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Abstract

Speed of access is a very important prop-
erty for phrase tables in phrase based sta-
tistical machine translation as they are
queried many times per sentence. In this
paper we present a new standalone phrase
table, optimized for query speed and mem-
ory locality. The phrase table is cache free
and can optionally incorporate a reorder-
ing table within. We are able to achieve
two times faster decoding by using our
phrase table in the Moses decoder in place
of the current state-of-the-art phrase ta-
ble solution without sacrificing translation
quality. Using a new, experimental version
of Moses we are able to achieve 10 times
faster decoding using our novel phrase ta-
ble.

1 Introduction

Phrase tables are the most basic component of a
statistical machine translation decoder, containing
the parallel phrases necessary to perform phrase-
based machine translation. Due to the noisy na-
ture of phrase extraction and the large phrase vo-
cabulary, phrase tables’ size can reach hundreds of
gigabytes in size. Lopez (2008) describes phrase
tables of size of half of terabyte. A decade ago
it was prohibitively expensive for a phrase table
of this size to reside in memory, even if hardware
supported it: a gigabyte of RAM back in 2006
costed about a 100 USD, compared to 5 USD in
2016. Because of that for a long time Machine
Translation was considered a big data problem and
the engineering efforts were focused on reducing
the model size. This lead to the creation of sev-
eral binary phrase table implementations that tack-
led the memory usage problem: Zens and Ney
(2007) and Junczys-Dowmunt (2012b) developed

memory mapped phrase tables which also reduce
memory usage using specific datastructures. The
former uses a trie (Fredkin, 1960) and the latter
uses specific for the purpose phrasal rank encod-
ing. Lopez (2007) and Germann (2015) developed
suffix array based phrase tables, which work di-
rectly with the parallel corpora in order to enable
easier addition of new data, avoid long binariza-
tion times and keep memory usage low, but tradi-
tional precomputed phrase tables offer better per-
formance. RAM prices have dropped 20 times
over the past 10 years and high performance server
machines have hundreds of gigabytes of memory.
For those machines it is no longer needed to sac-
rifice query performance in favour of compression
techniques such as the one in Junczys-Dowmunt
(2012a). Furthermore the machines nowadays are
highly parallel and locking caches which didn’t
hurt performance in the past now prevent imple-
mentations from scaling. We have designed a
new phrase table called ProbingPT based on lin-
ear probing hash (Heafield, 2011) for storage and
lock-free querying, in order to deliver the best
possible performance in modern use cases where
memory is not an issue.

2 Implementation

First, we will give a brief overview of Junczys-
Dowmunt’s (2012b) CompactPT which is cur-
rently the state of the art phrase table in terms of
both speed and space usage. It uses phrasal rank
compression (Junczys-Dowmunt, 2012a) which
can be viewed as a form of byte pair encoding
(Gage, 1994). The method recursively encodes
bigger strings as a composition of several smaller
ones until only small units remain. Minimum
perfect hashing (Nick Cercone, 1983) is used to
hash phrases to their expansions and on top of
that bit aligned Huffman encoding is used to fur-
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ther compress the phrases. This approach achieves
the smallest model size but it has several draw-
backs when it comes to lookup. First, minimum
perfect hashing requires a secondary hash func-
tion called fingerprinting in order to avoid false
positives which results in increased CPU usage.
Second, while phrasal rank encoding is extremely
space efficient, it is quite slow to compute, because
of the multitude of random memory accesses nec-
essary to reconstruct a single phrase. The reason is
that when a request to read a portion of memory is
submitted what is actually fetched is not only the
bytes that were requested but also the surrounding
bytes. This is because usually when one byte of
memory is accessed, the surrounding bytes would
also be necessary so memory has been designed to
fetch things in small burst, called DRAM bursts.
As such peak memory performance can only be
achieved by accessing consecutive memory and
random memory accesses reduce the total mem-
ory bandwidth, because some of fetched bytes are
not used.

In order to speed up querying in CompactPT,
extensive caching is used but it is not thread lo-
cal and causes a lot of locking for higher thread
count. In our experiments we found that more than
8 threads actually hurt CompactPT’s performance.
The phrase table also has a mode which disables
phrasal rank encoding and caching. In this mode
performance at higher thread count doesn’t de-
crease but instead flattens out, however it is un-
able to achieve better performance than the phrase
rank encoding version no matter the thread count.1

Even if caches don’t cause lock contention at
higher thread count, they carry additional over-
head during runtime. Our goal in design was to
eliminate the necessity for cache by using high
performance datastructures and eliminate random
memory accesses to maximize the memory band-
width.

