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Abstract

This work examines CRF-based sequence
alignment models for learning natural lan-
guage morphology. Although these sys-
tems have performed well for a limited
number of languages, this work, as part
of the SIGMORPHON 2016 shared task,
specifically sets out to determine whether
these models handle non-concatenative
morphology as well as previous work
might suggest. Results, however, indicate
a strong preference for simpler, concatena-
tive morphological systems.

Introduction

Morphologically-rich languages pose a challenge
for the natural language processing and genera-
tion community. Computationally mapping in-
flected wordforms to a baseform has been stan-
dard practice in semantics and generation. Tradi-
tionally, hand-coding these as rule-based systems
required extensive engineering overhead, but has
produced high quality resolution between base and
inflected wordforms. This work extends work by
Durrett and DeNero (2013) to automatically learn
morphological paradigms by comparing edit op-
erations between a lemma and baseform and tests
a similar algorithm on other morphologically-rich
langauges and those which exhibit more extensive
use of non-concatenative morphology.

Background

Morphological reinflection and lemma generation
are not trivial tasks, and have been the subject
of much research and engineering. Traditionally,
rule-based and finite-state methods (Minnen et al.,
2001; Koskenniemi, 1984) have been used, par-
ticularly when no training data is available. Al-
though these handcrafted systems perform with a

high level of accuracy, creating them is difficult
and requires a great deal of engineering overhead.

Recently, more automatic, machine learning
methods have been utilized. These systems have
required far less handcrafting of rules, but also do
not perform as well. Specifically, work by Durrett
and DeNero (2013) exploits sequence alignment
systems across strings, a technique originally de-
veloped for DNA analysis. They showed that by
computing minimum edit operations between two
strings and having a semi-markov conditional ran-
dom field (CRF) (Sarawagi and Cohen, 2004) pre-
dict when wordform edits rules were to be used, a
system could achieve state-of-the-art performance
in completing morphological paradigms for En-
glish and German.

English and German, along with other Ger-
manic languages, have a somewhat rarer tendency
towards ablauting, that is changing or deleting
segments from the lemma of a wordform as part
of its inflection. In some circles, morphology is
thought of in the purely concatenative sense (i.e.
give + -s → gives). Durrent and DeNero’s work
shows promise in that they already account for
non-concatenative morphonology in English and
German. Using a similar system, this work hy-
pothesizes that such an approach will perform well
on languages with more prolific non-concatenative
morphology, such as Arabic and Maltese.

Shared Task

The 2016 SIGMORPHON (Cotterell et al., 2016)
shared task on morphological reinflection con-
sisted of multiple tracks for discerning fully in-
flected wordforms in ten languages, two of which
were surprise languages whose data was not re-
leased until a week before the submission dead-
line. In task 1, participants were given a lemma
and a target word’s grammatical information with
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Language Training Items
Arabic 12254
Finnish 12693
Georgian 11576
German 12490
Hungarian 16219
Maltese 18975
Navajo 6012
Russian 12390
Spanish 12575
Turkish 12336

Table 1: Training items available for restricted
task 1.

which to guess the fully inflected target wordform.
In task 2, participants were supplied with two fully
inflected wordforms—one source and one target—
and their grammatical features. Task 3 was the
same as task 2, except that no source grammati-
cal information was supplied.

Additionally, participants were allowed to
choose standard, restricted, or bonus training sets.
The standard training allowed for any task to use
training data from a task lower than it. Restricted
training only allowed for training on data for that
given data set (i.e. task 1 can only train on task 1,
task 2 on task 2, and task 3 on task 3). A system
attempting a certain task number and training on
a higher task number (e.g. attempting task 1 and
additionally using task 2 training data) constituted
using bonus training.

For the purposes of testing this work’s hypoth-
esis, task 1 was chosen as being the most anal-
ogous and direct means of evaluation. Addition-
ally, restricted training was used to minimize vari-
ance between the training sets of the ten languages
in question. As seen in table 1, although gener-
ally most training sets have about 12,000 items,
Navajo, Maltese, and Hungarian are the excep-
tions.

