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Abstract

We describe our approach and experi-
ments in the context of the SIGMOR-
PHON 2016 Shared Task on Morphologi-
cal Reinflection. The results show that the
methods of Nicolai et al. (2015) perform
well on typologically diverse languages.
We also discuss language-specific heuris-
tics and errors.

1 Introduction

Many languages have complex morphology with
dozens of different word-forms for any given
lemma. It is often beneficial to reduce the data
sparsity introduced by morphological variation in
order to improve the applicability of methods that
rely on textual regularity. The task of inflection
generation (Task 1) is to produce an inflected form
given a lemma and desired inflection, which is
specified as an abstract tag. The task of labelled
reinflection (Task 2) replaces the input lemma with
a morphologically-tagged inflected form. Finally,
the task of unlabelled reinflection (Task 3) differs
from Task 2 in that the input lacks the inflection
tag.

In this paper, we describe our system as partic-
ipants in the SIGMORPHON 2016 Shared Task
on Morphological Reinflection (Cotterell et al.,
2016). Our approach is based on discriminative
string transduction performed with a modified ver-
sion of the DIRECTL+ program (Jiampojamarn et
al., 2008). We perform Task 1 using the inflec-
tion generation approach of Nicolai et al. (2015),
which we refer to as the lemma-to-word model.
We also derive a reverse word-to-lemma (lemma-
tization) model from the Task 1 data. We per-
form Task 3 by composing the word-to-lemma and
lemma-to-word models. We reduce Task 2 to Task
3 by simply ignoring the input inflection tag.

2 Methods

In this section, we describe the application of our
string transduction and reranking approaches to
the three shared tasks.

2.1 String Transduction

We perform string transduction by adapting DI-
RECTL+, a tool originally designed for grapheme-
to-phoneme conversion.1 DIRECTL+ is a feature-
rich, discriminative character string transducer
that searches for a model-optimal sequence of
character transformation rules for its input. The
core of the engine is a dynamic programming al-
gorithm capable of transducing many consecutive
characters in a single operation. Using a struc-
tured version of the MIRA algorithm (McDonald
et al., 2005), training attempts to assign weights
to each feature so that its linear model separates
the gold-standard derivation from all others in its
search space.

From aligned source-target pairs, DIRECTL+
extracts statistically-supported feature templates:
source context, target n-gram, and joint n-gram
features. Context features conjoin the rule with
indicators for all source character n-grams within
a fixed window of where the rule is being applied.
Target n-grams provide indicators on target char-
acter sequences, describing the shape of the tar-
get as it is being produced, and may also be con-
joined with our source context features. Joint n-
grams build indicators on rule sequences, com-
bining source and target context, and memorizing
frequently-used rule patterns. We train separate
models for each part of speech in the training data.

We perform source-target pair alignment with
a modified version of the M2M aligner (Jiampo-
jamarn et al., 2007). The program applies the
Expectation-Maximization algorithm with the ob-

1https://code.google.com/p/directl-p
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jective to maximize the joint likelihood of its
aligned source and target pairs. In order to encour-
age alignments between identical characters, we
modify the aligner to generalize all identity trans-
formations into a single match operation.

2.2 Task 1: Inflection
For Task 1, we derive a lemma-to-word model,
which transforms the lemma along with an in-
flection tag into the inflected form. Our method
models affixation with atomic morphological tags.
For example, the training instance corresponding
to the past participle dado of the Spanish verb
dar “to give” consists of the source dar+PP and
the target dado. The unsupervised M2M aligner
matches the +PP tag with the do suffix on the
basis of their frequent co-occurrence in the train-
ing data. DIRECTL+ then learns that the PP tag
should be transduced into do when the lemma
ends in ar. Similarly, prefixes are represented
by a tag before the lemma. The transducer can
also memorize stem changes that occur within the
context of a tag. For example, the training pair
PP+singen+PP → gesungen can inform the
transduction PP+ringen+PP → gerungen at
test time.

