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Abstract

The 2016 SIGMORPHON Shared Task was
devoted to the problem of morphological
reinflection. It introduced morphological
datasets for 10 languages with diverse ty-
pological characteristics. The shared task
drew submissions from 9 teams represent-
ing 11 institutions reflecting a variety of ap-
proaches to addressing supervised learning
of reinflection. For the simplest task, in-
flection generation from lemmas, the best
system averaged 95.56% exact-match ac-
curacy across all languages, ranging from
Maltese (88.99%) to Hungarian (99.30%).
With the relatively large training datasets
provided, recurrent neural network architec-
tures consistently performed best—in fact,
there was a significant margin between neu-
ral and non-neural approaches. The best
neural approach, averaged over all tasks
and languages, outperformed the best non-
neural one by 13.76% absolute; on individ-
ual tasks and languages the gap in accu-
racy sometimes exceeded 60%. Overall, the
results show a strong state of the art, and
serve as encouragement for future shared
tasks that explore morphological analysis
and generation with varying degrees of su-
pervision.

1 Introduction

Many languages use systems of rich overt morpho-
logical marking in the form of affixes (i.e. suffixes,
prefixes, and infixes) to convey syntactic and se-
mantic distinctions. For example, each English
count noun has both singular and plural forms
(e.g. robotlrobots, processiprocesses), and these
are known as the inflected forms of the noun.
While English has relatively little inflectional mor-
phology, Russian nouns, for example, can have
a total of 10 distinct word forms for any given
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Figure 1: The relatedness of inflected forms, such as the
present indicative paradigm of the Spanish verbs hablar
‘speak’ and caminar ‘walk,” allows generalizations about the
shape and affixal content of the paradigm to be extracted.

lemma and 30 for an imperfective verb.! In the
extreme, Kibrik (1998) demonstrates that even by
a conservative count, a verb conjugation in Archi
(Nakh-Daghestanian) consists of 1,725 forms, and
if all sources of complexity are considered, a sin-
gle verb lemma may give rise to up to 1,502,839
distinct forms. The fact that inflected forms are
systematically related to each other, as shown in
Figure 1, is what allows humans to generate and
analyze words despite this level of morphological
complexity.

A core problem that arises in languages with
rich morphology is data sparsity. When a single
lexical item can appear in many different word

'This latter figure rises to 52 if the entire imperfective-
perfective pair (e.g. govorit’/skazat’ ‘speak, tell’) is consid-
ered to be a single lemma.
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forms, the probability of encountering any sin-
gle word form decreases, reducing the effective-
ness of frequency-based techniques in performing
tasks like word alignment and language modeling
(Koehn, 2010; Duh and Kirchhoff, 2004). Tech-
niques like lemmatization and stemming can ame-
liorate data sparsity (Goldwater and McClosky,
2005), but these rely on morphological knowl-
edge, particularly the mapping from inflected
forms to lemmas and the list of morphs together
with their ordering. Developing systems that can
accurately learn and capture these mappings, overt
affixes, and the principles that govern how those
affixes combine is crucial to maximizing the cross-
linguistic capabilities of most human language
technology.

The goal of the 2016 SIGMORPHON Shared
Task? was to spur the development of systems
that could accurately generate morphologically in-
flected words for a set of 10 languages based on a
range of training parameters. These 10 languages
included low resource languages with diverse mor-
phological characteristics, and the training param-
eters reflected a significant expansion upon the tra-
ditional task of predicting a full paradigm from
a lemma. Of the systems submitted, the neu-
ral network-based systems performed best, clearly
demonstrating the effectiveness of recurrent neu-
ral networks (RNNs) for morphological genera-
tion and analysis.

We are releasing the shared task data and evalu-
ation scripts for use in future research.

2 Tasks, Tracks, and Evaluation

Up to the present, the task of morphological in-
flection has been narrowly defined as the gener-
ation of a complete inflectional paradigm from a
lemma, based on training from a corpus of com-
plete paradigms.? This task implicitly assumes the
availability of a traditional dictionary or gazetteer,
does not require explicit morphological analysis,
and, though it mimics a common task in second
language (L2) pedagogy, it is not a realistic learn-
ing setting for first language (L1) acquisition.
Systems developed for the 2016 Shared Task
had to carry out reinflection of an already inflected
form. This involved analysis of an already in-

20fficial  website: http://ryancotterell.
github.io/sigmorphon2016/

3A paradigm is defined here as the set of inflected word
forms associated with a single lemma (or lexeme), for exam-
ple, a noun declension or verb conjugation.
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|| Task 1 | Task 2 | Task 3
Lemma run — —
Source tag — PAST —
Source form || — ran ran
Target tag PRESPART | PRESPART PRESPART
Target form running running running
Lemma decir — —
Source tag — PRESENTIS | —
Source form || — digo digo
Target tag FUTURE2S | FUTURE2S FUTURE2S
Target form dirds dirds dirds

Table 1: Systems were required to generate the target form,
given the information above the line. Two examples are
shown for each task—one in English and one in Spanish.
Task 1 is inflection; tasks 2-3 are reinflection.