Implementation

This work exploits string sequence alignment
algorithms such as Hirschberg’s algorithm
(Hirschberg, 1975) and the Ratciff/Obershelp
algorithm (Black, 2004) in the same vein as recent
work by Durrett and DeNero (2013) and Nicolai
et al. (2015). In these frameworks, the fewest
number of edits required to convert one string
to another are considered to be morphological

give→ gave

g i v e
g a v e

Rule -i+a

kitab→ kutub
k i t a b
k u t u b

Rule -i+u -a+u

springen→ gesprungen

s p r i n g e n
ge s p r u n g e n

Rule +g+e -i +u

Figure 1: Sample edits for English give → gave,
Arabic kitab to kutub (‘book’ singular→ plural),
and German springen → gesprungen (‘to jump’
infinitival → past participle). Note that edit rules
are applied in a character-by-character manner
across the lemma.

rules. As shown in figure 1, source and target
words are aligned to minimize edit operations
required to make them the same. This minimal
list of edit operations is converted into an edit
rule at the character level (i.e. this work does
not predict word level edit operations). These
segment edits are fed with a feature set to be
trained on by a linear chain CRF (Sutton and
McCallum, 2011) using online passive-aggressive
training (Crammer et al., 2006).

Features for the CRF included a mix of data
provided by the task data and surface features
from the uninflected lemmas. All features were
shared across all segments (i.e. at the word level)
except for features specific to the the current
segment and listed in table 2. Outputs from the
CRF were edit operations for each segment of
the input lemma. After these operations were
carried out on their respective segments within
the lemma, a fully inflected wordform was the
final output from the system. The feature set was
chosen with insight from previous work.

Full feature set:

• Grammatical information – concatenated

• Grammatical information – factored

• Character level bigram information – for-
wards and backwards
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Current Edit Affix Distance Distance
type from from

beginning end
start +g+e prefixing 0 8
s empty infixing 1 7
p empty infixing 2 6
r empty infixing 3 5
i -u+i infixing 4 4
n empty infixing 5 3
g empty infixing 6 2
e empty infixing 7 1
n empty suffixing 8 0

spring→ gesprungen

Table 2: An example of character-specific features
as used by the CRF – all other features are shared
across the entire edit sequence.

• Character level trigram information – for-
wards and backwards

• Character indexes from beginning and end

• Distance from the current character to the be-
ginning of the lemma

• Distance from the current character to the end
of the lemma

• Affix type (prefixing, infixing, or suffixing –
circumfixing was not explicitly encoded into
the feature set)

Results

Overall the system performed far better on the de-
velopment set than the test set. It is easiest to
summarize the results from table 6 in terms of the
number of edit rules the system had to learn. Lan-
guages with under 500 edit rules for the system to
learn performed best and only experienced mod-
erate dropoff between the development and test
sets. Languages with over 500 edit rules to be
learned both performed worse and experienced ex-
treme drop offs in some instances. The exception,
Turkish, will be discussed below and in the next
section.

Languages traditionally used in these tasks,
such as German, performed best, while those less
often tested in these systems, such as Maltese,
seem to be more difficult for the system to accu-
rately predict. There was a drastic drop in Navajo,
which the task organizers claim to be caused by a
dialectal shift between the training, development,

Affix Data Set Dev Test
Train -0.764 -0.707
Dev -0.694 -0.603

Table 3: Correlations of the number of affixes per
language in a given data set and the system’s ac-
curacy of that language.

Figure 2: Aggregate Accuracy over the Develop-
ment Set

and testing data sets, among other reasons. Mal-
tese was not able to be tested since the CRF took
15 days to train, which did not fit within the time
allotted for training on the surprise languages. The
jump in training time for Maltese was not unex-
pected, given how many unique affixes the train-
ing set had, and taking into account the effect that
increasing the number of classes a CRF must pre-
dict increases its asymptotic complexity quadrati-
cally by some measures (Cohn, 2007). Hungarian,
the other surprise language, did not drop as drasti-
cally.

