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Abstract

This paper presents MED, the main sys-
tem of the LMU team for the SIGMOR-
PHON 2016 Shared Task on Morpholog-
ical Reinflection as well as an extended
analysis of how different design choices
contribute to the final performance. We
model the task of morphological reinflec-
tion using neural encoder-decoder models
together with an encoding of the input as a
single sequence of the morphological tags
of the source and target form as well as
the sequence of letters of the source form.
The Shared Task consists of three sub-
tasks, three different tracks and covers 10
different languages to encourage the use of
language-independent approaches. MED
was the system with the overall best per-
formance, demonstrating our method gen-
eralizes well for the low-resource setting
of the SIGMORPHON 2016 Shared Task.

1 Introduction

In many areas of natural language processing
(NLP) it is important that systems are able to
correctly analyze and generate different morpho-
logical forms, including previously unseen forms.
Two examples are machine translation and ques-
tion answering, where errors in the understanding
of morphological forms can seriously harm perfor-
mance. Accordingly, learning morphological in-
flection patterns from labeled data is an important
challenge.

The task of morphological inflection (MI) con-
sists of generating an inflected form for a given
lemma and target tag. Several approaches have
been developed for this, including machine learn-
ing models and models that exploit the paradigm
structure of language (Ahlberg et al., 2015;

Dreyer, 2011; Nicolai et al., 2015). A more com-
plex problem is morphological reinflection (MRI).
For this, an inflected form has to be found given
another inflected form, a target tag and optionally
a source tag.

We use the same approach to both MI and
MRI: the character-based and language indepen-
dent sequence-to-sequence attention model called
MED, which stands for Morphological Encoder-
Decoder. To solve the MRI task, we train one sin-
gle model on all available source-to-target map-
pings for each language contained in the training
set. This enables the encoder-decoder to learn
good parameters for relatively small amounts of
training data per target tag already, because most
MRI patterns occur in many source-target tag
pairs. In our model design, what is learned for one
pair can be transferred to others.

The most important point for this is the repre-
sentation we use for MRI. We encode the input as
a single sequence of (i) the morphological tags of
the source form, (ii) the morphological tags of the
target form and (iii) the sequence of letters of the
source form. The output is the sequence of let-
ters of the target form. We train a single generic
encoder-decoder per language on this represen-
tation that can handle all tag pairs, thus making
it possible to make efficient use of the available
training data.

The SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection covers both, MI and MRI,
for 10 languages as well as different settings and
MED outperforms all other systems on all sub-
tasks. The given languages, tracks and tasks will
be explained briefly now. For further details on the
Shared Task please refer to Cotterell et al. (2016).

Languages. In total, the Shared Task covers
10 languages: Arabic, Finnish, Georgian, German,
Hungarian, Maltese, Navajo, Russian, Spanish and
Turkish. The training and development datasets
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for Hungarian and Maltese were only released at
evaluation time.

Tasks. The Shared Task consists of 3 separate
tasks with increasing difficulty: task 1 is supposed
to be the easiest and task 3 the hardest. The first
task consists of mapping a given lemma and target
tag to a target form. Task 2 requires the mapping
of a given source form, source tag and target tag to
a target form. Finally, task 3 consists of finding a
target form for a given source form and source tag
only.

Tracks. The Shared Task is split into 3 tracks
that differ in the information available. The first
track is the standard track and requires the solution
for each task to use only the training and develop-
ment data of the current and all lower-numbered
tasks, e.g., to use only the data for tasks 1 and 2
for task 2. The restricted track limits the avail-
able training and development data to the data be-
longing to the current task, i.e., data from lower
tasks cannot be used, making it impossible to re-
duce task 2 to task 1 or task 3 to task 2. Track 3 is
the bonus track. In this track, all available data per
language can be used, including unlabeled corpora
which are provided by the task organizers. How-
ever, those vary a lot in length, depending on the
language. Therefore, we do not make use of them.