Restricted | Standard | Bonus
Task 1 | 1 1 1. M
Task 2 | 2 1,2 1,2, M
Task 3 | 3 1,2,3 1,2,3,M

Table 2: Datasets that were permitted for each task under
each condition. Numbers indicate a dataset from that respec-
tive task, e.g. ‘1’ is the dataset from Task 1, and ‘M’ indicates
bonus monolingual text from Wikipedia dumps.

flected word form, together with synthesis of a dif-
ferent inflection of that form. The systems had
to learn from limited data: they were not given
complete paradigms to train on, nor a dictionary
of lemmas.

Specifically, systems competed on the three
tasks illustrated in Table 1, of increasing difficulty.
Notice that each task can be regarded as mapping a
source string to a target string, with other input ar-
guments (such as the target tag) that specify which
version of the mapping is desired.

For each language and each task, participants
were provided with supervised training data: a
collection of input tuples, each paired with the cor-
rect output string (target form).

Each system could compete on a task under any
of three tracks (Table 2). Under the restricted
track, only data for that task could be used, while
for the standard track, data from that task and any
from a lower task could be used. The bonus track
was the same as the standard track, but allowed the
use of monolingual data in the form of Wikipedia
dumps from 2 November 2015.4

Each system was required to produce, for ev-
ery input given at test time, either a single string
or a ranked list of up to 20 predicted strings for
each task. Systems were compared on the follow-

*nttps://dumps.wikimedia.org/
backup-index.html



ing metrics, averaged over all inputs:

e Accuracy: 1 if the top predicted string was
correct, else O

e Levenshtein distance: Unweighted edit dis-
tance between the top predicted string and the
correct form

e Reciprocal rank: 1/(1 + rank;), where rank;
is the rank of the correct string, or O if the
correct string is not on the list

The third metric allows a system to get partial
credit for including a correct answer on its list,
preferably at or near the top.

3 Data

3.1 Languages and Typological
Characteristics

Datasets from 10 languages were used. Of these,
2 were held as surprise languages whose identity
and data were only released at evaluation time.

o Standard Release: Arabic, Finnish, Geor-
gian, German, Navajo, Russian, Spanish, and
Turkish

e Surprise: Hungarian and Maltese

Finnish, German, and Spanish have been the sub-
ject of much recent work, due to data made avail-
able by Durrett and DeNero (2013), while the
other datasets used in the shared task are released
here for the first time. For all languages, the word
forms in the data are orthographic (not phonolog-
ical) strings in the native script, except in the case
of Arabic, where we used the romanized forms
available from Wiktionary. An accented letter is
treated as a single character. Descriptive statistics
of the data are provided in Table 3.

