
Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 41–48,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Improving Sequence to Sequence Learning for Morphological Inflection
Generation: The BIU-MIT Systems for the SIGMORPHON 2016 Shared

Task for Morphological Reinflection

Roee Aharoni and Yoav Goldberg
Computer Science Department

Bar Ilan University
roee.aharoni,yoavgo@gmail.com

Yonatan Belinkov
CSAIL

MIT
belinkov@mit.edu

Abstract

Morphological reinflection is the task of
generating a target form given a source
form and the morpho-syntactic attributes
of the target (and, optionally, of the
source). This work presents the sub-
mission of Bar Ilan University and the
Massachusetts Institute of Technology for
the morphological reinflection shared task
held at SIGMORPHON 2016. The sub-
mission includes two recurrent neural net-
work architectures for learning morpho-
logical reinflection from incomplete in-
flection tables while using several novel
ideas for this task: morpho-syntactic at-
tribute embeddings, modeling the concept
of templatic morphology, bidirectional in-
put character representations and neural
discriminative string transduction. The
reported results for the proposed models
over the ten languages in the shared task
bring this submission to the second/third
place (depending on the language) on all
three sub-tasks out of eight participating
teams, while training only on the Re-
stricted category data.

1 Introduction

Morphological inflection, or reinflection, involves
generating a target (surface form) word from a
source word (e.g. a lemma), given the morpho-
syntactic attributes of the target word. Previ-
ous approaches to automatic inflection generation
usually make use of manually constructed Finite
State Transducers (Koskenniemi, 1983; Kaplan
and Kay, 1994), which are theoretically appealing
but require expert knowledge, or machine learn-
ing methods for string transduction (Yarowsky
and Wicentowski, 2000; Dreyer and Eisner, 2011;

Durrett and DeNero, 2013; Hulden et al., 2014;
Ahlberg et al., 2015; Nicolai et al., 2015). While
these studies achieved high accuracies, they also
make specific assumptions about the set of pos-
sible morphological processes that create the in-
flection, and require feature engineering over the
input.

More recently, Faruqui et al. (2016) used
encoder-decoder neural networks for inflection
generation inspired by similar approaches for
sequence-to-sequence learning for machine trans-
lation (Bahdanau et al., 2014; Sutskever et al.,
2014). The general idea is to use an encoder-
decoder network over characters, that encodes the
input lemma into a vector and decodes it one char-
acter at a time into the inflected surface word.
They factor the data into sets of inflections with
identical morpho-syntactic attributes (we refer to
each such set as a factor) and try two training ap-
proaches: in one they train an individual encoder-
decoder RNN per factor, and in the other they train
a single encoder RNN over all the lemmas in the
dataset and a specific decoder RNN per factor.

An important aspect of previous work on learn-
ing inflection generation is the reliance on com-
plete inflection tables – the training data contains
all the possible inflections per lemma. In contrast,
in the shared task setup (Cotterell et al., 2016) the
training is over partial inflection tables that mostly
contain only several inflections per lemma, for
three different sub-tasks: The first requires mor-
phological inflection generation given a lemma
and a set of morpho-syntactic attributes, the sec-
ond requires morphological re-inflection of an in-
flected word given the word, its morpho-syntactic
attributes and the target inflection’s attributes, and
the third requires re-inflection of an inflected word
given only the target inflection attributes. The
datasets for the different tasks are available on the

41



shared task’s website.1

The fact that the data is incomplete makes
it problematic to use factored models like the
ones introduced in (Faruqui et al., 2016), as
there may be insufficient data for training a high-
quality model per factor of inflections with identi-
cal morpho-syntactic attributes. For example, in
the shared task dataset the training data usually
contains less than 100 training examples on av-
erage per such factor. Moreover, when the data
is factored this way, no information is shared be-
tween the different factors even though they may
have identical inflection rules.

