Automatic Detection of Intra-Word Code-Switching

Dong Nguyen'?

d.nguyen@utwente.nl,

Abstract

Many people are multilingual and they
may draw from multiple language vari-
eties when writing their messages. This
paper is a first step towards analyzing and
detecting code-switching within words.
We first segment words into smaller units.
Then, words are identified that are com-
posed of sequences of subunits associated
with different languages. We demonstrate
our method on Twitter data in which both
Dutch and dialect varieties labeled as Lim-
burgish, a minority language, are used.

1 Introduction

Individuals have their own linguistic repertoire
from which they can draw elements or codes (e.g.,
language varieties). In both spoken and written
communication, multilingual speakers may use
multiple languages in a single conversation, for
example within a turn or even within a syntactic
unit, often referred to as intra- and extra-sentential
code-switching.

In online communication the usage of multi-
ple languages is also prevalent. Over 10% of the
Twitter users tweet in more than one language
(Hale, 2014) and code-switching has been ob-
served on various social media platforms as well
(Androutsopoulos, 2013; Johnson, 2013; Jurgens
et al., 2014; Nguyen et al., 2015). The occur-
rence of code-switching in online communication
has sparked interest in two research directions.

First, the presence of code-switching in text in-
troduces new challenges for NLP tools, since these
tools are usually designed for texts written in a
single language. Recently, various studies have
focused on automatic language identification at
a more-fine grained level, such as words instead
of documents (Solorio et al., 2014), to facilitate

Leonie Cornips®3
'Human Media Interaction, University of Twente, Enschede, The Netherlands
2 Meertens Institute, Amsterdam, The Netherlands
3Maastricht University, Maastricht, The Netherlands

82

leonie.cornips@meertens.knaw.nl

the processing of such texts. Several studies have
adapted NLP tools for code-switched texts (e.g.,
Solorio and Liu (2008) and Peng et al. (2014)).

Second, the availability of social media data
has enabled studying code-switching patterns in
a multitude of social situations and on a larger
scale than datasets collected using more tradi-
tional methods. To fully leverage these large
amounts of data, several recent studies have em-
ployed automatic language identification to study
code-switching patterns in social media (Kim et
al., 2014; Nguyen et al., 2015).

Research in both these directions has so far
studied code-switching by assigning concrete lan-
guages to messages or individual words. How-
ever, the notion of languages or a language im-
plies that languages are concrete, stable, count-
able identities that can be distinguished unprob-
lematically from each other. In reality, however,
people use language: linguistic resources (fea-
tures, items, nouns, morphemes, etc.) that are
recognized by the speakers or others as belonging
to two or more sets of resources (Jgrgensen and
Juffermans, 2011). From this perspective, code-
switching can thus occur within words. For exam-
ple, in oetverkocht ‘sold out’, the particle oet ‘out’
is used that is associated with Limburgish whereas
verkocht ‘sold’ is associated with Dutch.

This study is a first step towards detecting
code-switching within words using computational
methods, which could support the processing of
code-switched texts and support sociolinguists in
their study of code-switching patterns. We fo-
cus on tweets from a province in the Netherlands
where a minority language is spoken alongside
Dutch (see Section 3). We automatically segment
the words into smaller units using the Morfessor
tool (Section 4). We then identify words with sub-
units that are associated with different languages
(Section 5).

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 82—86,

Berlin, Germany, August 11, 2016. (©2016 Association for Computational Linguistics

2 Related Work

This paper builds on research on morphology and
automatic language identification.

Morphology We focus on tweets written in
Limburg, a province in the Netherlands. Mor-
phological analysis for Dutch using computational
approaches has been the focus in several stud-
ies. Van den Bosch and Daelemans (1999) pro-
posed a memory-based learning approach. Cast
as a classification problem, morpheme boundaries
were detected based on letter sequences. De Pauw
et al. (2004) built on this work and compared a
memory-based learning method with a finite state
method. One of the characteristic features of
Dutch is diminutive formation (Trommelen, 1983)
and computational approaches have been explored
to predict the correct diminutive suffix in Dutch
(Daelemans et al., 1996; Kool et al., 2000).