2.1 ProbingPT

Our phrase table is based on an existing lin-
ear probing hash table implementation (Heafield,
2011). Linear probing hash provides O(1) search
time, has a very small overhead per entry stored
and is shown to be very fast in practice (Heafield,
2011). The phrase table consists of two byte ar-
rays: The first contains the probing hash table and
the second one contains the payloads (phrase prob-

1https://github.com/moses-smt/mosesdecoder/issues/39

abilities, word alignments and optionally lexically
reordering scores) associated with each entry in
the hash table. Hashes of the source phrases are
used as keys. When the phrase table is queried, the
source phrase is hashed and we try to find it in the
probing hash table. If it is found inside the hash ta-
ble we are given a start and end index correspond-
ing to the location of the target phrases associated
with the source phrase queried inside the payloads
byte array. The payloads byte array stores con-
secutively in binary format each target phrase to-
gether with its scores and word alignment infor-
mation. We have also provided the option to store
lexical reordering information and sparse features.
Unlike previous phrase tables implementations,
this phrase table doesn’t employ any compression
method which allows for all target phrases asso-
ciated with a single source phrase to be fetched
in a single memory operation. In contrast, both
Junczys-Dowmunt’s (2012b) and Zens and Ney
(2007) employ pointer chasing during querying
in order to extract and reassemble the results.
Their approaches are more space-efficient but in-
cur higher memory cost due to increased number
of random memory accesses. Furthermore our im-
plementation doesn’t require any scratch memory
to decompress queries: they can be read directly
from the payloads byte array which contributes to
its speed and avoids extra memory operations (al-
locations/deallocations) or the need for caching.
Storing lexical reordering information inside the
phrase table reduces the memory usage, because
we no longer need to store a key for every lexical
reordering score, as we reuse the phrase table key.
Extracting lexical reordering scores no longer car-
ries an extra performance penalty as querying is
tied to the phrase table query and all related scores
would be fetched with the same DRAM burst, be-
cause they are stored consecutively in memory. To
our knowledge, this is the first phrase table im-
plementation that incorporates lexical reordering
table.

The phrase table is part of upstream Moses2 but
it can also be used standalone.3

3 Experimental setup

For our performance evaluation we used French-
English model trained on 2 million EUROPARL
sentences. We used a KenLM (Heafield, 2011)

2Anonymous for submission
3Anonymous for submission
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language model and cube pruning algorithm (Chi-
ang, 2007) with a pop-limit of 400. We time the
end to end translation of 200,000 sentences from
the training set. All experiments were performed
on a machine with two Xeon E5-2680 processors
clocked at 2.7 Ghz with total of 16 cores and 16
hyperthreads and 290 GB of RAM. In all of our
figures “32 cores” means 16 cores and 16 hyper-
threads. Note that hyperthread do not provide ad-
ditional computational power but merely permit
better resource utilization by allowing more work
to be scheduled for the CPU by the OS. This al-
lows the CPU to already have scheduled work to
do while a scheduled process is waiting for IO. Us-
ing hyperthreads will not necessarily increase per-
formance and in cases with high lock contention it
can be detrimental for performance.

3.1 Decoders

We use two different decoders for our experi-
ments: The widely used moses machine transla-
tion decoder, available publically and Moses2, an
experimental faster version of Moses.4 We per-
form some benchmarks using Moses to show the
speedup our implementation offers as a drop-in re-
placement to existing phrase tables in the widely
used decoder. Unfortunately Moses has known
multi-threading issues that come from the usage of
several functions which call std::locale as part of
their initiations, which carries a global lock.1 As
such it is not entirely adequate to use it to measure
the performance of the phrase tables because it
serves as a bottleneck that might hide performance
issues. Thus we used the highly optimized Moses2
to show the speed our phrase table can achieve
when it is running on a fast decoder, optimized for
multi-threading. Furthermore because of their in-
trusive nature, integrated lexical reordering tables
are only implemented in Moses2. It is expected
that when Moses2 matures it will be merged back
into Moses master.

3.2 PhraseTables

In our experiments we focus on comparing Prob-
ingPT against CompactPT. There are currently
two other phrase tables: PhraseDictionaryOnDisk,
a multithreading enabled implementation of the
Zens and Ney (2007) phrase table and Phrase-
DictionaryMemory, an in-memory phrase table
which reads in the raw phrase table and puts it

4Anonymous for submission

inside a hash map. Junczys-Dowmunt (2012b)
has shown that CompactPT is faster than Phrase-
DictionaryOnDisk under any condition, so we
do not run experiments against it. PhraseDic-
tionaryMemory comes with the downside that it
needs to parse in the phrase table first, before de-
coding can commence, which leads to long load-
ing times and huge memory usage. In our experi-
mental setup, the in-memory phrase table took 20
minutes to load and consumed 86 GBs of mem-
ory, more than ten times more memory than any
other phrase table. Even when disregarding load-
ing time, we found out that it is consistently 1-5%
slower than ProbingPT in various thread configu-
rations. We decided not to include those results, as
they do not show anything interesting and because
of the aforementioned shortcomings, PhraseDic-
tionaryMemory is seldom used in practice, unless
the dataset involved is really tiny.