2.3 Task 2: Labeled Reinflection
Task 2 is to generate a target inflected form, given
another inflected form and its tag. Since our cur-
rent approach is not able to take advantage of the
tag information, we disregard this part of the input,
effectively reducing Task 2 to Task 3.

2.4 Task 3: Unlabeled Reinflection
In general, Task 3 appears to be harder than
Tasks 1 and 2 because it provides neither the
lemma nor the inflection tag for the given word-
form. In essence, our approach is to first lemma-
tize the source word, and then proceed as with
Task 1 as described in Section 2.2. We com-
pose the lemma-to-word model from Task 1 with a
word-to-lemma model, which is derived from the
same data, but with the source and target sides
swapped. The word-to-lemma model transforms
the inflected word-forms into sequences of lem-
mas and tags; e.g. dado→ dar+PP.

The only difference between the two models
involves empty affixes (e.g. the plural of fish in
English). The lemma-to-word model can simply
delete the tag on the source side, but the word-to-
lemma model would need to insert it on the target

side. In order to avoid the problem of unbounded
insertions, we place a dummy null character at the
boundaries of the word, effectively turning inser-
tion into substitution.

Lemmatization is not the only method of inflec-
tion simplification; we experimented with three al-
ternative approaches (Nicolai and Kondrak, 2016):

1. stem-based approach, which is composed of
the word-to-stem and stem-to-word models;

2. stemma-based approach, which instead piv-
ots on stemmed lemmas;

3. word-to-word model, which directly trans-
duces one inflected form into another.

However, as the lemma-based method obtained
the best accuracy during development, we decided
to use it for all following experiments.

2.5 Corpus Reranking
The shared task is divided into three tracks that
vary in the amount of information allowed to train
reinflection models. Track 1 (“Standard”) allows
the training data from the corresponding or lower-
numbered tasks. We did not participate in Track
2 (“Restricted”) because it was formulated af-
ter the release of the training data. For Track
3 (“Bonus”), the shared task organizers provided
unannotated text corpora for each language.

Our Track 3 approach is to rerank the n-best
list of predictions generated by DIRECTL+ for
each test word-form using the method of Joachims
(2002). For each language, we take the first one
million lines from the corresponding Wikipedia
dump as our corpus, removing the XML markup
with the html2text utility. Our reranker con-
tains three features:

1. normalized score of the prediction generated
by DIRECTL+;

2. presence in the corpus;

3. normalized log likelihood of the prediction
given a 4-gram character language model de-
rived from the corpus.

3 Language-Specific Heuristics

Each language has its own unique properties that
affect the accuracy of reinflection. While our ap-
proach is designed to be language-independent,
we also investigated modifications for improving
accuracy on individual languages.
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3.1 Spanish Stress Accents

In Spanish, vowels are marked to indicate irregu-
lar stress (e.g. á in darás). This introduces sev-
eral additional characters that are phonetically re-
lated to their unaccented counterparts. In an at-
tempt to generalize unstressed and stressed vow-
els, we represent each stressed vowel as a pair of
an unaccented vowel and the stress mark. (e.g.
darás becomes dara's). After inflecting the test
word-forms, we reverse this process: any vowel
followed immediately by a stress mark is replaced
with the corresponding accented vowel; stress
marks not following a vowel are deleted.

3.2 Vowel Harmony

In agglutinative languages such as Finnish, Turk-
ish, and Hungarian, vowels in stems and suffixes
often share certain features such as height, back-
ness, or rounding. We augment DIRECTL+ with
features that correspond to vowel harmony viola-
tions. Since our development experiments demon-
strated a substantial (13%) error reduction only for
Turkish verbs, the vowel harmony features were
restricted to that subset of the data.

3.3 Georgian Preverbs

Georgian verbs may include preverb morphemes,
which act more like a derivational affix than an
inflectional one. These preverbs primarily distin-
guish present and future tenses, but can also con-
vey directional meaning. We observed that the
Georgian training data contained many preverbs
da and ga, but only some of the instances included
the preverb on the lemma. This forced the mod-
els to learn two separate sets of rules. Removing
these preverbs from the training word-forms and
lemmas led to an 8% error reduction on the devel-
opment set.