McArthur (1998) identified four major types of
code-switching, ranging from tag-switching (tags
and set of phrases) to intra-word switching, where
a change occurs within a word boundary. The oc-
currence of intra-word switching has only been
rarely addressed in computational linguistics re-
search. Habash et al. (2005) developed a mor-
phological analyzer and generator for the Arabic
language family. The tool allows combining mor-
phemes from different dialects.

Language Identification The prevalence of
code-switching in online textual data has gen-
erated a renewed interest in automatic language
identification. Instead of focusing on document
level classification, recent studies have focused on
language identification on a word level to sup-
port the analysis and processing of code-switched
texts (Nguyen and Dogrudz, 2013). In the First
Shared Task on Language Identification in Code-
Switched Data (Solorio et al., 2014), a small frac-
tion of the words were labeled as ‘mixed’, indi-
cating that these words were composed of mor-
phemes from different languages. However, many
participating systems had very low performance,
i.e., zero F-scores, on this particular category
(Chittaranjan et al., 2014; Jain and Bhat, 2014; Bar
and Dershowitz, 2014; Shrestha, 2014). Oco and
Roxas (2012) focused on detecting code-switching
points and noted that intra-word code-switching
caused difficulties to a dictionary based approach.
In this study, we segment words into smaller units
to detect intra-word code-switching.

83

3 Dataset

We confine our analysis to tweets from users in
the Dutch province of Limburg, the southern-
most province in the Netherlands. The ‘dialects’
of Limburg were extended minor recognition in
1997 under the label ‘Limburgish’ by The Nether-
lands, a signatory of the 1992 European Charter
for Regional and Minority Languages (cf. Cornips
(2013)). To collect users located in Limburg, seed
users were identified based on geotagged tweets
and manual identification. The set was then ex-
panded based on the social network of the users.
Users were then mapped to locations based on
their provided profile location to create the fi-
nal set. Tweets are labeled with languages, such
as Dutch, Limburgish, and English, using an in-
house language identification tool. The dataset is
described in more detail in Nguyen et al. (2015).

4 Morphological Segmentation

The first step in our analysis is to segment the
words into smaller units. We use the Morfessor
Baseline implementation (Virpioja et al., 2013) to
learn a model for what is called morphological
segmentation in an unsupervised manner. Mor-
fessor segments the words into morphs (usually
‘morpheme-like’ units), such that words in the
data can be formed by concatenation of such
morphs.

Training We experiment with two different
sources to train Morfessor: tweets and Wikipedia
texts. The tweets come from the data described
in Section 3. We also downloaded the Dutch
and Limburgish Wikipedia versions. More specif-
ically, we have the following datasets:

e Dutch Wikipedia (NL_WIKI)

e Limburgish Wikipedia (LIM WIKI)
e Dutch tweets (NL_TWEETS)

e Limburgish tweets (LIM_TWEETS)

We exclude words that only occur once. Fol-
lowing Creutz and Lagus (2005), we explore two
different ways for training Morfessor: based on
word tokens (such that the frequencies of words
are taken into account) and based on word types.
Creutz and Lagus (2005) suggest using word
types, which in their experiments led to a higher
recall.

Dutch Limburgish

Word tokens Word Types Word tokens Word Types
Data #types | R P R P R P R
NL WIKI 1,377,658 0976 0.681 0.842 0.765 0.805 0.745 0.662 0.812
LIM WIKI 68,255 0.743 0.806 0.559 0.867 0.752 0.788 0.586 0.839
NL_TWEETS 115,319 0968 0.685 0.833 0.779 0.893 0.745 0.627 0.818
LIM TWEETS 37,054 0.867 0.757 0.648 0.874 0956 0.711 0.665 0.826
TWEETS + WIKI 1,460,724 0985 0.674 0.871 0.747 0.955 0.689 0.827 0.771

Table 1: Results of morphological segmentation using Morfessor, reporting Precision (P) and Recall (R)

Evaluation To evaluate the performance of
Morfessor on the Twitter data we randomly an-
notated a set of tweets attributed to either Dutch
or Limburgish, resulting in 330 words from Dutch
tweets and 312 words from Limburgish tweets.
Table 1 reports the precision and recall as cal-
culated by the Morfessor tool. Overall, the per-
formance differences are small. The best perfor-
mance is obtained when Limburgish data is part of
the training data. Furthermore, training on word
tokens results in a higher precision, while training
on word types results in a higher recall, matching
the findings of Creutz and Lagus (2005).