We propose two neural network architectures
for the task. The first, detailed in Section 2, de-
parts from the architecture of (Faruqui et al., 2016)
by extending it in three novel ways: represent-
ing morpho-syntactic attributes, template-inspired
modeling, and bidirectional input character repre-
sentations. The second, described in Section 3, is
based on an explicit control mechanism we intro-
duce while also making use of the three extensions
mentioned above. Our experimental evaluation
over all 10 languages represented in the shared
task brings our models to the second or third place,
depending on the language.

2 First Approach: Morphological
Sequence to Sequence Architecture

Our first proposed architecture is a Morphological
Sequence to Sequence (MS2S) architecture, illus-
trated in Figure 1. It incorporates several novel
components in the sequence-to-sequence learning
paradigm, as discussed below.

2.1 Morpho-Syntactic Attribute Embeddings

We seek to train models over larger amounts of ex-
amples, rather than on factors that strictly contain
examples that share all the morpho-syntactic at-
tributes. To do so, instead of factoring the data by
the attributes we feed the attributes into the net-
work by creating a dense embedding vector for
every possible attribute/value pair (for example,
gender=FEM and gender=MASC will each have
its own embedding vector). The attribute embed-
dings for each input are then concatenated and
added as parameters to the network while being
updated during training similarly to the character
embeddings. This way, information can be shared

1http://ryancotterell.github.io/
sigmorphon2016/

Figure 1: The Morphological Sequence to Se-
quence (MS2S) network architecture for predict-
ing an inflection template given the Arabic lemma
tarjama and a set of morpho-syntactic attributes.
A round tip expresses concatenation of the inputs
it receives.

across inflections with different morpho-syntactic
attributes, as they are trained jointly, while the at-
tribute embeddings help discriminate between dif-
ferent inflection types when needed. This can be
seen in Figure 1, where f is the vector containing
a concatenation of the morpho-syntactic attribute
embeddings.

While this approach should allow us to train a
single neural network over the entire dataset to
predict all the different inflection types, in prac-
tice we were not able to successfully train such a
network. Instead, we found a middle ground in
training a network per part-of-speech (POS) type.
This resulted in much fewer models than in the
factored model, each using much more data, which
is essential when training machine learning mod-
els and specifically neural networks. For example,
on the Arabic dataset of the first sub task (inflec-
tion generation from lemma to word) this reduced
the amount of trained models from 223 with an av-
erage of 91 training examples per model, to only
3 models (one per POS type - verb, noun, adjec-
tive) with an average of 3907 training examples
per model.

2.2 Morphological Templates

We bring the idea of morphological templates into
the model: instead of training the network to pre-
dict only a specific inflection character at each step
given a lemma and a set of morpho-syntactic fea-
tures, we train the network to either predict a char-

42



acter from the vocabulary or to copy a character at
a given position in the input sequence. This en-
ables the network to produce a sequence that re-
sembles a morphological template which can be
instantiated with characters from the input to pro-
duce the correct inflection. While at train time we
encourage the network to perform copy operations
when possible, at prediction time the network can
decide whether to copy a character from the input
by predicting its location in the input or to generate
a preferred character from the vocabulary. For ex-
ample, for the Arabic lemma tarjama and a set of
morpho-syntactic attributes the network will out-
put the sequence ”tu0123i5āni” which can be in-
stantiated with the lemma into the correct inflec-
tion, tutarjimāni, as depicted in Figure 1.

Intuitively, this method enables the learning
process to generalize better as many different
examples may share similar templates – which
is important when working with relatively small
datasets. We saw indeed that adding this com-
ponent to our implementation of a factored model
similar to (Faruqui et al., 2016) gave a significant
improvement in accuracy over the Arabic dataset:
from 24.04 to 78.35, while the average number of
examples per factor was 91.