The typological character of these languages
varies widely. German and Spanish inflection
generation has been studied extensively, and the
morphological character of the languages is simi-
lar: Both are suffixing and involve internal stem
changes (e.g., a — 4, e — ie, respectively).
Russian can be added to this group, but with
consonantal rather than vocalic stem alternations.
Finnish, Hungarian, and Turkish are all agglu-
tinating, almost exclusively suffixing, and have
vowel harmony systems. Georgian exhibits com-
plex patterns of verbal agreement for which it
utilizes circumfixal morphology, i.e. simultane-
ous prefixation and suffixation (Aronson, 1990).
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Split | Pairs  Lem  Full T2T I-Tag O-Tag Sync
Ar | train | 12616 2130 225 1.57 7223 56.57 1.10
dev | 1596 1081 220 1.08 9.13 7.26 1.08
test | 15643 2150 230 1.71 87.06 6922 1.12
Fi | train | 12764 9855 95 570 142.15 13436 1.01
dev | 1599 1546 91 1.51 1928 18.60 1.01
test | 23878 15128 95 9.87 261.00 25134 1.01
Ge | train | 12390 4246 90 14.02 152.38 137.67 1.06
dev | 1591 1274 77 531 2425 2340 1.03
test | 21813 4622 90 15.32 279.43 24236 1.08
Ge | train | 12689 6703 99 776 246.19 12948 1.44
dev | 1599 1470 98 1.80 30.82 1632 137
test | 15777 7277 100 948 30049 159.37 1.50
Hu | train | 18206 1508 87 9.05 231.13 211.70 1.04
dev | 2381 1196 83 2.14 3027 29.04 1.02
test | 2360 1186 84 209 2952 2878 1.02
Ma | train | 19125 1453 3607 1.00  6.00 6.01 1.00
dev | 2398 1033 1900 1.00 1.62 1.61 1.00
test | 2399 1055 1928 1.00 1.61 1.59 1.00
Na | train | 10478 355 54 17.48 310.55 194.03 147
dev | 1550 326 47 2.80 4493 33.69 1.17
test | 686 233 42 289 2556 1633  1.12
Ru | train | 12663 7941 83 10.32 18225 152.56 1.07
dev | 1597 1492 78 236 2369 2074 1.06
test | 23445 10560 86 17.87 32028 28247 1.09
Sp | train | 12725 5872 84 324 18638 151.48 1.06
dev | 1599 1406 83 141 2308 1926 1.07
test | 23743 7850 84 542 34272 286.06 1.06
Tu | train | 12645 2353 190 1.81 79.82 67.62 1.08
dev | 1599 1125 170 1.09 11.15 9.57 1.06
test | 1598 1128 170 1.08 1099 9.57 1.05

Table 3: Descriptive statistics on data released to shared task
participants. Figures represent averages across tasks. Abbre-
viations in the headers: ‘Lem’ = lemmas, ‘Full’ = number of
full tags, T2T = average occurrences of tag-to-tag pairs, [-Tag
& O-Tag = average occurrences of each input or output tag,
resp., and ‘Sync’ = average forms per tag (syncretism).

Navajo, like other Athabaskan languages, has pri-
marily prefixing verbal morphology with conso-
nant harmony among its sibilants (Rice, 2000;
Hansson, 2010). Arabic and Maltese, both Semitic
languages, utilize templatic, non-concatenative
morphology. Maltese, due partly to its contact
with Italian, also uses concatenative morphology
(Camilleri, 2013).

3.2 Quantifying Morphological Processes

It is helpful to understand how often each lan-
guage makes use of different morphological pro-
cesses and where they apply. In lieu of a more
careful analysis, here we use a simple heuris-
tic to estimate how often inflection involves pre-
fix changes, stem-internal changes (apophony), or
suffix changes (Table 4). We assume that each
word form in the training data can be divided into
three parts—prefix, stem and suffix—with the pre-
fix and suffix possibly being empty.

To align a source form with a target form, we
pad both of them with — symbols at their start
and/or end (but never in the middle) so that they
have equal length. As there are multiple ways



Language Prefix Stem Suffix
Arabic 68.52 37.04 88.24
Finnish 0.02 1233 96.16
Georgian 446 041 9247
German 0.84 332 89.19
Hungarian 0.00 0.08 99.79
Maltese 48.81 11.05 98.74
Navajo 77.64 18.38 26.40
Russian 0.66 7.70 85.00
Spanish 0.09 325 90.74
Turkish 021 1.12 98.74

Table 4: Percentage of inflected word forms that have modi-
fied each part of the lemma, as estimated from the “lemma —
inflected” pairs in task 1 training data. A sum < 100% for a
language implies that sometimes source and target forms are
identical; a sum > 100% implies that sometimes multiple
parts are modified.

to pad, we choose the alignment that results in
minimum Hamming distance between these equal-
length padded strings, i.e., characters at corre-
sponding positions should disagree as rarely as
possible. For example, we align the German verb
forms brennen ‘burn’ and gebrannt ‘burnt’ as
follows:

——brennen
gebrannt-

From this aligned string pair, we heuristically
split off a prefix pair before the first matching char-
acter () — ge), and a suffix pair after the last
matching character (en — t). What is left is pre-
sumed to be the stem pair (brenn +— brann):

Pref. | Stem | Suff.
brenn en
ge brann t

We conclude that when correctly mapping this
source form to this target form, the prefix, stem,
and suffix parts all change. In what fraction of
training examples does each change, according to
this heuristic? Statistics for each language (based
on task 1) are shown in Table 4.

