Morphological Reinflection with Conditional Random Fields and
Unsupervised Features

Ling Liu
Department of Linguistics
University of Colorado
ling.liu@colorado.edu

Abstract

This paper describes our participation in
the SIGMORPHON 2016 shared task on mor-
phological reinflection. In the task, we
use a linear-chain conditional random field
model to learn to map sequences of input
characters to sequences of output charac-
ters and focus on developing features that
are useful for predicting inflectional behav-
ior. Since the training data in the task is
limited, we also generalize the training data
by extracting, in an unsupervised fashion,
the types of consonant-vowel sequences
that trigger inflectional behavior, and by ex-
tending the available training data through
inference of unlabeled morphosyntactic de-
scriptions.

1 Introduction

Our approach to the shared task focuses on expand-
ing well-known methods to learning inflections.
As our starting point, we assume a discriminative
model akin to Durrett and DeNero (2013), Nicolai
et al. (2015), and the baseline system provided by
the organizers of the shared task, all very similar
systems at the core. To improve performance and
to address the more difficult reinflection tasks in-
troduced in the shared task, we explore methods
of expanding the training data, performing better
alignment on the training data for our discrimina-
tive sequence classifier, feature development, and
using unsupervised features for better generaliza-
tion from training data.

In what follows, we describe a baseline system
we developed, the system we actually participated
with, and present the results, together with some
analysis.

36

Lingshuang Jack Mao
Department of Linguistics
University of Colorado
limad4664@colorado.edu

2 Exploratory experiments: a
suffix-based baseline

To assess the difficulty of the task and the varia-
tion of inflectional behavior in the data sets, we
ran a preliminary test with the data using a sim-
ple, suffix-based inflection strategy to complement
the SIGMORPHON baseline. The method simply
learns to transform input word form suffixes to
suffixes of inflected forms. It works as follows:
from each Levenshtein-aligned example pair x —
y belonging to some morphosyntactic description
(MSD) msource — Mggrget, We extract all the
possible suffix-based string-to-string mapping rules
that describe this mapping. In task 1, where the
source MSD is not known, we assume that the
source mapping is the lemma form. For exam-
ple, if we have seen the example Finnish inflec-
tion rakko — rakoitta, going from lemma to
pos=N,case=PRIV,num=PL, we extract the fol-
lowing alignment, with extra start-of-word and end-
of-word markers

<rakko_
< r ak _

>
oitta>

This allows us to extract rules like the fol-
lowing for inflecting from the lemma form to
pos=N,case=PRIV,num=PL.:

> — itta>

o> — oitta>
ko> — oitta>
kko> — koitta>
akko> — akoitta>
rakko> — rakoitta>

From this, we devise a simple inflection strat-
egy at test time where we always pick the longest
matching such rule extracted from all word pairs
that pertains to the MSD of the source and the tar-
get. The rationale for this baseline is that many

Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 3640,

Berlin, Germany, August 11, 2016. (©2016 Association for Computational Linguistics

Suff SIGMORPHON

baseline baseline
Arabic 48.02 (45.97) 70.30
Finnish 88.36 (88.21) 68.27
Georgian 94.09 (92.75) 89.83
German 92.24 (91.99) 90.36
Hungarian 91.47 (87.76) 74.10
Maltese 37.69 (36.59) 36.56
Navajo 3547 (11.33) 71.90
Russian 88.94 (88.18) 90.38
Spanish 98.31 (98.25) 96.93
Turkish 77.65 (76.24) 59.17

Table 1: Results of a simple suffix-based baseline
on task 1. Results are on the dev-set, and results
in parentheses describe performance on the dev-set
duplicates from the training-set removed.

hand-written models of morphology for various
languages focus on suffixes to predict morphologi-
cal behavior (Détrez and Ranta, 2012). As is seen
in table 1, this yields comparably strong results for
those languages that have largely suffixing inflec-
tions in the shared task (Finnish, Georgian, Ger-
man, Hungarian, Spanish). It also identifies the
difficult languages of the task for both—-Arabic,
Maltese, and Navajo. These are languages that
exhibit significant stem-internal alternations and
prefixation processes that thus lie outside the scope
of this simple method.

3 Sequence labeling

To address the shortcomings of the two baselines
tested—that the discriminative classifier-based
baseline works well with stem-internal changes
but weakly with predominantly suffixing processes,
and that the suffix strategy works only with suffix-
ing languages—we develop a discriminative con-
ditional random field (CRF) model and focus on
improving the initial alignment of the input and
output to better and more consistently capture pre-
fixation and suffixation.