To implement this, for every given pair of in-
put and output sequences in the training set we
need to produce a parameterized sequence which,
when instantiated with the input sequence, creates
the output sequence. This is achieved by running
a character level alignment process on the train-
ing data, which enables to easily infer the desired
sequence from every input-output sequence align-
ment. For example, given the input sequences sab-
baba and output sequence tusabbibā with the in-
duced alignment εεsabbaba-tusabbibā, we produce
the expected output: tu0123i5ā, as depicted in the
next figure:

We performed the alignment process using a
Chinese Restaurant Process character level aligner
(Sudoh et al., 2013) as implemented in the shared
task baseline system.2

2https://github.com/ryancotterell/
sigmorphon2016/tree/master/src/baseline

2.3 Bidirectional Input Character
Representation

Instead of feeding the decoder RNN at each step
with a fixed vector that holds the encoded vec-
tor for the entire input sequence like Faruqui et.
al. (2016), we feed the decoder RNN at each step
with a Bi-Directional Long-Short Term Memory
(BiLSTM) representation (Graves and Schmidhu-
ber, 2005) per character in the input along with the
character embedding learned by the network. The
BiLSTM character representation is a concatena-
tion of the outputs of two LSTMs that run over
the character sequence up to the current charac-
ter, from both sides. This adds more focused con-
text when the network predicts the next inflection
output, while still including information form the
entire sequence due to the bidirectional represen-
tation.

2.4 MS2S Decoder Input

For every step i of the decoder RNN for this setup,
the input vector is a concatenation of the follow-
ing:

1. BiLSTMi – The bidirectional character em-
bedding for the ith input character (if i is
larger than the length of the input sequence,
the embedding of the last input character is
used).

2. ci – The character embedding for the ith input
character. If i is larger than the length of the
input sequence, an embedding of a special E
symbol is used, similarly to (Faruqui et al.,
2016).

3. i – A character embedding for the current
step index in the decoder. In the first step this
will be an embedding matching to ’0’, in the
second step it will an embedding matching to
’1’ etc. These are the same index embeddings
used to model copy actions from a specific in-
dex.

4. oi−1 – The feedback input, containing the
embedding of the prediction (either a charac-
ter or an integer representing an index in the
input) from the previous decoder RNN step.

5. f – The vector containing the concatena-
tion of the morpho-syntactic attribute embed-
dings.

43



3 Second Approach: The Neural
Discriminative String Transducer
Architecture

The second approach is based on a Neural Dis-
criminative String Transducer (NDST), a novel
neural network architecture that models which
specific part of the input sequence is relevant for
predicting the next output character at a given
time. This is done by maintaining a state con-
sisting of an input sequence position (the input
pointer) and an output sequence position (the out-
put pointer), which are controlled by the decoder.
This approach can be seen as a more focused re-
placement to the general attention mechanism of
Bahdanau et. al. (2014), tailored to the usually
monotonic behavior of the output sequence with
respect to the input sequence in the morphological
reinflection task. An example for using this archi-
tecture is available in Figure 2.

3.1 NDST Decoder Input
For every step i in the NDST decoder RNN, the
input vector is a concatenation of the following:

1. pinput – The input pointer, holding the
embedding that represents the position of
the current pointed input sequence element.
When i = 0, this is initialized with the em-
bedding that stands for the position of the first
element in the input. Every time the network
outputs the “step” symbol, pinput is promoted
by setting it with the embedding that repre-
sents the next input sequence position.

2. poutput – The output pointer, a character em-
bedding representing the next position in the
output sequence to be generated. When i =
0, this is initialized with the embedding that
stands for the position of the first element in
the input. Every time the network outputs a
symbol other than the “step” symbol, poutput

is promoted by setting it with the embedding
for the next output sequence position.

3. BiLSTMpinput – The bidirectional character
embedding for the input character currently
pointed by pinput.

4. oi−1 – The feedback input, containing the
embedding of the prediction (either a char-
acter, an integer representing an index in the
input, or the “step” symbol) from the previ-
ous decoder RNN step.

Figure 2: The Neural Discriminative String Trans-
ducer (NDST) architecture for predicting an in-
flection template given a lemma and a set of
morpho-syntactic attributes.

5. f – The vector containing the concatena-
tion of the morpho-syntactic attribute embed-
dings.