In total, there are 90 combinations of languages,
tasks and tracks to solve.

The remainder of this paper is organized as fol-
lows: In Section 2, our model for the SIGMOR-
PHON 2016 Shared Task is presented. Next, our
method to preprocess and thus extend the training
data is explained in detail. In Section 4 the final
results on the test data of the Shared Task are pre-
sented and discussed. Afterwards, we analyze the
contribution of different settings and components
to the overall performance of our system in detail.
Finally, in Section 6, we give information about
prior work on topics related to our system.

This paper is mainly concerned with the imple-
mentation and analysis of the system we submit-
ted to the Shared Task. In (Kann and Schütze,
2016), we instead focus on the novel aspects of our
new method MED and compare its performance to
prior work on other MRI benchmarks.

2 System description

Our system for the Shared Task is an encoder-
decoder recurrent neural network (RNN), called
MED, which stands for Morphological Encoder-

Decoder. It will be described in detail in this Sec-
tion.

2.1 Neural network model

Our model is based on the network architecture
proposed by Bahdanau et al. (2014) for machine
translation.1 The authors describe the model in de-
tail; unless we explicitly say so in the description
of our model below, we use the same network con-
figuration as they do.

Bahdanau et al. (2014)’s model is an extension
of the recurrent neural network (RNN) encoder-
decoder developed by Cho et al. (2014) and
Sutskever et al. (2014). The encoder of the latter
consists of a gated RNN (GRU) that reads an input
sequence of vectors x and encodes it into a fixed-
length context vector c, computing hidden states
ht and c by

ht = f(xt, ht−1) (1)

and

c = q(h1, ..., hTx) (2)

with nonlinear functions f and q. The decoder
uses the context vector to predict the output y:

p(y) =
Ty∏
t=1

p(yt|{y1, ..., yt−1}, c) (3)

with y = (y1, ..., yTy) and each conditional prob-
ability being modeled with an RNN as

p(yt|{y1, ..., yt−1}, c) = g(yt−1, st, c) (4)

where g is a nonlinear function and st is the hidden
state of the RNN.

Bahdanau et al. (2014) proposed an attention-
based version of this model that allows different
vectors ct for each step by automatic learning of an
alignment model. They further made the encoder
bidirectional. In their model each hidden state hj

at time step j does not only depend on the preced-
ing, but also on the following input:

hj =
[−→
hT

j ;
←−
hT

j

]T

(5)

1Our implementation of MED is based on https:
//github.com/mila-udem/blocks-examples/
tree/master/machine_translation.
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The formula for p(y) changes accordingly:

p(y) =
Ty∏
t=1

p(yt|{y1, ..., yt−1}, x) (6)

=
Ty∏
t=1

g(yt−1, st, ct) (7)

with st being an RNN hidden state for time t
and ct being the weighted sum of the annotations
(h1, ..., hTx) produced by the encoder:

ci =
Tx∑
j=1

αijhj (8)

The attention weights αij are calculated for
each hj as

αij =
exp(eij)∑Tx

k=1 exp(eik)
(9)

with

eij = a(si−1, hj) (10)

a is parametrized as a feedforward neural net-
work and trained jointly with all other compo-
nents.

More theoretical background is given in (Bah-
danau et al., 2014) and a system overview can be
seen in Figure 1.

The final model is a multilayer network with
a single maxout (Goodfellow et al., 2013) hidden
layer that computes the conditional probability of
each element in the output sequence (a charac-
ter in our case, (Pascanu et al., 2014)). As MRI
is less complex than machine translation, we re-
duce the number of hidden units and the embed-
ding size. After initial experiments, we fixed the
hyperparameters of our system and did not further
adapt them to a specific task or language. Encoder
and decoder RNNs have 100 hidden units each.
For training, we use stochastic gradient descent,
Adadelta (Zeiler, 2012) and a minibatch size of 20.
We initialize all weights in the encoder, decoder
and the embeddings except for the GRU weights
in the decoder with the identity matrix as well as
all biases with zero (Le et al., 2015). We train
all models for 20 iterations for all combinations of
track and task where we cannot extend the training
data with our method described in the next section.
Otherwise, we train for 10 epochs.2 We settled

2For extended data in Maltese we trained only for 6
epochs, due to time constraints.

on this number in early experimentation because
training usually converged before that limit.

