
Proceedings of the 10th SIGHUM Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH), pages 84–89,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Semi-automated annotation of page-based documents
within the Genre and Multimodality framework

Tuomo Hiippala
Centre for Applied Language Studies

University of Jyväskylä
P.O. Box 35, 40014 Finland

tuomo.hiippala@iki.fi

Abstract

This paper describes ongoing work on a
tool developed for annotating document
images for their multimodal features and
compiling this information into a cor-
pus. The tool leverages open source com-
puter vision and natural language process-
ing libraries to describe the content and
structure of multimodal documents and to
generate multiple layers of XML annota-
tion. The paper introduces the annotation
schema, describes the document process-
ing pipeline and concludes with a brief de-
scription of future work.

1 Introduction

Multimodality – or how multiple modes of com-
munication interact and co-operate – has become
a concern within many fields that fall under the
umbrella of digital humanities (Svensson, 2010;
O’Halloran et al., 2014). Whereas gestures, gaze
and postures accompany spoken language in face-
to-face conversation, written language works to-
gether with photographs, diagrams, typography
and other communicative resources in documents.
Given the inherent complexity of multimodal phe-
nomena, combined with the variation arising from
contextual factors, corpus-based approaches have
been suggested as necessary for bringing multi-
modality under increased analytical control (All-
wood, 2008; Bateman, 2014b).

This paper contributes to the empirical study of
multimodality in page-based documents by pre-
senting a prototype tool for creating multimodal
corpora from document images that were not born
digital. The tool generates stand-off XML an-
notation following the Genre and Multimodal-
ity (GeM) model, which provides an annotation
schema with multiple layers of description that at-

tend to the content, layout, appearance and dis-
course relations in page-based documents (Bate-
man, 2008).

The GeM annotation schema, which is intended
to “function as a tool for isolating significant pat-
terns against the mass of detail that multimodal
documents naturally present” (Bateman, 2014a,
33), has proven useful for comparing the multi-
modality of documents across cultures (Thomas,
2009; Kong, 2013) and describing their change
over time (Hiippala, 2015b). Yet the GeM model
has not been adopted widely, because applying the
multi-layered annotation schema requires ample
time and resources. This requirement arises from
the aforementioned mass of detail that occurs in
multimodal documents.

The tool presented in this paper attacks the bot-
tleneck issues of time and resources by leverag-
ing several open source computer vision and op-
tical character recognition libraries for the semi-
automatic annotation of multimodal documents.
To support this task, the paper proposes a variant
of the GeM annotation schema named auto-GeM.
This variant of the annotation schema is geared
towards generating machine-readable annotation,
which may be studied using tools developed for
the purpose (Hiippala, 2015a), while also provid-
ing ground truths for specific document genres,
whose availability is considered a prerequisite for
automating other parts of the annotation process.

The paper begins with a brief introduction to
the GeM model and its annotation schema, relat-
ing the work on the prototype tool to previous at-
tempts at automating parts of the annotation pro-
cess. The document processing pipeline and the
proposed auto-GeM annotation schema are then
described in greater detail. Finally, the conclu-
sion outlines current challenges and sketches fu-
ture work on the tool.

84

2 The Genre and Multimodality model

The GeM model provides a multi-layered XML
schema for stand-off annotation of multimodal
documents (Henschel, 2003; Bateman, 2008).

The model has four layers of annotation: any
document described using the GeM model is first
segmented into base units. These units constitute
the base layer. Recognized base units include,
among others, sentences, headers, photographs,
captions and illustrations (Bateman, 2008, 111).
The base units are then picked up for description
in the layout layer, which features three compo-
nents that describe their grouping and logical or-
ganization (layout structure), determine their typo-
graphic and graphic features (realization informa-
tion), and establish their position in the document
layout (area model).

The rhetorical layer, in turn, describes the dis-
course relations holding between the content, ex-
tending Rhetorical Structure Theory to cover both
verbal and visual base units (Mann and Thomp-
son, 1988; Taboada and Mann, 2006). Finally, the
navigation layer describes how documents support
their use with pointers such as “see page 5” and
their corresponding entries, such as page and sec-
tion numbers.

Each document is thus described from four dif-
ferent perspectives, and the annotation for each
layer is cross-referenced using unique identifiers.
These identifiers help to track how content ele-
ments relate to each other across the layout, rhetor-
ical and navigation layers. Unlike other frame-
works developed for describing documents, such
as the Text Encoding Initiative (TEI), which is
slowly beginning to pay attention to layout, ty-
pography and materiality, but continues to be pri-
marily concerned with the representation of docu-
ments built around linear written language (Muñoz
and Viglianti, 2015), the GeM model is inher-
ently geared towards describing all kinds of mul-
timodal documents, whether they organize their
content linearly or make extensive use of the two-
dimensional layout space.