The figures roughly coincide with our expec-
tations. Finnish, Hungarian, Russian, Spanish,
and Turkish are largely or exclusively suffixing.
The tiny positive number for Finnish prefixation
is due to a single erroneous pair in the dataset.
The large rate of stem-changing in Finnish is due
to the phenomenon of consonant gradation, where
stems undergo specific consonant changes in cer-
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tain inflected forms. Navajo is primarily prefix-
ing,’ and Arabic exhibits a large number of “stem-
internal” changes due to its templatic morphology.
Maltese, while also templatic, shows fewer stem-
changing operations than Arabic overall, likely a
result of influence from non-Semitic languages.
Georgian circumfixal processes are reflected in an
above-average number of prefixes. German has
some prefixing, where essentially the only forma-
tion that counts as such is the circumfix ge .t
for forming the past participle.

3.3 Data Sources and Annotation Scheme

Most data used in the shared task came from the
English edition of Wiktionary.® Wiktionary is
a crowdsourced, broadly multilingual dictionary
with content from many languages (e.g. Spanish,
Navajo, Georgian) presented within editions tai-
lored to different reader populations (e.g. English-
speaking, Spanish-speaking). Kirov et al. (2016)
describe the process of extracting lemmas and in-
flected wordforms from Wiktionary, associating
them with morphological labels from Wiktionary,
and mapping those labels to a universalized anno-
tation scheme for inflectional morphology called
the UniMorph Schema (Sylak-Glassman et al.,
2015b).

The goal of the UniMorph Schema is to en-
code the meaning captured by inflectional mor-
phology across the world’s languages, both high-
and low-resource. The schema decomposes the
morphological labels into universal attribute-value
pairs. As an example, consider again Table 1. The
FUT2S label for a Spanish future tense second-
person singular verb form, such as dirds, is de-
composed into [POS=VERB, mood=INDICATIVE,
tense=FUTURE, person=2, number=SINGULAR] .

The accuracy of data extraction and label asso-
ciation for data from Wiktionary was verified ac-
cording to the process described in Kirov et al.
(2016). However, verifying the full linguistic ac-
curacy of the data was beyond the scope of prepa-
ration for the task, and errors that resulted from the
original input of data by crowdsourced authors re-
mained in some cases. These are noted in several
of the system description papers. The full dataset
from the English edition of Wiktionary, which in-

>The Navajo verb stem is always a single syllable ap-
pearing in final position, causing our heuristic to misclassify
many stem changes as suffixal. In reality, verb suffixes are
very rare in Navajo (Young and Morgan, 1987).

®https://en.wiktionary.org



cludes data from 350 languages, ~977,000 lem-
mas, and ~14.7 million inflected word forms,
is available at unimorph.org, along with de-
tailed documentation on the UniMorph Schema
and links to the references cited above.

The Maltese data came from the Gabra open
lexicon” (Camilleri, 2013), and the descriptive
features for inflected word forms were mapped to
features in the UniMorph Schema similarly to data
from Wiktionary. This data did not go through the
verification process noted for the Wiktionary data.

Descriptive statistics for the data released to
shared task participants are given in Table 3.

4 Previous Work

Much previous work on computational approaches
to inflectional morphology has focused on a spe-
cial case of reinflection, where the input form is
always the lemma (i.e. the citation form). Thus,
the task is to generate all inflections in a paradigm
from the lemma and often goes by the name of
paradigm completion in the literature. There has
been a flurry of recent work in this vein: Durrett
and DeNero (2013) heuristically extracted trans-
formational rules and learned a statistical model
to apply the rules, Nicolai et al. (2015) tackled the
problem using standard tools from discriminative
string transduction, Ahlberg et al. (2015) used a
finite-state construction to extract complete candi-
date inflections at the paradigm level and then train
a classifier, Faruqui et al. (2016) applied a neu-
ral sequence-to-sequence architecture (Sutskever
et al., 2014) to the problem.

In contrast to paradigm completion, the task of
reinflection is harder as it may require both mor-
phologically analyzing the source form and trans-
ducing it to the target form. In addition, the train-
ing set may include only partial paradigms. How-
ever, many of the approaches taken by the shared
task participants drew inspiration from work on
paradigm completion.

Some work, however, has considered full rein-
flection. For example, Dreyer and Eisner (2009)
and Cotterell et al. (2015) apply graphical mod-
els with string-valued variables to model the
paradigm jointly. In such models it is possible
to predict values for cells in the paradigm condi-
tioned on sets of other cells, which are not required
to include the lemma.