To train an NDST network, for every input and
output sequence in the training data we should
have a sequence of actions (of three types – either
a specific character prediction, an index to copy
from or a “step” instruction) that when performed
on the input sequence, produces the correct output
sequence. To get the correct instruction sequences
in train time we first run a character level align-
ment process on the training data, similarly to the
MS2S model. Once we have the character level
alignment per input-output sequence pair, we de-
terministically infer the sequence of actions that
results in the desired output by going through ev-
ery pair of aligned input-output characters in the
alignment. If the input and output characters in the
aligned pair are not identical, we produce the new
output character. If the input and output characters
in the aligned pair are identical we produce a copy
action from the input character location. After
that, if the next output character is not the epsilon
symbol as seen in the alignment in Figure 2.2 we
also produce a “step” action. We train the network
to produce this sequence of actions when given the
input sequence and the set of morpho-syntactic at-
tributes matching the desired inflection.

44



4 Experimental Details

4.1 Submissions

The shared task allowed submissions in three dif-
ferent tracks: Standard, which enabled using data
from lower numbered tasks in addition to the cur-
rent task data; Restricted, which enabled using
only the current task’s data; and Bonus, which en-
abled using the Standard track datasets and an ad-
ditional monolingual corpus supplied by the orga-
nizers.

We submitted two systems to the shared task,
both in the Restricted track: The first, named
BIU/MIT-1, used the MS2S architecture as de-
scribed previously and participated in all three
sub-tasks. Notice that for the 3rd task, the in-
put is identical to the first task so it does not re-
quire changes in the network architecture. To use
the MS2S network for the second task we con-
catenated the source and target morpho-syntactic
attribute embeddings and used that vector as the
f vector mentioned previously. The output from
this system was 5-best lists, meaning 5 predictions
for each input. To produce the 5-best list we per-
form beam search over the MS2S model, which is
trained greedily without such search procedure.

The second system, named BIU/MIT-2, used
the NDST architecture and participated only in the
first and second sub-tasks. This system did not
use beam search, producing only one guess per in-
put. Again, to use the NDST architecture for the
second task we simply concatenated the input and
output morpho-syntactic attribute embeddings.

4.2 Training, Implementation and Hyper
Parameters

To train our systems, we used the train portion of
the dataset as-is and submitted the model which
performed best on the development portion of
the dataset, without conducting any specific pre-
processing steps on the data. We trained our net-
works for a maximum of 300 epochs over the en-
tire training set or until no improvement on the
development set has been observed for more than
100 epochs. The systems were implemented using
pyCNN, the python wrapper for the CNN toolkit.3

In both architectures we trained the network by
optimizing the expected output sequence likeli-
hood using cross-entropy loss. For optimization
we used ADAM (Kingma and Ba, 2014) with

3https://github.com/clab/cnn

no regularization, and the parameters set as α =
10−4, β1 = 0.9, β2 = 0.999, ε = 10−8. In
all architectures we used the CNN toolkit imple-
mentation of an LSTM network with two layers,
each having 200 entries. The character embed-
dings were also vectors with 200 entries, and the
morpho-syntactic attribute embeddings were vec-
tors of 20 entries. When using beam search we
used a beam width of 5.

5 Results

While developing our systems we measured our
performance on the development set with respect
to two baselines: the shared task baseline sys-
tem (ST-Base) inspired by (Nicolai et al., 2015;
Durrett and DeNero, 2013), and the factored se-
quence to sequence baseline (Fact.) similar to the
one introduced in (Faruqui et al., 2016). On the
test set, our systems ranked second or third out of
eight groups in the shared task (depending on the
language). The best participating system, LMU-
1/2 (Kann and Schütze, 2016) relied on a single
encoder-decoder model with attention (Bahdanau
et al., 2014) per language, with several improve-
ments like performing prediction using majority
voting over an ensemble of five models. In con-
trast, our first system did not use an explicit atten-
tion mechanism and is composed of 3 models per
language (one per POS type) without using ensem-
bling. We compare our system to the best system
on the test set.