MED is an ensemble of five RNN encoder-
decoders. The final decision is made by majority
voting. In case of a tie, the answer is chosen ran-
domly among the most frequent predictions.

2.2 Input and output format

We define the alphabet Σlang as the set of char-
acters used in the application language. As each
tag combination which describes a source or target
form consists of one or more subtags, e.g., “num-
ber“ or “case“, we further define Σsrc and Σtrg as
the set of morphological subtags seen during train-
ing as part of the source tag or the target tag, re-
spectively. Finally, we define Sstart and Send to be
a start and an end symbol. Then each input of our
system is of the format SstartΣ+

srcΣ
+
trgΣ+

langSend.
In the same way, we define the output format as
SstartΣ+

langSend.
For example, a valid input for German

would be <w> IN=pos=ADJ IN=case=GEN
IN=num=PL OUT=pos=ADJ OUT=case=ACC
OUT=num=PL i s o l i e r t e r </w>. The corre-
sponding system output should be <w> i s o l i e
r t e </w>.3

3 Data and training

3.1 Training data enhancement

Since the Shared Task models a low-resource set-
ting, a way to enhance the given training data is
highly desirable. We apply three different meth-
ods for this, depending on the track and, therefore,
depending on the information available. Even
though the training data enhancer could be used
to increase the amount of available data for other
models as well, we expect it to be especially effec-
tive with MED. This is due to the fact that MED
is able to reuse information from any combination
of input and output tag for any other tag pair.

Restricted track. In the restricted track, only
training and development data of the respective
task and language can be used. This means that
there is less information available than in the other
two tracks. Therefore, in this track we can only
use a very basic enhancement method and we can

3For task 1 in the restricted and standard track and task
3 throughout all tracks, no source tag is given and we only
have one tag combination in the input. Therefore, we do not
prepend IN= or OUT= to the tags. However, internally, this
does not make a difference for the model.
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Figure 1: System overview. The input x consists of characters
as well as input and output tags. The output y consists of
characters only.

only apply it to task 2. The idea the method is
based on is that task 2 is symmetric. As described
before, the task consists of mapping a triplet of
source tag, source form and target tag to a target
form. To double the training data it is sufficient
to switch the information and thus create a new
sample, mapping from target tag, target form and
source tag to the source form.

Standard track. The training data enhancement
for the standard track combines information from
task 1 and task 2 and can therefore, following the
Shared Task rules, be used for task 2 and task
3, as only data from lower tasks needs to be ac-
cessed. The idea of our enhancement method is
that each word form belongs to a certain paradigm
which in turn belongs to one single lemma. There-
fore, when knowing the lemmas of words, we can
group them into paradigms. When having more
than one word per paradigm, we can infer the in-
formation that all of them can be inflected into
each other and thus use them to create new sam-
ples. Knowing this, we use task 1 training data to
make groups of lemmas and word forms belong-
ing to the same paradigm, keeping the tags. Then,
we add all information from task 2 and, knowing
that source form and target form always belong
to the same lemma, we add both forms with their

tags to a group whenever one of them is already
in there.4 Afterwards, we build all combinations
of word pairs of each paradigm and, by doing so,
create new training data.

This method could be applied even if there was
absolutely no overlap between the lemmas in task
1 and task 2. However, it would then be neces-
sary to train a lemmatizer on task 1 data first and
lemmatize all words to sort them into paradigms.
When doing this, accuracy could be improved
by only accepting predictions with a strong con-
fidence and by only accepting new words for a
paradigm if the source and the target form of a
sample have the same lemma prediction.