Moreover, the GeM model was designed for
corpus-driven research from the outset, and sev-
eral tools have been developed to support the
analysis of corpora annotated using its schema.
Thomas (2007) describes a concordancer for
querying GeM annotation, while Hiippala (2015a)
uses Python to parse GeM corpora, transform-
ing the annotation into GraphViz DOT graphs

(Gansner and North, 2000) to visualize descrip-
tions of document structure stored in the layout,
rhetorical and navigation layers.

Certain attempts have also been made to ad-
dress the bottleneck issues of time and resources
required for producing GeM-annotated corpora.
Thomas (2009) explores the use of commercial
optical character recognition (OCR) software for
automatically producing GeM annotation by us-
ing XSLT and Perl to transform and enrich the
OCR output. Using XML output from ABBYY
FineReader 8.0 SDK for generating annotation for
the base and layout layers, Thomas observes that
OCR output proves useful for the time-consuming
task of describing typographic features, but never-
theless requires extensive manual post-processing.

Thomas (2009, 245) concludes that produc-
ing GeM annotation for the layout areas missed
by the OCR engine constitutes the most time-
consuming post-processing task. Thomas et al.
(2010) attempt to reduce the time spent on post-
processing by using XSLT to transform the OCR
output into the OpenDocument format, in which
the output could be manually tweaked and im-
proved. Despite integrating well into the docu-
ment processing pipeline, the OpenDocument for-
mat loses most of the information pertaining to the
document layout, which multimodal documents
frequently exploit to provide cues about their use
and organization (Waller, 2012).

Building on the previous work, this paper pro-
poses several improvements to annotating multi-
modal documents semi-automatically within the
framework proposed by the GeM model. Firstly,
preferring open source libraries over commercial
software enables a top-down approach, that is, at-
tending to the key features of the layout first. Sec-
ondly, controlling the design of the entire docu-
ment processing pipeline removes the need for in-
terim formats, generating the annotation only af-
ter major corrections have been applied, propagat-
ing these modifications across all annotation lay-
ers. These improvements have been implemented
in the prototype annotator, which is introduced in
the following section.

3 The prototype annotator

3.1 System design

The prototype annotator is provided as an interac-
tive Jupyter/IPython notebook to help novice users
to deploy and use the tool (Pérez and Granger,

85

Figure 1: Detected and classified bounding boxes on a document image, labelled with identifiers.

2007). The notebook calls its functions from
an external module, generator, which contains
the main functions for processing and annotating
document images. The annotator is available at
www.github.com/thiippal/gem-tools.

To process the documents and to generate a de-
scription using the auto-GeM annotation schema,
the annotator relies on several open source li-
braries: OpenCV1 for computer vision, Tesseract2

for OCR and NLTK3 for natural language process-
ing. The integration of these libraries into the doc-
ument processing pipeline is described in the fol-
lowing section.

3.2 Document processing pipeline

The high-resolution document image, preferably
of 300 DPI resolution, is first resized into a canon-
ical width of 1200 pixels, while naturally main-
taining the original aspect ratio of the document.
A smaller size allows more efficient processing in
OpenCV, which is first used to convert the docu-
ment image from colour to grayscale. Next, bi-

1www.opencv.org
2www.github.com/tesseract-ocr
3www.nltk.org

lateral filtering is applied to the grayscale image
to reduce noise while preserving the edges of doc-
ument elements. The filtered image is converted
into a binary image, calculating the threshold us-
ing Otsu’s method.

At this stage, the user is required to define a ker-
nel size for performing a series of morphological
operations on the thresholded image. The kernel
height should correspond roughly to the x-height
of the font used for body text in the document
image, which is a prerequisite for detecting text
paragraphs correctly. The following morpholog-
ical operations involve applying a morphological
gradient to establish the outlines of document el-
ements, followed by an erosion to separate the el-
ements clearly from each other. The user can set
the number of iterations performed for the erosion
in the notebook.

To help the user to fine-tune the annotator pa-
rameters, such as kernel size and erosion iter-
ations, each step involving image processing is
documented in an HTML-file using the visual-
logging4 module. This log is provided with the
output.

4www.github.com/dchaplinsky/visual-logging

86

Next, connected-components labelling is per-
formed to filter out remaining noise, before de-
tecting contours using OpenCV. Contour detec-
tion is performed twice: during the first pass, each
detected contour is filled with solid colour. The
second pass retrieves the contours of filled ele-
ments: this procedure suppresses unwanted con-
tours nested within photographs and other graph-
ical elements. In initial testing, this procedure
provided better results for grid-based layouts than
applying a Non-Maximum Suppression algorithm.
This, however, is likely to be largely dependent on
the kind of document genre described.

