times,
solely building NPLM on setimes2 does not give a
comparable performance, hence the coverage ad-
vantage as introduced by adding more datasets still
makes a difference.

2.6 Results

Table 4 summarizes the impact of the contribu-
tions described in the preceeding sections. On
their own, the use of Och clusters helped for all
language pairs, the huge language model for al-
most all language pairs, and the neural network
joint model for almost all language pairs. The
gains are partially additive.

The biggest consistent gains are observed on
Czech and Russian, in both directions, and for
German–English — but not English–German. In
the past we noted that the baseline English–
German system, which includes a part-of-speech
language model, is not helped much by the Och
clusters. However, we are surprised by the lack of
support from the huge language model.

For the other language pairs, the smaller tuning
sets and hence higher variance in test scores make
the results harder to interpret. The use of the huge
language model gives mixed results, and gains are
often not only not additive, but having more fea-
tures hurts. See especially English–Romanian and
Turkish–English where the best system does not
include the huge language model, and Turkish–
English where the best system only uses the huge
language model.

Still, for all language pairs, the use of all fea-

tures (and a translation table limit of 100) allowed
us to outperform the strong baseline by +.1 to
+1.3, for most language pairs around +1 BLEU.

3 Morphological Decomposition

We explored various methods for handling com-
plex morphology. While we only apply these
methods to Turkish, the methods are language in-
dependent. All of these methods were used and
evaluated in the context of a Moses phrase-based
system, as described in section 2.1.

We experimented with three segmentation algo-
rithms: Morfessor (Virpioja et al., 2013), Chip-
Munk (Cotterell et al., 2015), and Byte-Pair en-
coding (Sennrich et al., 2015). .

Morfessor implements a set of segmentation al-
gorithms designed for languages with concatena-
tive morphology (where additional morphemes are
added to convey meaning, but the stem and exist-
ing morphemes are not typically altered). Turkish
falls in this category.

We focus on the Morfessor baseline algorithm,
and use it without supervised word segmentations.
While the segmentation may resemble linguistic
segmentation, this is not guaranteed.

ChipMunk is an algorithm for segmenting
words into morphemes and labeling those seg-
ments. It jointly models segmentation and label-
ing of the segments. While we do not use the label
information, the labeling of segments is designed
to reduce certain segmentation errors. For exam-
ple, it prevents a prefix from directly attaching to
a suffix, which prevents the segmentation of reed
into re-ed. Since we choose not to rely on linguis-
tic knowledge of Turkish, we use the pre-trained
model with the tag level parameter set to 2.

Byte Pair Encoding (Gage, 1994) is a compres-
sion algorithm that recursively replaces frequent

275



Language Threshold Token count
Turkish none 8806
Turkish 0 9606
Turkish 2 9935
Turkish 5 10169
Turkish 10 10416
Turkish 20 10720
English none 11514

Table 5: Token counts for different thresholds for
Morfessor segmentation

consecutive bytes with a symbol that does not oc-
cur elsewhere. Each such replacement is called a
merge, and the number of merges is a tunable pa-
rameter. The original text can be recovered using
a lookup-table. Sennrich et al. (2015) applied this
to word segmentation, and demonstrate its success
at solving the large vocabulary problem in neural
machine translation.

To create our training data for the Morfessor and
ChipMunk experiments, we augment the original
training data with a second copy that has been seg-
mented. For the tuning and test data, we only seg-
ment words that occur infrequently. This allows
frequent words to be translated directly, but also
allows the system to learn from the subword units
of all words, including frequent ones.

The number and type of subword units in each
word segmented by byte pair encoding is depen-
dent on the number of merges performed. Since
byte pair encoding segments words into the largest
unit found in the table, and common words will
occur in the table, this means that no subword in-
formation is extracted from common words. We
set the number of merges to 50,000, and report
the result, but did not explore it further. Perhaps
a smaller number of merges would force the seg-
mentation of more frequent words.

Table 5 shows the number of tokens using Mor-
fessor and different segmentation strategies, as
well as the number of tokens in the English par-
allel text. We show the number of tokens here
because a common rationale for segmenting mor-
phological rich languages is to balance the number
of tokens.