3.1 Alignment

We use the alignment procedure in the baseline pro-
vided by the organizers (Cotterell et al., 2016). This
is a one-to-one aligner that learns globally optimal
costs for aligning a set of word pairs. We first ran
all the word pairs as a batch through this aligner,
obtaining a one-to-one alignment of each pair in
the entire training data. We also experimented with
variants on alignment using Levenshtein distance
with a bias toward aligning vowels with vowels

37

__durfen
gedurft _

<durfen> lemma

<gedurft _ > [pos=Vtense=PST

Figure 1: Example of the enforced one-to-many
alignment after first aligning input-output pairs one-
to-one.

and consonants with consonants, with consistently
worse results.

After initial alignment of the input-output pairs,
we additionally force a one-to-many alignment of
the pairs, with added beginning and end markers <
and >. The markers are treated as actual symbols
that serve to allow the stems to be entirely aligned
on both sides despite possible prefixation and suf-
fixation. In performing the alignment we enforce
that the input side of the relation always comes in
single characters, each of which alternatively map
to the empty string, or a sequence. We bias this
alignment in such a way that any initial input side
zeroes are collapsed with the <-marker and any
final output side zeroes are collapsed together with
the >-marker. Stem-internal insertion sequences
x:y 0:z are always greedily associated with the
leftmost change and become x: yz. This alignment
simplifies the labeling process since each input let-
ter is now assigned a label; furthermore, associating
prefixes and suffixes with the alignment markers in
a predetermined way allows for a consistent model
of suffixing and prefixing in the label sequence
learning process. This is illustrated in figure 1.

3.2 Labeling

We treat inflection generation as a labeling problem
of converting an input sequence x = (1, ...,Zy)
to an output sequence y = (y1,. .., yn). After the
forced one-to-many alignment process, we con-
vert the output side to a sequence of decisions
(y1,...,yn) for use in a sequential labeling pro-
cess. By default, the output strings, usually single
characters, become the labels. However, we do
not record a repetition (where the output equals the
input) as a unique decision; rather, all repetitions
are marked with a special symbol in the label se-
quence y, i.e. all repetitions are marked alike in
the output. Whenever the output differs from the

input, however, the output string itself becomes the
label. In figure 1, the output sequence y would
be <ge-repeat-u-repeat-repeat-t-()-repeat. Deci-
sion sequences thus reflect the possible choices we
have for each input symbol (including the bound-
ary markers < and >)—we may repeat the symbol,
delete the symbol, or output some other sequence
of symbols.

Given input words of the form x = (1, ..., %)
and the corresponding decision sequences y =
(y1,-..,Yn) We train a linear-chain CRF (Lafferty
et al., 2001) by L-BFGS (Liu and Nocedal, 1989)
using CRFsuite (Okazaki, 2007).

We model the conditional distribution of the out-
put sequence in the standard way as

ply) = esp(Y b)) (1)

where ¢ is a feature function which breaks down
into k£ component functions

i1, 4, %,1) = Y wefe (i1, vi,%,1) (2)
k

and where Z is the partition function which nor-
malizes the expression to a proper distribution.

4 Features

We use a number of contextual features that look at
variable amounts of context at each x; point. Apart
from standard local contextual features, we also
employ features that refer to contexts as sequences
of consonants and vowels (C/V).! In addition to
local contextual C/V-features we also employ non-
local features such as the types of vowels seen so
far in the word and the last vowel seen at the current
position, to better capture harmonic processes and
Semitic root-and-pattern morphology. An overview
of the most important features retained after abla-
tion analysis is given in table 2.

5 Evaluation

5.1 Outside data

We separately test the feasibility of our approach
against the data set published by Durrett and DeN-
ero (2013), five data sets over three languages.

'"We used an off-the-shelf algorithm for this purpose
(Hulden, in prep.); there are many highly reliable unsuper-
vised methods for extracting vowels and consonants given a
corpus of words in an alphabetic writing system (Guy, 1991;
Kim and Snyder, 2013; Moler and Morrison, 1983; Sukhotin,
1962).

38

That work used a similar approach (a semi-Markov
CRF), albeit without the unsupervised features, and
we improve upon their results that use a factored
model, predicting each inflected word separately,
as in the shared task, on three out of five data sets.
We expect that with sparser, gappier training data—
Durrett and DeNero (2013) used full inflection ta-
bles for training—our richer, more generic features
will allow for better generalization.