The results for the first task are shown in Ta-
ble 1, measuring aggregated accuracy across all
POS tags. On the development set, our models
surpassed both baselines significantly and were
competitive with each other, as the MS2S model
gained the best aggregated accuracy results on
all languages but Russian and Finnish, where the
NDST model was better. On the test set, similar
results are shown: the MS2S model gives higher
accuracies except for Russian, Navajo and Maltese
where the NDST model was superior.

For the second task, we measured performance
only with respect to ST-Base as can be seen in Ta-
ble 2. On the development set, the NDST model
outperformed the baseline and the MS2S model
for all languages but Georgian and Spanish, where
the MS2S and ST-Base models were better, re-
spectively, although not with a significant differ-
ence. On the test set, the MS2S model gave better
results only for Georgian and Hungarian.

45



Table 1: Results for inflection generation (first sub-task), measuring accuracy on the development set:
our models vs. the shared task (ST-Base) and Factored (Fact.) baselines, and mean reciprocal rank
(MRR) on the test set: our models vs. the best performing model (Kann and Schütze, 2016).

Dev Test
Language ST-Base Fact. MS2S NDST MS2S NDST Best
Russian 90.38 84.22 91.57 93.33 89.73 90.62 91.46
Georgian 89.83 92.37 98.41 97.01 97.55 96.54 98.5
Finnish 68.27 75.78 95.8 94.36 93.81 92.58 96.8
Arabic 70.29 24.04 96.28 92.95 93.34 89.96 95.47
Navajo 71.9 83.47 98.82 98.48 80.13 88.43 91.48
Spanish 96.92 91.79 98.99 99.31 98.41 98.33 98.84
Turkish 59.17 64.68 98.18 97.8 97.74 96.17 98.93
German 89.29 90.35 96.36 95.99 95.11 94.87 95.8
Hungarian 78.62 65.75 99.23 98.76 98.33 97.59 99.3
Maltese 36.94 N/A 87.92 85.2 82.4 84.78 88.99

Table 2: Results for morphological re-inflection with source attributes (second sub-task) measuring
accuracy over the development set: our models vs. the shared task (ST-Base) baseline, and mean
reciprocal rank (MRR) over the test set: our models vs. the best performing model (Kann and Schütze,
2016)

Dev Test
Language ST-Base MS2S NDST MS2S NDST Best
Russian 85.63 85.06 86.62 83.36 85.81 90.11
Georgian 91.5 94.13 93.81 92.65 92.27 98.5
Finnish 64.56 77.13 84.31 74.44 80.91 96.81
Arabic 58.75 75.25 78.37 70.26 73.95 91.09
Navajo 60.85 63.85 75.04 56.5 67.88 97.81
Spanish 95.63 93.25 95.37 92.21 94.26 98.45
Turkish 54.88 82.56 87.25 81.69 83.88 98.38
German 87.69 93.13 94.12 91.67 92.66 96.22
Hungarian 78.33 94.37 94.87 92.33 91.16 99.42
Maltese 26.2 43.29 49.7 41.92 50.13 86.88

Table 3: Results for morphological re-inflection without source attributes (third sub-task) measuring
accuracy over the development set: our models vs. the shared task (ST-Base) baseline, and mean
reciprocal rank (MRR) over the test set: our models vs. the best performing model (Kann and Schütze,
2016)

Dev Test
Language ST-Base MS2S NDST MS2S Best
Russian 81.31 84.56 84.25 82.81 87.13
Georgian 90.68 93.62 91.05 92.08 96.21
Finnish 61.94 76.5 66.25 72.99 93.18
Arabic 50 72.56 69.31 69.05 82.8
Navajo 60.26 62.7 54.0 52.85 83.5
Spanish 88.94 92.62 89.68 92.14 96.69
Turkish 52.19 79.87 75.25 79.69 95.0
German 81.56 90.93 89.31 89.58 92.41
Hungarian 78 94.25 83.83 91.91 98.37
Maltese 24.75 44.04 3.58 40.79 84.25

46



For the third task we also measured perfor-
mance with respect to ST-Base as can be seen in
Table 3. On the development set, the MS2S model
outperformed the others on all languages. Since
this was the situation we did not submit the NDST
model for this sub-task, thus not showing test re-
sults for the NDST model on the test set.