3.4 Arabic Sun Letters

In Arabic, consonants are divided into two classes:
sun letters (i.e. coronal consonants) and moon let-
ters (all others). When the definite article al- is
followed by a sun letter, the letter lām assimilates
to the following letter. Thus, al+shams “the sun”
is realized as ash-shams. We observed that almost
half of the errors on the adjectives could be at-
tributed to this phenomenon. We therefore enforce
this type of assimilation with a post-processing
script.

4 Experiments

Our transduction models are trained on the pairs
of word-forms and their lemmas. The word-
to-lemma models (Section 2.2), are trained on
the Task 1 training dataset, which contains gold-
standard lemmas. These models are then em-
ployed in Tasks 2 and 3 for lemmatizing the source
word-forms. The lemma-to-word models (Sec-
tion 2.4) are derived from the training data of
all three tasks, observing the Track 1 stipulations
(Section 2.5). For example, the lemma-to-word
models employed in Task 2 are trained on a com-
bination of the gold-standard lemmas from Task
1, as well as the lemmas generated by the word-
to-lemma models from the source word-forms in
Task 2. Our development experiments showed that
this kind of self-training approach can improve the
overall accuracy.2

4.1 Development Results

Selected development results are shown in Table 1.
The Task 1 results are broken down by part-of-
speech. Because of an ambiguity in the initial
shared task instructions, all development models
were trained on a union of the data from all three
tasks.

T1 T2 T3 VB NN JJ
ES 98.0 96.3 96.3 96.0 95.9 100
DE 94.4 92.2 92.2 90.5 88.6 97.7
FI 90.0 88.4 88.4 92.1 89.7 63.9
RU 89.5 86.3 86.3 81.9 91.7 96.7
TR 78.6 74.9 74.9 78.8 78.5 n/a
KA 96.8 95.5 95.5 62.9 99.0 99.2
NV 91.3 90.0 90.0 88.5 99.1 n/a
AR 81.1 76.2 76.2 85.7 61.2 84.6

Table 1: Word accuracy on the development sets.

4.2 Test Results

Table 2 shows our test results. In most cases, these
results are close to our development results. One
exception is Navajo, where the test sets were sig-
nificantly harder than the development sets. We
also note drops in accuracy from Task 1 to Task 2
and 3 that were not evident in development, par-
ticularly for Arabic and Turkish. The drops can
be attributed to the different training conditions

2Because of time constraints, we made an exception for
Maltese by training on the gold lemmas from Task 1 only.
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Task 1 Task 2 Task 3
ST RR ST RR ST RR

ES 97.8 98.0 96.2 96.4 96.5 96.6
DE 94.1 93.8 91.1 91.6 91.1 91.6
FI 88.5 88.7 85.6 85.7 85.8 85.9
RU 88.6 89.7 85.5 86.6 85.5 86.6
TR 82.2 87.5 62.5 59.2 63.1 59.2
KA 96.1 96.3 94.1 94.2 94.1 94.4
NV 60.3 60.3 50.4 50.8 48.8 49.1
AR 82.1 53.1 71.8 44.1 72.2 58.5
HU 86.7 89.6 86.3 88.8 86.4 88.9
MT 42.0 42.5 37.5 37.8 37.5 37.8

Table 2: Word accuracy on the test sets.3

between development and testing. In Section 5,
we describe language specific issues; Arabic and
Turkish were particularly affected by less training
data.

Table 2 also contains the results for the “Bonus”
track (RR). The reranking yields an improvement
in almost all cases. Arabic is a clear exception.
The data provided for the task was presented in
a transliterated Latin script, while the Wikipedia
corpus was in the original Arabic text. While a
transliterated version of the text was eventually
provided, it was not a complete transliteration:
certain vowels were omitted, as they are difficult
to recover from standard Arabic. This affected our
reranker because it depends on correct forms in the
corpus and a character language model.