"http://mlrs.research.um.edu.mt/
resources/gabra/
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S Baseline System

To support participants in the shared task, we pro-
vided a baseline system that solves all tasks in the
standard track (see Tables 1-2).

Given the input string (source form), the system
predicts a left-to-right sequence of edits that con-
vert it to an output string—hopefully the correct
target form. For example, one sequence of edits
that could be legally applied to the Finnish input
katossa is copy, copy, copy, insert(t), copy,
delete(3). This results in the output katto, via
the following alignment:

1 2 3 4 5 6
k a t - o ssa
k a t t o -
In general, each edit has the form copy,

insert(string), delete(number), or subst(string),
where subst(w) has the same effect as delete(|w|)
followed by insert(w).

The system treats edit sequence prediction as
a sequential decision-making problem, greedily
choosing each edit action given the previously
chosen actions. This choice is made by a deter-
ministic classifier that is trained to choose the cor-
rect edit on the assumption that that all previous
edits on this input string were correctly chosen.

To prepare training data for the classifier, each
supervised word pair in training data was aligned
to produce a desired sequence of edits, such as the
6-edit sequence above, which corresponds to 6 su-
pervised training examples. This was done by first
producing a character-to-character alignment of
the source and target forms (katossa, katto),
using an iterative Markov Chain Monte Carlo
method,and then combining consecutive deletions,
insertions, or substitutions into a single compound
edit. For example, delete(3) above was obtained
by combining the consecutive deletions of s, s,
and a.

The system uses a linear multi-class classi-
fier that is trained using the averaged perceptron
method (Freund and Schapire, 1999). The classi-
fier considers the following binary features at each
position:

e The previous 1, 2, and 3 input characters,
e.g. t, at, kat for the 4th edit in the exam-
ple.

e The previous 1, 2, and 3 output characters,
e.g. t, tt, att for the 5Sth edit.



e The following 1, 2, and 3 input characters,
e.g. 0, 0s, oss for the 3rd edit.

The previous edit. (The possible forms were
given above.)

The UniMorph morphosyntactic features of
the source tag .S or the target tag 7" (according
to what type of mapping we are building—
see below). For example, when lemmatiz-
ing katossa into katto as in the exam-
ple above, S = [POS:NOUN, case=IN+ESS,
number:SINGULAR] , yielding 3 morphosyn-
tactic features.

Each conjunction of two features from the
above list where the first feature in the com-
bination is a morphosyntactic feature and the
second is not.

For task 1, we must edit from LEMMA — T.
We train a separate edit classifier for each part-of-
speech, including the morphosyntactic description
of T as features of the classifier. For task 2, we
must map from S — 7. We do so by lemmatiz-
ing S — LEMMA (lemmatization) and then rein-
flecting LEMMA — T via the task 1 system.® For
the lemmatization step, we again train a separate
edit classifier for each part-of-speech, which now
draws on source tag S features. For task 3, we
build an additional classifier to analyze the source
form to its morphosyntactic description S (using
training data from all tasks, as allowed in the stan-
dard track). This classifier uses substrings of the
word form as its features, and is also implemented
by an averaged perceptron. The classifier treats
each unique sequence of feature-value pairs as a
separate class. Task 3 is then solved by first recov-
ering the source tag and then applying the task 2
system.

The baseline system performs no tuning of pa-
rameters or feature selection. The averaged per-
ceptron is not trained with early stopping or other
regularization and simply runs for 10 iterations or
until the data are separated. The results of the
baseline system are given in Table 5. Most partic-
ipants in the shared task were able to outperform
the baseline, often by a significant margin.

8Note that at training time, we know the correct lemma for
S thanks to the task 1 data, which is permitted for use by task
2 in the standard track. This is also why task 2 is permitted to
use the trained task 1 system.
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Language Task1 Task2 Task3
Arabic 66.96  55.00 45.15
Finnish 64.45 59.59  56.95
Georgian  89.12  86.66  85.12
German 89.44 87.62 80.13
Hungarian 7342 72778  71.70
Maltese 38.49 2754  26.00
Navajo 53.06 4759 4496
Russian 88.65 84.68  79.55
Spanish 95.72 9454  87.51
Turkish 59.60 57.63 5525

Table 5: Accuracy results for the baseline system on the stan-
dard track test set.

6 System Descriptions

The shared task received a diverse set of submis-
sions with a total of 11 systems from 9 teams rep-
resenting 11 different institutions. For the sake
of clarity, we have grouped the submissions into
three camps.