Language Train Dev
Arabic 3.249 3.170
Finnish 1.835 1.775
Georgian 1.464 1.474
German 1.042 1.035
Hungarian 1.559 1.536
Maltese 3.184 3.103
Navajo 3.260 3.283
Russian 1.803 1.775
Spanish 1.495 1.474
Turkish 2.131 2.058

Table 4: Entropy over affix counts in the training
and development data sets.
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Figure 3: Aggregate Accuracy over the Test Set

Discussion

The difference in system performance between
development and testing could be interpreted as
overfitting. That said, overfitting to the develop-
ment set would show a more universal drop in
scores from development to testing than is exhib-
ited here. Table 5 shows the number of unique
affixes the system had to learn. As expected, lan-
guages traditionally thought to have less complex
morphological structure had fewer unique affixes
in both training and development sets. This is
echoed in table 4, where entropy over the unique
affix counts was calculated.

In addition to a non-uniform drop in accuracy,
a strong negative correlation–as seen in table 3–
between the number of affixes in the training set
and accuracy seems to indicate that data sparsity
might explain this phenomenon more fully. It ap-
pears that data sparsity has a greater effect as the
number of affixes increases.

Certain languages did appear to drop between
development and testing more drastically than oth-
ers. While Finnish, German, Hungarian, Russian,
Spanish, and Turkish fell less that 10%, Navajo
and Arabic fell more than 30% each. Navajo’s
drop can be explained by the lack of training data.
In 6012 training items, there were 684 edit rules
that the system had to learn. This ratio of edit rules
to wordforms is more than 1:10, which is higher
than almost any other language in the task, second
only to Maltese. What is particularly interesting is
the number of affixes between Turkish and Arabic.

Although Arabic fell more drastically, Turk-
ish clearly has more affixes in the data set, both
by ratio and sheer count, and should perform

Language Train Dev
Arabic 668 260
Finnish 433 228
Georgian 149 88
German 153 83
Hungarian 460 279
Maltese 2113 787
Navajo 684 386
Russian 417 170
Spanish 133 88
Turkish 823 438

Table 5: Number of unique affixes in each data set.

worse given the previously-mentioned observa-
tions about an overall negative correlation be-
tween affix number and system performance. It
should be taken into consideration that the kinds
of morphology in Arabic and Turkish are not en-
tirely analogous. Turkish, although agglutina-
tive, is also primarily a suffixing language (Lewis,
2000), while Modern Standard Arabic is compar-
atively more non-concatenative. Arabic and Mal-
tese, both of which have high entropies as seen in
table 4 in additional more non-concatenative mor-
phological structures, also performed worse than
Turkish in the development results, which had an
entropy more akin to Russian and Finnish. This
points to the likelihood that non-contatenative
morphology is still an issue for sequence align-
ment algorithms. Whether this problem can be
solved by using a different algorithm, increasing
training data, or by altering the underlying ma-
chine learning is beyond the scope of this task.

It should also be noted that, as far as this work
is aware, the data sets were not balanced for fre-
quency. Language learners often rotely memorize
irregular forms because they do not fit a productive
inflectional pattern. Luckily, irregular forms usu-
ally occur more frequently than wordforms sub-
ject to productive morphological rules (Bybee and
Thompson, 1997; Grabowski and Mindt, 1995).
Since the algorithm ostensibly treats productive
and lexicalized forms equally, it would be inter-
esting to see if there were any difference in perfor-
mance between these datasets and others balanced
to account for irregular form frequency.

Conclusion

Sequence alignment algorithms have proven use-
ful in automatically learning natural language
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Language Dev Test
Arabic 0.665 0.358
Finnish 0.759 0.728
Georgian 0.962 0.949
German 0.925 0.894
Hungarian 0.918 0.849
Maltese 0.635 N/A
Navajo 0.865 0.279
Russian 0.824 0.761
Spanish 0.965 0.949
Turkish 0.825 0.776

Table 6: Aggregate Accuracy Across Languages.
Maltese required 15 days to train, and was unable
to finish before the results were due.

morphology. That said, supervised models require
exceptional amounts of training data to overcome
data sparsity. Given a lack of training data, more
traditional finite-state methods might be prefer-
able given enough time to engineer such systems.
This work has shown that CRF-based sequence
alignment models do perform well for languages
with lower affix to wordform ratios and unique af-
fix count entropy values. Although there is not
enough evidence to overtly reject this work’s hy-
pothesis, the evidence does indicate a preference
for concatenative morphology by CRF-based se-
quence alignment models.
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