6 Preliminary Analysis

An obvious trend we can see in the results is
the MS2S approach giving higher accuracy scores
on the first and third tasks, while the NDST ap-
proach being significantly better on the second
task. While inspecting the data for the second
and third tasks we noticed that the datasets only
differ in the added morpho-syntactic attributes for
the input sequences, and are identical other then
that. This is encouraging as it shows how the
NDST control mechanism can facilitate the addi-
tional data on the input sequence to predict inflec-
tions in a better way. We plan to further analyze
the results to better understand the cases where the
NDST architecture provides added value over the
MS2S approach.

7 Discussion and Future Work

Our systems reached the second/third place in the
Restricted category in the shared task, depend-
ing on the language/sub-task combination. It is
also encouraging to see that if we submitted our
systems as-is to the Standard and Bonus tracks
we would also get similar rankings, even without
using the additional training data available there.
The winning submission in all tracks, described in
(Kann and Schütze, 2016) also used an encoder-
decoder approach that incorporated the morpho-
syntactic attributes as inputs to the network, but
with several differences from our approach like us-
ing an attention mechanism similar to (Bahdanau
et al., 2014), training a single model for all inflec-
tion types rather than one per POS type and per-
forming prediction by using an ensemble of five
models with majority voting rather than using a
single trained model like we did. Future work may
include exploring a hybrid approach that com-
bines the ideas proposed in our work and the lat-
ter. Other recent works that propose ideas relevant
to explore in future work in this direction are (Gu
et al., 2016), which describe a different copying
mechanism for encoder-decoder architectures, or
(Rastogi et al., 2016), which models the reinflec-

tion task using a finite state transducer weighted
with neural context that also takes special care of
the character copying issue.

Acknowledgments

We thank Manaal Faruqui for sharing his code
with us. This work was supported by the In-
tel Collaborative Research Institute for Computa-
tional Intelligence (ICRI-CI).

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2015. Paradigm classification in supervised learning
of morphology. In Rada Mihalcea, Joyce Yue Chai,
and Anoop Sarkar, editors, HLT-NAACL, pages
1024–1029. The Association for Computational Lin-
guistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany,
August. The Association for Computational Lin-
guistics.

Markus Dreyer and Jason Eisner. 2011. Discover-
ing morphological paradigms from plain text using a
dirichlet process mixture model. In EMNLP, pages
616–627. The Association for Computational Lin-
guistics.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1185–1195, Atlanta, Georgia, June. The As-
sociation for Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection gen-
eration using character sequence to sequence learn-
ing. In NAACL HLT 2016, The 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, San Diego, California, USA, June 12
- June 17, 2016.

A. Graves and J. Schmidhuber. 2005. Framewise
phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism
in sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

47



Mans Hulden, Markus Forsberg, and Malin Ahlberg.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In Gosse Bouma and Yan-
nick Parmentier 0001, editors, EACL, pages 569–
578. The Association for Computational Linguistics.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL, Berlin, Ger-
many, August. The Association for Computational
Linguistics.

Ronald M. Kaplan and Martin Kay. 1994. Regu-
lar models of phonological rule systems. Compu-
tational Linguistics, 20(3):331–378.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Kimmo Koskenniemi. 1983. Two-level morphology:
A general computational model of word-form recog-
nition and production. Technical Report Publication
No. 11, Department of General Linguistics, Univer-
sity of Helsinki.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 922–931, Denver, Col-
orado, May–June. The Association for Computa-
tional Linguistics.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In Proc. of NAACL.

Katsuhito Sudoh, Shinsuke Mori, and Masaaki Na-
gata. 2013. Noise-aware character alignment
for bootstrapping statistical machine transliteration
from bilingual corpora. In EMNLP, pages 204–209.
The Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Zoubin Ghahramani, Max Welling,
Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger, editors, NIPS, pages 3104–3112.

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In ACL. The Association for
Computational Linguistics.

48