5 Error Analysis

In this section, we discuss a few types of errors
that we observed on the development sets for each
language.

Spanish The highest overall accuracy among
the tested languages confirms its reputation of
morphological regularity. A handful of verb errors
are related to the interplay between orthography
and phonology. Our models appear to have dif-
ficulty generalizing the rigid rules governing the
representation of the phonemes [k] and [T] by the
letters q, c and z. For example, the form crucen,
pronounced [kruθEn], is incorrectly predicted with
z instead of c, even though the bigram ze is never
observed in Spanish. This demonstrates that the
character language model feature of the reranker

3The results in italics were obtained after the shared task
submission deadline.

is not able to completely prevent orthographically-
invalid predictions.

German Nouns and verbs fall into several dif-
ferent inflectional classes that are difficult to pre-
dict from the orthography alone. For exam-
ple, the plural of Schnurrbart, “moustache”, is
Schnurrbärte. Our system incorrectly misses the
umlaut, applying the pluralization pattern of the
training form Wart, “attendant”, which is indeed
pluralized without the umlaut.

Finnish A phenomenon known as consonant
gradation alternates variants of consonants de-
pending on their context. Given the amount of the
training data, our method is unable to learn all of
the appropriate gradation contexts.

Russian The results indicate that verbs are sub-
stantially more challenging than nouns and adjec-
tives. Most of the errors involve vowel changes.
The reranker reduces the error rate by about 10%
on Task 1. In particular, it filters out certain pre-
dictions that appear to violate phonotactic con-
straints, and reduces the number of errors related
to lexically-conditioned prefixes in the perfective
forms.

Turkish Occasionally, the forms in crowd-
sourced data are incorrect, which can lead to spu-
rious transduction rules both during lemmatization
and inflection. For example, the form çıkaracağım
of the verb çıkarmak “to subtract” is erroneously
associated in the training data with the lemma
toplamak “to add”, which causes the word-to-
lemma model to learn a spurious çı → to rule.
At test time, this leads to incorrect lemma predic-
tions, which in turn propagate to multiple inflected
forms.

Georgian The highly unpredictable preverbs
(Section 3.3) were the cause of a large number of
errors on verbs. On the other hand, our system did
very well on nouns and adjectives, second only to
Spanish.

Arabic Errors were mainly constrained to irreg-
ular forms, such as the nominal broken plurals.
Unlike sound plurals that inflect via suffixation,
broken plurals involve consonantal substitution.
This is a difficult transduction to learn, given its
low frequency in training. Another type of errors
involves weak roots, which contain semi-vowels
rather than full consonants.
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Navajo In contrast with the test results. our de-
velopment results were very promising, with near-
perfect performance on nouns. After the submis-
sion deadline, we were informed that the test set
differed in significant ways from the training and
development sets, which lead to increased diffi-
culty for this language.

Hungarian As it was one of the surprise lan-
guages, we applied no language-specific tech-
niques. Nevertheless, the test results were on par
with the other agglutinative languages. We spec-
ulate that adding customized vowel harmony fea-
tures could further improve the results.

Maltese A complicated morphology is repre-
sented by an extremely large tag set (3184 dis-
tinct tags). For nouns and adjectives, the num-
ber of tags is very close to the number of training
instances, which precludes any meaningful learn-
ing generalization. While many features within
tags are repeated, taking advantage of this regular-
ity would require more development time, which
was unavailable for the surprise languages. The
results highlight a limitation of the atomic tags in
our method.

6 Conclusion

Previous work in morphological generation was
largely limited to a small number of western Euro-
pean languages. The methods proposed by Nico-
lai et al. (2015) for the task of inflection genera-
tion were originally developed on such languages.
The results on the shared task data show that those
methods can be adapted to the task of reinflection,
and perform well on various morphologically-
complex languages. On the other hand, there is
room for improvement on languages like Maltese,
which provides motivation for future work.
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