ProbingPT and CompactPT produced identi-
cal translations under the same decoder. In our
tests 3 out of 200,000 sentences slightly differ in
their translation. This is expected according to
Junczys-Dowmunt (2012b) because CompactPT’s
fingerprinting leads to collisions and extracting the
wrong phrase in few rare cases. We conclude that
our implementation is correct and can be used as
drop-in replacement for CompactPT. We have pro-
vided the complete set of conducted experiments
on Figure 5 in the appendix. Those are useful if
the reader wishes to compare system/user time us-
age between different configurations.

3.3 Model sizes

Phrase table Size
ProbingPT 5.8 GB
ProbingPT + Reordering (RO) 8.2 GB
CompactPT 1.3 GB
CompactPT RO 0.6 GB

Table 1: Phrase table sizes

CompactPT which is designed to minimize
model size has naturally lower model size com-
pared to ProbingPT. However the extra RAM used
is only 2% of the available on our test system
which is insignificant. Using the extra memory is
justified by the increased performance.
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Figure 1: Real time comparison of Moses be-
tween ProbingPT and CompactPT together with
reordering models based on CompactPT.

Figure 2: Real time comparison of Moses be-
tween ProbingPT and CompactPT

Figure 3: System time comparison of the sys-
tems on Figure 2. The comparison is in log
scale.

Figure 4: Moses2 comparison between Prob-
ingPT integrated reordering and CompactPT
based reordering. Both systems use ProbingPT
as a phrase table.

4 Evaluation

Figure 1 shows performance comparison of two
systems with CompactPT based reordering tables
that differ in the phrase table used. The best
performing ProbingPT system here delivers about
30% better performance compared to the corre-
sponding CompactPT system. We see that the
CompactPT system doesn’t improve its perfor-
mance when using more than 8 threads, but the
ProbingPT one continues to scale further until it
starts using hyperthreads.

We find it likely that the performance of the
ProbingPT system on Figure 1 is hampered by the
inclusion of CompactPT based reordering. Moses
doesn’t support ProbingPT based reordering and
in order to measure the head-to-head performance
of the two phrase tables we conducted the same
test using two systems that do not use reorder-
ing tables and only differ by the phrase table, as
shown on Figure 2. We can see that ProbingPT

consistently outperforms CompactPT by 10-20%
at lower thread count but the difference grows as
much as 5 times in favour of ProbingPT at the
maximum available thread count on the system. If
we compare the best performance achieved from
both system, ProbingPT is capable of delivering
twice the performance of CompactPT. It is impor-
tant to note that ProbingPT’s performance always
increases with the increase of the thread count,
whereas CompactPT’s performance doesn’t im-
prove past 8 threads. We can also see that the
ProbingPT based system can even take advantage
of hyperthreads, which is not possible with any
system that uses CompactPT based table (Figure
1). On Table 2 we can observe that removing the
reordering table from the CompactPT system has
a much smaller effect than removing it from the
ProbingPT system. This hints that lexicalized re-
ordering only slows down the decoder because it
is implemented in a inefficient manner. We can
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conclude that Moses can achieve faster translation
times on highly parallel systems by using Prob-
ingPT.

4.1 Why is CompactPT slower?
In the single-threaded case it likely that Com-
pactPT’s many random memory accesses cause
it to be slower than ProbingPT, because consec-
utive memory accesses are much faster due to
the DRAM burst effect. When the thread count
grows, the performance gap between CompactPT
and ProbingPT widens, because of the locking that
goes on in the former’s cache. This can be seen
from Figure 3 which shows the system time used
during the execution of the phrase table only test.
System time shows how much time a process has
spent inside kernel routines, which includes but is
not limited to locking and memory allocation. The
ProbingPT system uses orders of magnitude less
system time compared to the CompactPT one. The
system time used in the CompactPT system grows
linearly until 8 threads and then the growth rate
starts increasing at a faster rate widening the gap
with ProbingPT. This is also the reason why Com-
pactPT’s performance severely degrades when us-
ing hyperthreads. The ProbingPT system on the
other hand (Figure 3) increases its usage of sys-
tem time at a linear rate even when using hyper-
threads. We can conclude that the simpler design
of ProbingPT scales very well with the increase of
number of threads and is suitable for use in mod-
ern translation systems running on contemporary
hardware.