An analysis of the resulting segmentations in
the Twitter data illustrates this even more. We
consider models trained on both the Wikipedia
and Twitter data. A model trained on word to-
kens segments only 23.5% of the words, while
a model trained on word types segments 71.4%
of the words. For our application, a higher
recall is preferred, and thus following Creutz
and Lagus (2005) we use a model trained on
word types in the remaining part of this pa-
per. [Example segmentations using this model
are rogstaekersoptocht as rogstaeker+s-+optocht
‘carnivalsname+s+parade’, leedjesaovend as leed-
jes+aovend ‘songs+evening’ and zoemetein as
zoe+metein ‘immediately’.

5 Detection of Intra-Word
Code-Switching

We now identify code-switching within words
based on the extracted morphs (e.g., morphemes,
particles, bare nouns and character sequences).

5.1 Language Identification

To identify code-switching within words, we first
compute the association of the morphs with Dutch
and Limburgish. For illustration, we separate

84

3 LIM roéwér, sjw, lié, pke
NL pje, ful, cre, ary, ica

4 LIM wari, onne, blié, gesj, tere
NL isme, tttt, pppp, g888, 0ool

S5 LIM oetge, raods, telik, erlik, aafge
NL uitge, erweg, eloos, logie, zwerf

Table 2: Most distinguishing morphs with lengths
3-5 that do not occur on their own, for Dutch (NL)
and Limburgish (LIM) according to the odds ratio.

morphs that occur on their own in the data from
morphs that only occur in combination with other
morphs. For each morph, we compute its probabil-
ity in each language (Dutch and Limburgish) and
apply Laplace smoothing. For each morph, the
odds ratio is then computed as follows (Mladenic
and Grobelnik, 1999), with m being the morph:

P(m|NL)(1 — P(m|LIM))
(1 — P(m|NL))(P(m|LIM)

l

og() D

Since the odds ratio is sensitive to infrequent
words, only morphs were considered that occur
in at least 5 words. Table 2 displays the most
distinguishing morphs that do not occur on their
own. While some of the extracted morphs are
not strictly morphemes but grapheme sequences,
they do seem to reflect the differences between the
Dutch and Limburgish language. One example is
reflected in pje and pke. The diminutive je is as-
sociated with Dutch, while ke is associated with
Limburgish. We also see the frequent use of di-
acritics, characteristic of Limburgish orthography.
The results are also affected by the informal na-
ture of social media, such as the use of lengthening
in the extracted morphs (e.g., oool). Furthermore,
the occurrence of English words has led to morphs
like ary (from, e.g., anniversary) and ful. We also

3 LIM oét, veu, iér, vuu, éch
NL gro, hor, cal, tec, ish

4 LIM hoég, kaup, roop, stok, zurg
NL rook, rouw, uuuu, ship, doek

5 LIM slaop, sjaol, paort, hoeég, rieje
NL fonds, dorps, kruis, kraam, keten

Table 3: Most distinguishing morphs with lengths
3-5 that do occur on their own, for Dutch (NL) and
Limburgish (LIM) according to the odds ratio.

see oetge and uitge where oet ‘out’ is associated
with Limburgish. Table 3 shows the distinguish-
ing morphs that do occur on their own. In this
table we find many units that are bare nouns, like
rook (‘smoke’), rouw (‘mourning’), etc.

5.2 Identified Words

Since many words are cognates in Dutch and Lim-
burgish, we apply a strict threshold to assign the
extracted units to a single language (1.5 and -1.5
odds ratio). We then extract all words that are
composed of sequences of units that are associated
with different languages.