5.2 MSD classification (task 3)

For task 3, where we are asked to inflect a word
from an unknown source MSD, we first train a
multi-class support vector machine (SVM) clas-
sifier (using LIBSVM (Chang and Lin, 2011)) to
map the source form to an MSD. Each combination
of MSDs is taken to represent a separate class—i.e.
we treat each unique MSD-string as a class. As
features, we use all substrings starting from the left
and right edges of the word form in question, a
method used successfully in e.g. morphological
paradigm classification (Ahlberg et al., 2015). In
track 2 (where only task 3 data is used), we train
the classifier on only the given output forms and
MSDs in the training data. In track 1, we feed the
classifier all seen word forms and MSDs from any
task whose data can be used.

5.3 Training method

In track 1, we inflect task 1 forms as described
above whereas task 2 (arbitrary form to arbitrary
form) is addressed by pivoting in two steps via the
lemma form by first mapping the input form to the
lemma form, and then mapping that form to the
target form. We treat task 3 as a more difficult
version of task 2; we first identify the unknown
MSD of the task 3 input form, after which the
procedure reduces to task 2. In the track 2 tasks 2
and 3, where only task-specific training data can be
used, we are unable to pivot since form-to-lemma
data is not available, and we train a separate CRF
for each MSD to MSD mapping. In track 2 task 3,
we first train the SVM classifier to identify MSDs,
then classify the unknown MSDs of the input form
in the training data, producing training data of the
same format as in task 2.

We also experimented with training a single
CRF model for each part of speech, using the
feature/value pairs of the source/target forms as
features. Somewhat surprisingly, this consistently
yielded worse results on the development sets com-
pared with training a separate model for each

Feature

Description

frombeg Position counting from left edge
fromend Position counting from right edge
insymbol The current input symbol
prevsymbol The previous input symbol
prevsymbol2 The input symbol two to the left
prevsymbol3 The input symbol three to the left
previoustwo The previous two input symbols
nextsymbol The next input symbol
nextsymbol2 The input symbol two to the right
nexttwo The next two input symbols
nextgeminate 1 if the next input equals the current input
geminate 1 if the current input equals the previous input
isC Is the current input symbol a consonant
isv Is the current input symbol a vowel
prevC Is the previous input symbol a consonant
prevVv Is the previous input symbol a vowel
nextC Is the next input symbol a consonant
nextv Is the next input symbol a vowel
lastvowel What is the last vowel seen to the left of the current position
allvowels The set of vowels in the word
trigram The trigram x;—1 i Titi
trigramCVv The trigram mapped to C/V symbols
Table 2: The main feature templates used.
CRF D&DN13 Suffix-rules
DE-V 96.14 94.76 91.29
DE-N 8375 8831 86.18 dev test
ES-V 99.62 99.61 63.95 no CV cv
FLv. - 97.18 9723 72.00 Arabic 74.00 (72.13) 74.63 (72.81) | 72.42
FI-N 9230 92.14 92.62 Finnish 88.86 (88.71) 90.05 (89.92) | 88.65
Georgian 94.79 (93.46) 94.59 (93.22) | 93.86
. German 92.42 (92.05) 92.61 (92.25) | 92.64
Table 3: Our approach on the Durrett and DeN- pypoarian 91,04 (83.74) 93.94 (9128) | 91.05
ero (2013) dataset, comparing our model with that Maltese 42.03 (40.81) 41.49 (40.22) | 43.49
work (D&DN13) and the simple suffix-replacing ~ Navajo 88.01(65.23) 92.01(63.67) | 53.28
. . Russian 90.44 (89.79) 90.13 (89.45) | 89.13
model introduced earlier. Spanish 98.68 (98.63) 98.74 (98.70) | 98.28
Turkish 85.34 (84.15) 88.91 (88.01) | 87.39
lemma-to-MSD (track 1) or MSD-to-MSD (track .
(.) (Table 4: Main results for track 1, task 1.
2), and we settled for using separate models.
6 Results
The main results on the development data for task
1 are given in tables 4, 5, and 6. We separately list dev test
figures with and without the C/V-features, which re- no CV cv
sulted in an average increase in accuracy of 1.02% Arabic 63.93 (63.93) 65.62 (65.62) | 62.74
(task 1), 1.58% (task 2), and 1.18% (task 3). Asthe Finnish 79.87(79.87) 82.00 (82.00) | 80.19
devel d includes i Iso f di Georgian 92.37 (92.37) 92.25 (92.25) | 90.87
evelopment data includes instances also found in German 89.31 (89.31) 89.43 (89.43) | 88.44
the training data, we separately report the accuracy Hungarian 87.50 (87.50) 90.20 (90.20) | 87.49
without such duplicates, given in parentheses, as Maltese 22.66 (22.66) 21.29 (21.79) | 22.54
P g P Navajo 70.54 (70.48) 76.67 (76.62) | 46.13
these results better reflect the performance on the Russian 87.06 (87.06) 86.93 (86.93) | 86.71
final test data. Spanish 97.43 (97.43) 97.12(97.12) | 97.18
Turkish 67.12 (67.12) 70.37 (70.37) | 67.50