Bonus track. In the bonus track, our training
data enhancement can also be used for task 1. In
order to do so, we first apply the same method
as for the standard track to produce the extended
training data. However, we additionally change
the input format for task 1 such that it resembles
the task 2 input, using LEMMA as the input tag.
In this way, we can apply the task 2 model to task
1 such that task 1 is able to benefit from the addi-
tional data as well.

3.2 Description of the final training data

Depending on the complexity of the language and
the structure of the datasets we end up with a dif-
ferent amount of final training samples for each
language, even though we start with nearly iden-
tical training set sizes. We show the final number
of samples for task 2 in different tracks in Table
1. As can be seen, the training data enhancement
increases the number of samples by a factor be-
tween 10 and 80. Out of all languages, the en-
hancer has the smallest effect for Finnish. Most
additional samples are created for Maltese.

3.3 Training

For each of the 10 languages we train one ensem-
ble for each task of the restricted track as well as
for each of tasks 2 and 3 of the bonus track. We do
not train a separate model for task 1, due to the fact
that the same model can be applied to both task 1
and task 2 of the bonus track. In total, we train 50
ensembles, consisting of 250 single models. For
our setting, task 1 of the standard track is the same
as for the restricted track, while tasks 2 and 3 are
the same as for the bonus track.

4As for none of the languages task 3 contained new word
forms, we did not consider task 3 data here.
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T2, given T2, restricted T2, standard
Dataset no. samples no. samples factor no. samples factor
Arabic 14,400 28,800 2 458,814 32
Finnish 14,400 28,800 2 116,206 8
Georgian 14,400 28,800 2 196,396 14
German 14,400 28,800 2 166,148 12
Hungarian 21,600 43,200 2 643,630 30
Maltese 21,600 43,200 2 1,629,446 75
Navajo 14,385 28,770 2 160,332 11
Russian 14,400 28,800 2 129,302 9
Spanish 14,400 28,800 2 211,030 15
Turkish 14,400 28,800 2 392,136 27

Table 1: Number of training samples for task 2 without (given) and with the training data enhancer (restricted and standard
track) together with the factor by which the size of the training set increased. Note that the samples for task 2 in the standard
track are the same as the samples for task 1 in the bonus track.

Language Task 1 Task 2 Task 3
Arabic 95.47% 97.38% 96.52%
Finnish 96.80% 97.40% 96.56%
Georgian 98.50% 99.14% 98.87%
German 95.80% 97.45% 95.60%
Hungarian 99.30% 99.67% 99.50%
Maltese 88.99% 88.17% 87.83%
Navajo 91.48% 96.64% 96.20%
Russian 91.46% 91.00% 89.91%
Spanish 98.84% 98.74% 97.96%
Turkish 98.93% 97.94% 99.31%

Table 2: Exact-match accuracy per language for the standard
track of the SIGMORPHON 2016 Shared Task.

Language Task 1 Task 2 Task 3
Arabic 95.47% 91.09% 82.80%
Finnish 96.80% 96.81% 93.18%
Georgian 98.50% 98.50% 96.21%
German 95.80% 96.22% 92.41%
Hungarian 99.30% 99.42% 98.37%
Maltese 88.99% 86.88% 84.25%
Navajo 91.48% 97.81% 83.50%
Russian 91.46% 90.11% 87.13%
Spanish 98.84% 98.45% 96.69%
Turkish 98.93% 98.38% 95.00%

Table 3: Exact-match accuracy per language for the restricted
track of the SIGMORPHON 2016 Shared Task.

For each task of the restricted track we train a
separate model for 20 epochs. For the bonus track
we reduce the number of epochs to 10, because
we have much more training data. For Maltese,
we reduce it even further to 6 epochs.

Because we do not tune any hyperparameters,
we combine the original training and development
sets to one big training set. The numbers reported
in Table 1 are considering this big dataset.