Results In total 50 words were identified. We
manually checked whether they were correct, and
if not, the type of error that was made (Table 4).
Since Limburgish is a label for various dialect va-
rieties, we consulted several sources to determine
the Limburgish form(s).!

Type Freq %
Correct 17 34%
Error: name 15 30%
Error: concatenation 2 4%
Error: English 2 4%
Error: spelling mistake 2 4%
Error: other 12 24%

Table 4: Evaluation of the identified words.

An example of an identified word with code-
switching is cijfer + kes ‘small numbers’. The
Limburgish plural diminutive kes is combined
with the Dutch noun cijfer ‘number’ whereas
/‘sitfor/ is associated with Limburgish. As an-
other example, in sjlaag + boom (‘crossing gate’)
Limburgish sjlaag (palatized /s/) is combined with
Dutch boom (instead of /boim/).

'eWND (www.meertens.knaw.nl/dialectwoordenboeken/),
WLD (dialect.ruhosting.nl/wld/zoeken_materiaalbases.html)
and Limburghuis (www.limburghuis.nl/).

85

Error analysis Manual inspection of the identi-
fied words shows that the informal nature of the
Twitter data makes the task challenging. In par-
ticular, spelling mistakes (e.g., woendag ‘Wednes-
day’ instead of woensdag), the occurrence of En-
glish words (e.g., wearable), and concatenated
words (e.g., kleiduivenschieten instead of klei-
duiven schieten) were sometimes incorrectly iden-
tified as words containing code-switching. Fur-
thermore, most of the errors were names that
were incorrectly identified (prinsestraat, kleistek-
erstraat). We therefore expect that more prepro-
cessing, like removing named entities, would im-
prove the system.

6 Conclusion

Research using automatic language identification
to study code-switching patterns has so far focused
on assigning languages to messages or individual
words (Nguyen et al., 2016). This study is a first
step towards automatic language identification and
analysis of code-switching patterns within words.
Our experiments demonstrate that Twitter users do
code-switch within words and are creative in their
language use by combining elements from both
the standard language (Dutch) and the minority
language (Limburgish).

The precision of the system could be improved
by applying more preprocessing steps, such as fil-
tering named entities. Evaluation was challenging
due to the difficulty of labeling languages on such
a fine-grained level as the extracted morphs. In
particular, when focusing on minority languages
such as Limburgish for which no standard exists
and which shares many cognates with Dutch, it is
not always clear whether a certain variant is asso-
ciated with Dutch, Limburgish, or both. A future
study could focus on a more extensive evaluation
of the system.

Acknowledgements

This research was supported by the Netherlands
Organization for Scientific Research (NWO),
grants 314-98-008 (Twidentity) and 640.005.002
(FACT).

References

Jannis Androutsopoulos. 2013. Code-switching in
computer-mediated communication. In Pragmatics
of Computer-Mediated Communication. De Gruyter
Mouton.

Kfir Bar and Nachum Dershowitz. 2014. The Tel Aviv
university system for the code-switching workshop
shared task. In Proceedings of the First Workshop
on Computational Approaches to Code Switching.

Gokul Chittaranjan, Yogarshi Vyas, Kalika Bali, and
Monojit Choudhury. 2014. Word-level language
identification using CRF: Code-switching shared
task report of MSR India system. In Proceedings of
the First Workshop on Computational Approaches to
Code Switching.

Leonie Cornips. 2013. Recent developments in the
Limburg dialect region. In Frans Hinskens and Jo-
han Taeldeman, editors, Language and Place. An
International Handbook of Linguistic Variation. De
Gruyter Mouton.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
morpheme segmentation and morphology induction
from text corpora using Morfessor 1.0. Helsinki
University of Technology.

Walter Daelemans, Peter Berck, and Steven Gillis.
1996. Unsupervised discovery of phonological cate-
gories through supervised learning of morphological
rules. In Proceedings of COLING 1996.