The annotator then sorts the detected contours
and feeds them to a Random Forest classifier,
which classifies the regions of interest defined by
the contours into two categories: text or graphics.
The model, trained using Haralick textures and
colour statistics extracted from 400 photographs
and 400 text blocks, achieves on a high precision
(1.00) and recall (0.99) on the testing data.

Finally, the classified contours are drawn on the
resized image and displayed to the user in the note-
book, as shown in Figure 1. The user is then asked
to enter the identifiers of any false positives among
the detected regions of interest. In Figure 1, these
include regions labelled 11 and 24. The regions
marked by the user are removed from the list of
contours. At this stage, the user can also manually
draw any regions of interest that evaded detection,
such as the page number on the lower right-hand
corner of Figure 1. For this purpose, the annotator
uses the OpenCV HighGUI module.

When the user is finished, the contours are pro-
jected on the original high-resolution image to ex-
tract regions of interest, which are assumed to cor-
respond roughly to layout units defined within the
GeM model, that is, to text paragraphs, images,
headers, captions and the like. Regions classi-
fied as text are then thresholded, resized to double
their original size and fed to Tesseract for OCR.
NLTK’s Punkt tokenizer (Kiss and Strunk, 2006)
is subsequently used for segmenting the layout
units into sentences.

Three kinds of description are then created for
each layout unit: basic layout segmentation, po-
sition in the document layout, and visual appear-
ance. The base layer annotation is generated si-
multaneously using the segmentation produced by
the Punkt tokenizer. Each region of interest is also
extracted from the original high-resolution image

and stored into the corpus, anticipating their use
as training data for machine learning algorithms
and for visualizing parts of the original document
image in concordancer output (Thomas, 2007).

3.3 The auto-GeM annotation schema
The annotator generates auto-GeM annotation for
the base and layout layers as described below.
The base layer is first extracted from the layout
layer, generating annotation for the minimal units
of analysis defined within the GeM model. Within
the base layer, each base unit is stored within a
unit element and provided with a unique identi-
fier in the id attribute to handle cross-references
across annotation layers.

<unit id="u-1.4">Another of En-
gel’s pearls is the University
Library on Unioninkatu.</unit>

The base units are picked up for description in
the layout layer, in which they are combined into
larger layout units, such as text paragraphs. In the
layout layer annotation, the layout units are stored
under the parent element segmentation. The
following example shows the annotation for one
child element, layout-unit, which represents
a text paragraph consisting of multiple base units:

<layout-unit id="lay-1.4" src=
"lay-1.4.png" location="sa-1.4"
xref="u-1.4 u-1.5 u-1.6 u-1.7"/>

The src attribute refers to the image that con-
tains the region of interest described by the layout
unit, whereas the location attribute designates
the position of the layout unit by referring to the
sub-area element. The xref attribute refers
to the base units that constitute the layout unit in
question.

The sub-area element, positioned under the
parent element area-model, contains a bound-
ing box with relational coordinates, which can be
projected on images of different sizes or used to
render an abstract representation of the physical
layout.

<sub-area id="sa-1.4" bbox=
"0.0490168139071 0.800747198007
0.231689940154 0.946865919469"/>

Finally, under the realization element, the
text element characterizes the layout unit in
terms of realization information, identifying the
layout unit as consisting of written language.

<text xref="lay-1.4"/>

87

For graphic elements, the corresponding element
graphics features additional attributes, width
and height, which store relational values indi-
cating the size of the graphic element in relation
to the entire layout.

In comparison to the original GeM schema pro-
posed in Bateman (2008), the coverage of the doc-
ument structure in the auto-GeM schema is cur-
rently limited. Whereas the original GeM anno-
tation schema can provide a rich description of
the document layout and its appearance, but re-
quires investing a considerable amount of time
and resources in the annotation process, the tool
described in this paper can be used to generate
the base layer and parts of the layout layer much
more efficiently. Given this trade-off and the cur-
rent state of development, the prototype tool is
likely to be most effective for generating a baseline
for manual annotation. Future work will seek to
bridge the gap between the original GeM schema
and its proposed auto-GeM variant.

4 Conclusions and future work

This paper described the ongoing development of
an annotation tool for describing the multimodal
content and structure of page-based documents
that were not born digital. The tool is intended to
speed up the process of creating multimodal cor-
pora for empirical research and generating rich de-
scriptions to be used as ground truths for machine
learning tasks.