4 Results on the Shared Task test data

Tables 2, 3 and 4 list the official final results of
MED for the SIGMORPHON 2016 Shared Task.
Table 2 shows the results of the standard track for
which systems are allowed to access the data of

Language Task 1 Task 2 Task 3
Arabic 98.25% 97.38% 96.25%
Finnish 97.30% 97.40% 96.56%
Georgian 99.20% 99.14% 98.87%
German 97.38% 97.45% 95.60%
Hungarian 99.69% 99.67% 99.50%
Maltese 88.53% 88.17% 87.83%
Navajo 98.03% 96.64% 96.20%
Russian 92.15% 91.00% 89.91%
Spanish 99.05% 98.74% 97.96%
Turkish 97.49% 97.94% 99.31%

Table 4: Exact-match accuracy per language for the bonus
track of the SIGMORPHON 2016 Shared Task.

the respective task and all lower numbered tasks.
Therefore, we can apply our training data exten-
sion to tasks 2 and 3, but not to task 1. Because
of this, the two higher tasks have the same scores
as in the bonus track: we effectively give the same
answers. Task 1, in turn, is the same for the stan-
dard and the restricted track, leading to the same
numbers in Tables 2 and 3.

For ease of exposition, we will mostly com-
pare the restricted and the bonus track as the stan-
dard track can be considered a mixture of those
two. For most tasks and languages the accuracy
is higher in the bonus than in the restricted track.
This is easy to explain as MED has more data to
train on (task 1 information for tasks 2 and 3 and
task 2 information for task 1). The exception is
Navajo: For task 2 the accuracy is higher in the
bonus track than in the restricted track. We leave
an investigation of this for future work.

Our training data enhancer – which is the only
difference between the bonus and the restricted
track as we do not use the provided unlabeled cor-
pora – is clearly effective: For Arabic, for ex-
ample, it leads to 13.72% improvement in perfor-
mance for task 3. For Turkish, the accuracy for
task 3 increases by 4.31%. Those are also the lan-
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guages for which the training data enhancement
was very effective as can be seen in Table 1. That
Maltese does not improve so much even though we
use a lot more training data is most likely due to
the shorter training: we trained only for 6 epochs
instead of 10, because of time constraints.

As expected, the scores for task 3 are worse than
or at most comparable to the scores for task 2 in all
tracks. This is due to the fact that task 3 does not
provide a source tag, so less information is avail-
able. However, it seems that this information was
not much needed as the improvement when adding
it is minor. The better result for task 3 for Turkish
compared to task 2 in the bonus track may be due
to randomness during training – like the order of
samples in the training data – as it is below 1.5%.

It may be surprising at first that the results for
task 1 are not always better than the results for
task 2. This is the case, for example, in the re-
stricted track for Finnish, Georgian, Hungarian
and Navajo. As the organizers describe on the
Shared Task’s homepage, they expect task 1 to be
the easiest. Our guess would be that the model
has more information in total for task 2 as more
forms are given per paradigm. Additionally, task
2 is symmetric; this makes it possible to use twice
the training data, as described in Section 3.

5 System Analysis

To analyze which design choices are important
and how they influence the performance of MED
we conduct several experiments, always keeping
all but the investigated design choice fixed to the
settings described in Section 2. To make the ex-
periments clearer, we limit them to one combina-
tion of task, track and language: Unless mentioned
otherwise, we perform all experiments described
in this section on task 2 of the restricted track for
Russian. For the experiments in this section, the
system is trained on training data only and eval-
uated on the development set. The training data
enhancement is not used in this analysis.

5.1 Analysis 1: Number of hidden units in
encoder and decoder

In its original configuration MED has 100 hidden
units in both the encoder and the decoder. This
number was found to be good during initial ex-
periments. However, we want to investigate how
the number of hidden units in the RNNs can effect
the final accuracy on an MRI task. Therefore, we

Number of hidden units Exact-match accuracy
50 86.2%

100 88.4%
200 87.2%
400 87.3%

Table 5: Performance of MED for different numbers of hid-
den units in the encoder and decoder.