4.2 Integrated reordering table
As integrated lexical reordering is only available
in Moses2 we conducted an experiment where we
compare systems using CompactPT based reorder-
ing and ProbingPT integrated reordering (Figure
4). The best ProbingPT based system is able to
translate all sentences in our test set in only 4 min-
utes, whereas the best CompactPT reordering sys-
tem took 39 minutes (Table 3). We also observed
limited scaling when using CompactPT based re-
ordering: the best performance was achieved at
8 threads. For contrast with Moses (Table 2) we
can see that lexicalized reordering has neglige-
ble impact on performance if it is used within
ProbingPT (We believe the reason we are getting
slightly worse results when not using a reordering
table are due to a bug in our implementation). We
are not entirely certain which factor contributed

more to the increased performance: having a re-
ordering table based on the faster ProbingPT or
the reduced IO and computational resources that
the integrated reordering table requires. As we do
not currently have a standalone ProbingPT based
reordering table we can not say for sure. Never-
theless we achieve 10x speedup by using our novel
reordering table within Moses2.

4.3 Profiling the code

We were very surprised of the speedup our phrase
table offered, particularly in Moses2, because in
phrase based decoding, the number of phrase ta-
ble queries increases linearly with the length of
the sentence. They constitute a tiny fraction of
the number of language model queries, which are
about 1 million per sentence (Heafield, 2013). We
decided to investigate our results using Google’s
profiler.5 We profiled the pair of systems, dis-
played on Figure 4, because they showed the high-
est relative difference between each other. In the
system which has ProbingPT based reordering, the
language model is responsible for about 40% of
the decoding runtime, compared with only 1%
in the Moses2 system with CompactPT based re-
ordering. In the latter system the runtime is domi-
nated by CompactPT search and std::locale lock-
ing due to the phrase table using string operations
during its search.

In Moses the difference between using Prob-
ingPT and CompactPT is not so apparent, before
we go to higher thread count, because the decoder
itself is very slow and hides the phrase table inef-
ficiencies. It is clear that even though the phrase
table queries are a small part of the full decod-
ing process, they are enough to slow it down 10
times if no other bottlenecks exist. Using Prob-
ingPT for both the phrase table and the reordering
model makes for a compelling combination.

5 Future work

In the future we will add support for hierarchi-
cal phrase tables inside ProbingPT. In hierarchi-
cal machine translation the burden on the phrase
table is a lot higher so the improved performance
would be even more noticeable. Given the differ-
ence between the systems with and without Prob-
ingPT based reordering in Table 3 we believe that
adding that feature to Moses will allow us to get
performance similar to that in the final column of

5https://github.com/gperftools/gperftools
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Cores CompactPT, RO CompactPT, NoRO ProbingPT, RO ProbingPT, NoRO
1 327 300 277 242
2 197 167 161 138
4 116 101 96 82
8 80 66 60 50

16 106 74 52 39
32 218 151 90 31

Table 2: Time (in minutes) it took to translate our test set with Moses with different number of cores
used. The systems differ by the type of phrase table used (ProbingPT or CompactPT) and whether they
use a reordering table (based on CompactPT). The fastest translation time for each system is highligthed.

Cores CompactRO ProbingRO NoRO
1 116 66 72
2 64 30 35
4 40 15 18
8 39 9 10

16 46 5 6
32 67 4 5

Table 3: Time (in minutes) it took to translate
our test set with Moses2 with different number of
cores used. Since the only phrase table that is used
is ProbingPT, the systems differ by the reordering
table used. The fastest translation time for each
system is highligthed.

Table 2, while maintaining the quality of the more
complex model described in the first column of the
same table.

6 Conclusion

As hardware evolves extremely fast, it may prove
useful to revisit old problems which are consid-
ered solved. The new available technology com-
pels us to reconsider our priorities and decisions
we took in the past.

We designed a faster phrase table that is able to
take full advantage of the modern highly parallel
CPUs. It shows better performance than related
work and also scales better with higher thread
count and it helped us expose performance issues
in Moses. We believe ProbingPT is useful to in-
dustry and researchers who use modern server ma-
chines with many cores and a lot of main memory.
Enthusiast machine translation users would proba-
bly prefer to use CompactPT as it is most suitable
when memory is limited and the thread count is
low.
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A Experiments Matrix

Figure 5: A matrix of all experiments conducted.
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