Future work on the tool will involve covering
the entire scope of the original GeM model in
the auto-GeM variant, while taking the automation
process further. This includes:

• enriching the realization information with a
description of typographic properties, such as
font size and family, while also describing the
types of graphic elements more accurately,

• determining and suggesting optimal kernel
size and iteration parameters to the user,

• enhancing the classification of graphical doc-
ument elements using emerging multimodal
resources such as Elliott and Kleppe (2016),

• captioning photographs using the method
proposed in Karpathy and Fei-Fei (2015),

• representing the logical organization of the
content by constructing a hierarchical XY-
tree from the detected bounding boxes,

• creating an interface for annotating the
rhetorical structure, which will undoubtedly
require the most manual input from the user,

• detecting and annotating pointers and entries
in the document image to provide a represen-
tation of the navigation structure.

Additional user-configured parameters will also be
included in future versions, in order to ensure that
the tool can meet the demands of different docu-
ment genres. To tackle the problem of variation,
test corpora representing various different docu-
ment genres are also being planned at the moment.

References
Jens Allwood. 2008. Multimodal corpora. In Anke

Lüdeling and Merja Kytö, editors, Corpus Linguis-
tics: An International Handbook, pages 207–225.
Mouton de Gruyter, Berlin.

John A. Bateman. 2008. Multimodality and Genre:
A Foundation for the Systematic Analysis of Multi-
modal Documents. Palgrave Macmillan, London.

John A. Bateman. 2014a. Developing a GeM (Genre
and Multimodality) model. In Sigrid Norris and
Carmen D. Maier, editors, Interactions, Images and
Texts: A Reader in Multimodality, pages 25–36. De
Gruyter Mouton, Berlin and New York.

John A. Bateman. 2014b. Using multimodal corpora
for empirical research. In Carey Jewitt, editor, The
Routledge Handbook of Multimodal Analysis, pages
238–252. Routledge, London and New York, second
edition.

Desmond Elliott and Martijn Kleppe. 2016. 1 million
captioned Dutch newspaper images. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). May 23–
28, Portorož, Slovenia.

Emden R. Gansner and Stephen C. North. 2000. An
open graph visualization system and its applications
to software engineering. Software - Practice and Ex-
perience, 30(11):1203–1233.

Renate Henschel, 2003. GeM Annotation Manual.
University of Bremen, University of Stirling, second
edition.

Tuomo Hiippala. 2015a. gem-tools: Tools for
working with multimodal corpora annotated us-
ing the Genre and Multimodality model. DOI:
10.5281/zenodo.33775

Tuomo Hiippala. 2015b. The Structure of Multimodal
Documents: An Empirical Approach. Routledge,
New York and London.

88

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR
2015). June 7–12, Boston, MA.

Tibor Kiss and Jan Strunk. 2006. Unsupervised mul-
tilingual sentence boundary detection. Computa-
tional Linguistics, 32(4):485–525.

Kenneth C. C. Kong. 2013. A corpus-based study
in comparing the multimodality of Chinese- and
English-language newspapers. Visual Communica-
tion, 12(2):173–196.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243–281.

Trevor Muñoz and Raffaele Viglianti. 2015. Texts
and documents: New challenges for TEI interchange
and lessons from the Shelley-Godwin archive. Jour-
nal of the Text Encoding Initiative, 8. DOI:
10.4000/jtei.1270

Kay L. O’Halloran, Alvin Chua, and Alexey Podlasov.
2014. The role of images in social media analytics:
A multimodal digital humanities approach. In David
Machin, editor, Visual Communication, pages 565–
588. De Gruyter Mouton, Berlin.

Fernando Pérez and Brian E. Granger. 2007. IPython:
A system for interactive scientific computing. Com-
puting in Science and Engineering, 9(3):21–29.

Patrick Svensson. 2010. The landscape of digital hu-
manities. Digital Humanities Quarterly, 4(1).

Maite Taboada and William C. Mann. 2006. Rhetor-
ical structure theory: looking back and moving
ahead. Discourse Studies, 8(3):423–459.

Martin Thomas, Judy Delin, and Robert H. W. Waller.
2010. A framework for corpus-based analysis of the
graphic signalling of discourse structure. In Pro-
ceedings of Multidisciplinary Approaches to Dis-
course (MAD 2010), Moissac, France, March 17-20.

Martin Thomas. 2007. Querying multimodal annota-
tion: A concordancer for GeM. In Proceedings of
the Linguistic Annotation Workshop, pages 57–60,
Prague, Czech Republic, June 28–29. Association
for Computational Linguistics.

Martin Thomas. 2009. Localizing pack messages:
A framework for corpus-based cross-cultural mul-
timodal analysis. Ph.D. thesis, University of Leeds.

Robert H. W. Waller. 2012. Graphic literacies for a
digital age: The survival of layout. The Information
Society, 28(4):236–252.

89