7 Discussion

The approach we have used clearly outperforms
the baselines provided by the task and our own

39

Table 5: Main results for track 1, task 2.

dev test
no CV Cv
Arabic 61.75(61.75) 62.62 (62.62) | 58.83
Finnish 79.43(79.43) 81.68 (81.68) | 79.45
Georgian 91.86 (91.85) 91.80(91.79) | 90.43
German 87.68 (87.71) 87.62(87.39) | 86.59
Hungarian 87.33 (87.32) 89.95(89.94) | 87.04
Maltese 20.54 (20.54) 19.58 (19.58) | 20.58
Navajo 71.71 (71.45) 80.66 (77.54) | 47.30
Russian 86.31 (86.29) 86.37 (86.35) | 85.34
Spanish 96.43 (96.43) 96.18 (96.18) | 96.26
Turkish 64.43 (64.41) 67.50 (67.47) | 65.63

Table 6: Main results for track 1, task 3.

baseline. There is room for improvement, however.
We attribute the weak performance on the diffi-
cult languages of the task (Arabic, Maltese, and
Navajo, in particular) to limitations on the linear-
chain CRF model. Because of the immediately
local dependency on the previous label, the model
is unable to accurately capture multiple disjoint
changes in going from word form to word form—
something that is present in the Semitic languages
of the data sets and Navajo. In the future, we want
to experiment with more general CRF models to
address this shortcoming (Sutton and McCallum,
2011). We also want to explore techniques for
training a single model per part-of-speech instead
of a separate model for each inflection type. In
our experiments of training single models, this pro-
duced no improvement, but it seems that such an
approach is indispensable in order to be able to
generalize beyond the specific training data given.
Consider, for example, seeing the Finnish word
talo (‘house’) in its singular and plural inessives
talossa/taloissa and the singular abessive, talotta.
In a single model, we should be able to infer, with-
out ever seeing an inflection of that type, that the
plural abessive form is taloitta, isolating the plural
i-morpheme. However, in a model where each com-
plex inflection is learned separately, this cannot be
learned without actually seeing an example of the
combination abessive and plural.>

References

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learn-
ing of morphology. In Proceedings of NAACL-HLT,

This work has been partly sponsored by DARPA 120 in
the program Low Resource Languages for Emergent Inci-
dents (LORELE]I) issued by DARPA/I20 under Contract No.
HRO011-15-C-0113.

40

pages 1024—-1029, Denver, Colorado, May—June. As-
sociation for Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology
(TIST), 2(3):27.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SSIGMORPHON, Berlin, Germany,
August. Association for Computational Linguistics.

Grégoire Détrez and Aarne Ranta. 2012. Smart
paradigms and the predictability and complexity of
inflectional morphology. In Proceedings of the 13th
EACL, pages 645-653. Association for Computa-
tional Linguistics.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of NAACL-HLT, pages 1185-1195.

Jacques B.M. Guy. 1991. Vowel identification: an old
(but good) algorithm. Cryptologia, 15(3):258-262.

Young-Bum Kim and Benjamin Snyder. 2013. Unsu-
pervised consonant-vowel prediction over hundreds
of languages. In Proceedings of ACL, pages 1527—
1536, Sofia, Bulgaria, August. Association for Com-
putational Linguistics.

John Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pages
282-289.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45(1-3):503-528.

Cleve Moler and Donald Morrison. 1983. Singular
value analysis of cryptograms. American Mathemat-
ical Monthly, pages 78-87.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of NAACL-HLT, pages
922-931, Denver, Colorado, May—June. Association
for Computational Linguistics.

Naoaki Okazaki. 2007. CRFsuite: a fast implementa-
tion of conditional random fields (CRFs).

Boris V. Sukhotin. 1962. Eksperimental’noe vydele-
nie klassov bukv s pomoshch’ju EVM. Problemy
strukturnoj lingvistiki, pages 198-206.

Charles Sutton and Andrew McCallum. 2011. An in-
troduction to conditional random fields. Machine
Learning, 4(4):267-373.