Embedding size Exact-match accuracy
100 86.7%
200 87.3%
300 88.4%
400 90.0%
500 90.3%

Table 6: Performance of MED for different embedding di-
mensions in the encoder and decoder.

train one ensemble for each of 50, 100, 200 and
400 hidden units. To reduce the number of pos-
sible different options and because it agrees with
MED’s original configuration, we define the num-
bers of hidden units in encoder and decoder to be
equal.

The evaluation in Table 5 shows that the best ac-
curacy is obtained for 100 hidden units. Lower re-
sults for fewer hidden units indicate that the model
does not have enough capacity to learn the pat-
terns in the data well. Lower results for more hid-
den units indicate that the model is overfitting the
training data.

5.2 Analysis 2: Size of the embeddings

We chose 300 to be the size of the character and
tag embeddings in our model for the Shared Task.
In this analysis, we want to systematically investi-
gate how MED performs for different embedding
sizes for the encoder and decoder embeddings. We
train the model with embeddings of the sizes 100,
200, 300, 400 and 500 and report the resulting ac-
curacies in Table 6.

The results show that the bigger the embeddings
get the more the perfomance improves. The best
accuracy is reached for 500-dimensional embed-
dings, i.e., the biggest embeddings in this analy-
sis. This suggests that we might have improved
our final results in the Shared Task even further
by using embeddings of a higher dimensionality.
However, this is also a trade-off between a gain
in accuracy and longer training time. Keeping in
mind that we had to train many single models, 300
was a reasonable choice for the embedding size,
with only 1.9% loss of perfomance compared to
500-dimensional embeddings.
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Initialization Exact-match accuracy
Identity 90.5%

Identity + orthogonal 88.4%
Gaussian + orthogonal 89.7%

Table 7: Performance of MED for different initialization
types.

5.3 Analysis 3: Initialization
For the Shared Task, most weights of MED are
initialized with the identitiy matrix. An exception
to this are the weights in the decoder GRU which
are initialized using a random orthogonal matrix.
All biases are initialized to zero. We now compare
how MED’s final performance depends on the type
of initialization. For this, we train two additional
models: (i) we initialize all weights with the iden-
titiy matrix and (ii) we initialize all weights except
for the weights in the decoder GRU from a Gaus-
sian distribution. The weights in the decoder GRU
are again initialized with a random orthogonal ma-
trix.

The final accuracy of the three models can be
seen in Table 7. The random intialization leads
to better results than intitializing with the iden-
tity matrix together with a random orthogonal ma-
trix. However, the highest accuracy is reached by
initializing all weights with identity matrices. In
fact, the results are 2.1% better than MED’s origi-
nal performance. Thus, we would recommend this
initialization for future use of our model.

5.4 Analysis 4: One embedding per tag vs.
one embedding per tag combination

To keep the model flexible to handle tag com-
binations not present in the training set, we
split each tag combination into single tags,
e.g., pos=ADJ,case=ACC,gen=FEM,num=SG
becomes pos=ADJ, case=ACC, gen=FEM and
num=SG with each part having its own embedding
which is fed into the model.

We now compare to the performance of a rep-
resentation in which tags are “fused” and each tag
combination has only one single embedding. As
this is one of the most important design choices
for MED, we do this analysis for several languages
and additionally report the number of tag combi-
nations that are not seen during training.

Table 8 shows that unknown tag combinations
are generally not a problem with the exception
of Maltese. Nevertheless, there is a considerable
decrease in performance. The difference is espe-
cially big for languages with a lower performance

Language MED MED-tag-comb. Unk.
Arabic 88.8% 83.4% 0
Finnish 95.6% 95.2% 1
Georgian 97.3% 95.6% 0
German 95.1% 93.5% 1
Hungarian 99.3% 99.3% 0
Maltese 85.7% 77.1% 151
Navajo 91.1% 83.4% 1
Russian 88.4% 86.8% 1
Spanish 97.5% 97.0% 0
Turkish 97.6% 95.9% 2

Table 8: Exact match accuracy for the standard representa-
tion (MED) as well as the representation with one embedding
per tag combination (MED-tag-comb) per language. The last
column shows the number of samples that contain tag combi-
nations that appear in dev but not in train, either for the source
or the target form.