Guy De Pauw, Tom Laureys, Walter Daelemans, and
Hugo Van hamme. 2004. A comparison of two
different approaches to morphological analysis of
Dutch. In Proceedings of the Seventh Meeting of
the ACL Special Interest Group in Computational
Phonology.

Nizar Habash, Owen Rambow, and George Kiraz.
2005. Morphological analysis and generation for
Arabic dialects. In Proceedings of the ACL Work-
shop on Computational Approaches to Semitic Lan-
guages.

Scott A. Hale. 2014. Global connectivity and multilin-
guals in the Twitter network. In CHI "14.

Naman Jain and Riyaz Ahmad Bhat. 2014. Language
identification in code-switching scenario. In Pro-
ceedings of the First Workshop on Computational
Approaches to Code Switching.

Ian Johnson. 2013. Audience design and commu-
nication accommodation theory: Use of Twitter by
Welsh-English biliterates. In Social Media and Mi-
nority Languages: Convergence and the Creative In-
dustries. Multilingual Matters.

. Normann Jgrgensen and Kasper Juffermans. 2011.
Languaging.

David Jurgens, Stefan Dimitrov, and Derek Ruths.
2014. Twitter users #codeswitch hashtags!
#moltoimportante #wow. In Proceedings of the First
Workshop on Computational Approaches to Code
Switching.

86

Suin Kim, Ingmar Weber, Li Wei, and Alice Oh. 2014.
Sociolinguistic analysis of Twitter in multilingual
societies. In Proceedings of the 25th ACM confer-
ence on Hypertext and social media.

Anne Kool, Walter Daelemans, and Jakub Zavrel.
2000. Genetic algorithms for feature relevance as-
signment in memory-based language processing. In
Proceedings of CoNLL-2000 and LLL-2000.

Tom McArthur. 1998. Code-mixing and code-
switching. Concise Oxford companion to the En-
glish language.

Dunja Mladenic and Marko Grobelnik. 1999. Feature
selection for unbalanced class distribution and Naive
Bayes. In Proceedings of ICML ’99.

Dong Nguyen and A. Seza Dogrudz. 2013. Word level
language identification in online multilingual com-
munication. In Proceedings of EMNLP 2013.

Dong Nguyen, Dolf Trieschnigg, and Leonie Cornips.
2015. Audience and the use of minority languages
on Twitter. In Proceedings of ICWSM 2015.

Dong Nguyen, A. Seza Dogru6z, Carolyn P. Rosé, and
Franciska de Jong. 2016. Computational sociolin-
guistics: A survey. To appear in Computational Lin-
guistics.

Nathaniel Oco and Rachel Edita Roxas. 2012. Pat-
tern matching refinements to dictionary-based code-
switching point detection. In PACLIC 26.

Nanyun Peng, Yiming Wang, and Mark Dredze.
2014. Learning polylingual topic models from code-
switched social media documents. In ACL 2014.

Prajwol Shrestha. 2014. Incremental n-gram approach
for language identification in code-switched text.
In Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching.

Thamar Solorio and Yang Liu. 2008. Part-of-speech
tagging for English-Spanish code-switched text. In
Proceedings of EMNLP 2008.

Thamar Solorio, Elizabeth Blair, Suraj Mahar-
jan, Steven Bethard, Mona Diab, Mahmoud
Ghoneim, Abdelati Hawwari, Fahad AlGhamdi, Ju-
lia Hirschberg, Alison Chang, and Pascale Fung.
2014. Overview for the first shared task on language
identification in code-switched data. In Proceedings
of the First Workshop on Computational Approaches
to Code Switching.

Mieke Trommelen. 1983. The Syllable in Dutch. Wal-
ter de Gruyter.

Antal Van den Bosch and Walter Daelemans. 1999.
Memory-based morphological analysis. In Proceed-
ings of ACL 1999.

Sami Virpioja, Peter Smit, Stig-Arne Gronroos, Mikko
Kurimo, et al. 2013. Morfessor 2.0: Python imple-
mentation and extensions for Morfessor baseline.