BLEU scores for different amounts of segmen-
tation are in Table 6. We report cased score on
the development test set described in section 2.1.
We see the best improvements with the ChipMunk
segmentation and a rare word replacement thresh-

Method Processing Thresh. BLEU
baseline - - 13.9

Byte-Pair preprocessing - 13.7
Chipmunk replace-rare 2 14.3
Chipmunk replace-rare 10 14.9
Chipmunk replace-rare 20 15.4
Chipmunk replace-rare 20 14.7
Morfessor replace-rare 0 13.5
Morfessor replace-rare 2 13.7
Morfessor replace-rare 5 14.0
Morfessor replace-rare 10 14.1
Morfessor replace-rare 20 14.2

Table 6: Turkish - English morphology results on
newsdev2016b

old of 20. We also see gains with the fully unsu-
pervised Morfessor segmentation.

None of these results completed in time for our
official submission, which used unsegmented text.

4 Neural Sequence Model Reranking

We also experimented with N-best reranking using
a neural sequence model. The motivation is to ex-
ploit the efficiency of standard phrase-based mod-
els for generating N-best hypotheses, combined
with the modeling power of neural methods for
scoring. This hybrid approach demonstrated posi-
tive results in, e.g. (Cohn et al., 2016).

First, we train neural attention models (Bah-
danau et al., 2015) on our training bitext in both
forward and reverse directions. For example, in
the Russian-English task we would obtain a for-
ward model p(en|ru) that scores English hypothe-
ses given Russian input, and a reverse model
p(ru|en) that scores the Russian input given an
English hypothesis. We used the TensorFlow im-
plementation (Abadi et al., 2015), with 2-layers of
LSTMs and 1024 hidden units each; other hyper-
parameters use default settings. The training bi-
text is preprocessed so that top 10k vocabulary
in terms of frequency are kept as is, frequency 1
singletons are mapped to an unknown word token
(UNK), and all remaining mid-frequency words
are mapped to one of 600 Brown clusters. Note
that our vocabulary list of 10,601 is considerably
less than those used in existing neural MT litera-
ture (e.g. 30k in (Bahdanau et al., 2015)). This is
a trade-off between modeling power vs. training
time, and we felt that a smaller vocabulary may
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be sufficient since our model only scores existing
translations and do not need to generate.

Second, we generate distinct 50-best lists on our
tuning set using a baseline Moses phrase-based
system in Table 4. Each hypothesis is scored by
the forward and reverse neural models, and to-
gether with the original Moses decoder score and
word penalty features (for a total of 4 features),
we reran MERT training and obtained optimal lin-
ear weights. This is the reranker system used for
reranking test N-best lists.

Preliminary results with this approach were in-
conclusive. For example, on the Russian-English
newstest2015, the BLEU score is 27.27 for 1-best
vs. 27.31 for reranking. On German-English new-
stest2015, the BLEU score is 28.12 for 1-best and
28.22 for reranking. (Note, these results did not in-
clude a post-processing step and are thus not com-
parable to the numbers in Table 4). Analysis of the
output showed that our rerankers appear conser-
vative and do not frequently chooses hypotheses
different from the 1-best. We believe more exper-
imentation with different neural model hyperpa-
rameters is necessary. Future work also includes
experimentation on larger N-best lists and com-
parison with direct 1-pass translation using neural
models. This reranker was not included in the final
submission.

5 Moses Syntax-based Systems

In this section we discuss our setup for the three
string-to-tree syntax-based systems we submit-
ted for German-English, English-German, and
Turkish-English. Unless metioned in this sec-
tion, we use the same setup as the baseline Moses
phrase-based systems described in Section 2.

5.1 Preprocessing

Since we are building string-to-tree syntax-
based models, we need to parse the target side
of the parallel corpus before training. For
our syntax-based models we used the Berke-
ley parser to parse the English side of the
German-English and Turkish-English parallel cor-
pus, and ParZu (Sennrich et al., 2009) to parse
the German side of the English-German paral-
lel corpus. For the Berkeley parser we used
the default English grammar eng sm6.gr. For
ParZu we used clevertagger4 as the POS-tagger,

4https://github.com/rsennrich/clevertagger

SMOR5 as the morphological analyzer, and used
zmorge-20140521-smor newlemma.ca as the
model for morphological analysis. We pass
the all corpus for syntax-based models through
deescape-special-chars.perl before pars-
ing to avoid formatting problems.

In addition to parsing, for English-
German syntax-based model, we also used
hybrid compound splitter.py to split the
compound words in German, as in Edinburgh’s
WMT 2015 submission (Williams et al., 2015)6.
We used the same morphological analyzer model
as used for ParZu.