Tag order type Exact-match accuracy
MED 88.4%

MED-perm 86.4%

Table 9: Performance of MED when training on samples with
tags in always the same order (MED) and samples where the
tags are permuted inside each combination (MED-perm).

like Arabic, Maltese, Navajo and Russian. Lan-
guages with a general high accuracy do not lose
much accuracy when using one embedding per
tag combination. We hypothesize that the pat-
terns of these languages are easy enough to even
be learned with a harder representation. Over-
all, it seems that our representation with split-up
tag combinations is the better choice for MRI and
might even be a key component for MED’s suc-
cess in the Shared Task.

5.5 Analysis 5: The order of tags

In the representation we feed to MED, the order
of single tags inside a tag combination is always
fixed. We now investigate how much influence this
has on the final performance of the model; i.e., we
ask: is MRI harder or easier to learn if we permu-
tate the morphological tags? For this analysis, we
randomly shuffle the tags of each combination in
the training and development data (while still us-
ing the development set for testing).

Table 9 shows that learning seems to be easier
for non-permuted tags. Indeed, when keeping the
order of tags fixed, the system performance is 2%
better than for the random tag order. However, the
difference is not big. This might actually be differ-
ent for languages other than Russian as we did not
investigate from a linguistic point of view if the or-
der matters contentwise for any of the languages.
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6 Related Work

Prior work on morphology includes morphologi-
cal segmentation (Harris, 1955; Hafer and Weiss,
1974; Déjean, 1998), different approaches for
MRI (Ahlberg et al., 2014; Durrett and DeNero,
2013; Eskander et al., 2013; Nicolai et al., 2015).
and work on morphological tagging and lemmati-
zation (Müller et al., 2015).

RNN encoder-decoder models, gated RNNs in
general as well as LSTMs were applied to sev-
eral NLP tasks including some on morphology
like morphological segmentation (Wang et al.,
2016) during the last years. Other tasks they
proved to be useful for are machine translation
(Cho et al., 2014; Sutskever et al., 2014; Bah-
danau et al., 2014), parsing (Vinyals et al., 2015)
or speech recognition (Graves and Schmidhuber,
2005; Graves et al., 2013).

The most similar work to ours was probably
the one by Faruqui et al. (2015). Indeed, MED’s
design is very close to their model. However,
they trained one network for every tag pair; this
can negatively impact performance in a setting
with limited training data like the SIGMORPHON
2016 Shared Task. In contrast, we train a sin-
gle model for each language. This radically re-
duces the amount of training data needed for the
encoder-decoder because most MRI patterns oc-
cur in many tag pairs, so what is learned for one
can be transferred to others. In order to model all
tag pairs of the language together, we introduce an
explicit morphological representation that enables
the attention mechanism of the encoder-decoder to
generalize MRI patterns across tag pairs.

7 Conclusion

In this paper we described MED, our system for
the SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection as well as a training data
enhancement method based on paradigms. MED
is a powerful character-based encoder-decoder
RNN and its architecture is completely language-
independent, such that we trained the models for
all 10 languages of the Shared Task using the same
hyperparameters. MED establishes the state of
the art for the SIGMORPHON 2016 Shared Task,
scoring first in all of the 90 subtasks of the final
evaluation.

Furthermore, we presented an extended analy-
sis, evaluating different design choices for MED.
The results show that most of our initial settings

were good choices, especially the representation
of morphological tags. However, it might be
possible to further improve MED’s performance
increasing the size of the used embeddings and
choosing another initialization.
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