5.2 Feature Scores

The most significant difference between the
syntax-based model and the phrase-based model
is that the translation model score is calculated by
SCFG translation rule scores instead of phrase pair
scores. Specifically, a SCFG translation rule r is
denoted as:

L →< S, T ,A >

where L is the left-hand side label as shared by
both sides of the translation, S and T is a sequence
of terminal and non-terminal nodes on the source
and target side, respectively. A denotes the align-
ment between the source and target nodes. Given
a derivationD that generates the sentence pair, the
forward and inverse translation model score is:

fwd =
∏

L→<S,T ,A>∈D
P (L, T | S,A)

inv =
∏

L→<S,T ,A>∈D
P (S | L, T ,A)

Apart from these two scores, we also added
unknown word soft matching features and glue
rule penalties. We also kept the lexical translation
scores, word penalties and phrase penalties etc. as
in the phrase-based translation models.

5.3 Configurations

To avoid problems during syntax-based rule ex-
traction and decoding, we removed all the factors
such as lemma and POS-tags and only use word
during the training phase.

We used the GHKM rule extractor implemented
in Moses to extract SCFG rules from the parallel

5http://kitt.ifi.uzh.ch/kitt/zmorge/
6https://github.com/rsennrich/wmt2014-scripts
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corpus. We set the maximum number of nodes
(except target words) in the rules (MaxNodes) to
20, maximum rule depth (MaxRuleDepth) to 5,
and the number of non-part-of-speech, non-leaf
constituent labels (MaxRuleSize) to 5, and we
allowed unary rules to appear in the extracted
phrases. We also limited the maximum number
of lexical items in a rule to 5.

To avoid excessive use of glue rules, we fixed
the feature weight for glue rules as -99 during tun-
ing step.

6 Joshua Systems

We also used the Apache Joshua translation
toolkit7 to build Hiero systems for two languages:
English–Finnish and English–Turkish. The de-
fault settings were used for the Thrax grammar ex-
tractor: Hiero rules were extracted from spans as
large as 10 words, and applied at decoding time
to spans as long as 20 words. We used all of the
provided bitext for both language tasks. All sys-
tems used three language models: one built on the
target side of the bitext, another built on all avail-
able common-crawl monolingual data, and a third,
class-based 9-gram language model built on the
target side of the bitext after applying Brown clus-
tering (k=2,000). Each of these received a sepa-
rate weight. We tuned with k-best batch MIRA
(Cherry and Foster, 2012).

Case is important for the human evaluation,
and its proper handling has received some atten-
tion. Instead of applying a method such as true-
casing (Lita et al., 2003), we use the following
heuristic for these languages. First, we convert
all data to lowercase at training time, so the mod-
els are learned in lowercase. At test time, input
words are lowercased and marked with a tag de-
noting whether each source word was (a) lower-
case, (b) Capitalized, or (c) ALL UPPERCASE.
These case markings are then projected to the
target words through the word-level alignments
stored with grammar rules. This worked well for
the language pairs under consideration, though it
would obviously not work for all language pairs.

We also employed one small trick with Turk-
ish punctuation: after removing whitespace inside
balanced single-quotes, we remove the space from
both sides of remaining single-quotes. This cap-
tured a common pattern and resulted in a small
BLEU score gain that helped propel the system

7http://joshua.incubator.apache.org/

Language Pair Phrase Syntax Joshua
English-Turkish 9.2 - 9.8
Turkish-English 12.9 13.9 -
English-Finnish 13.8 - 11.9
Finnish-English 19.1 - -
English-Romanian 23.5 - -
Romanian-English 32.2 - -
English-Russian 24.0 - -
Russian-English 27.9 - -
English-Czech 23.6 - -
Czech-English 30.4 - -
English-German 28.3 27.3 -
German-English 34.5 32.3 -

Table 7: Official scores of all submission on new-
stest2016 (cased BLEU).

into first place (by cased BLEU). Although the
English–Turkish system had the highest BLEU
score, however, it was in the fifth cluster in the
manual evaluation. The English–Finish system
did not perform well by either metric.

7 Conclusion

Our submissions are summarized in Table 7.
We submitted phrase-based systems for all 12
language pairs, syntax-based systems for 3 and
Joshua hierarchical systems for 2 language pairs.
For the low resource Turkish–English language
pairs, the latter systems outperformed the phrase-
based submission.

Compared to submissions from other groups,
our performance is solid. In terms of neural ma-
chine translation components, we have seen gains
from the use of the NNJM (Devlin et al., 2014) as
a feature function but not in re-ranking with a se-
quence to sequence model. Given the success of
these components in other systems, we will target
their use in the future.
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