The first camp adopted a pipelined approach
similar to that of the baseline system provided.
They first employed an unsupervised alignment
algorithm on the source-target pairs in the train-
ing data to extract a set of edit operations. Af-
ter extraction, they applied a discriminative model
to apply the changes. The transduction models
limited themselves to monotonic transduction and,
thus, could be encoded through weighted finite-
state machine (Mohri et al., 2002).

The second camp focused on neural approaches,
building on the recent success of neural sequence-
to-sequence models (Sutskever et al., 2014; Bah-
danau et al., 2014). Recently, Faruqui et al. (2016)
found moderate success applying such networks to
the inflection task (our task 1). The neural systems
were the top performers.

Finally, the third camp relied on linguistically-
inspired heuristic means to reduce the structured
task of reinflection to a more reasonable multi-way
classification task that could be handled with stan-
dard machine learning tools.

6.1 Camp 1: Align and Transduce

Most of the systems in this camp drew inspira-
tion from the work of Durrett and DeNero (2013),
who extracted a set of edit operations and ap-
plied the transformations with a semi-Markov



CREF (Sarawagi and Cohen, 2004).

EHU EHU (Alegria and Etxeberria, 2016) took
an approach based on standard grapheme-to-
phoneme machinery. They extend the Phoneti-
saurus (Novak et al., 2012) toolkit, based on the
OpenFST WEST library (Allauzen et al., 2007),
to the task of morphological reinflection. Their
system is organized as a pipeline. Given pairs
of input and output strings, the first step involves
an unsupervised algorithm to extract an alignment
(many-to-one or one-to-many). Then, they train
the weights of the WFSTs using the imputed align-
ments, introducing morphological tags as symbols
on the input side of the transduction.

Alberta The Alberta system (Nicolai et al.,
2016) is derived from the earlier work by Nicolai
et al. (2015) and is methodologically quite sim-
ilar to that of EHU—an unsupervised alignment
model is first applied to the training pairs to im-
pute an alignment. In this case, they employ
the M2M-aligner (Jiampojamarn et al., 2007). In
contrast to EHU, Nicolai et al. (2016) do allow
many-to-many alignments. After computing the
alignments, they discriminatively learn a string-
to-string mapping using the DirectTL+ model (Ji-
ampojamarn et al., 2008). This model is state-
of-the-art for the grapheme-to-phoneme task and
is very similar to the EHU system in that it as-
sumes a monotonic alignment and could therefore
be encoded as a WFST. Despite the similarity to
the EHU system, the model performs much better
overall. This increase in performance may be at-
tributable to the extensive use of language-specific
heuristics, detailed in the paper, or the application
of a discriminative reranker.

Colorado The Colorado system (Liu and Mao,
2016) took the same general tack as the previous
two systems—they used a pipelined approach that
first discovered an alignment between the string
pairs and then discriminatively trained a transduc-
tion. The alignment algorithm employed is the
same as that of the baseline system, which relies
on a rich-get-richer scheme based on the Chinese
restaurant process (Sudoh et al., 2013), as dis-
cussed in §5. After obtaining the alignments, they
extracted edit operations based on the alignments
and used a semi-Markov CRF to apply the edits in
a manner very similar to the work of Durrett and
DeNero (2013).
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OSU The OSU system (King, 2016) also used
a pipelined approach. They first extracted se-
quences of edit operations using Hirschberg’s al-
gorithm (Hirschberg, 1975). This reduces the
string-to-string mapping problem to a sequence
tagging problem. Like the Colorado system, they
followed Durrett and DeNero (2013) and used a
semi-Markov CRF to apply the edit operations. In
contrast to Durrett and DeNero (2013), who em-
ployed a Oth-order model, the OSU system used
a 1st-order model. A major drawback of the sys-
tem was the cost of inference. The unpruned set of
edit operations had over 500 elements. As the cost
of inference in the model is quadratic in the size
of the state space (the number of edit operations),
this created a significant slowdown with over 15
days required to train in some cases.

6.2 Camp 2: Revenge of the RNN

A surprising result of the shared task is the large
performance gap between the top performing neu-
ral models and the rest of the pack. Indeed, the
results of Faruqui et al. (2016) on the task of mor-
phological inflection only yielded modest gains in
some languages. However, the best neural ap-
proach outperformed the best non-neural approach
by an average (over languages) of 13.76% abso-
lute accuracy, and at most by 60.04%!

LMU The LMU system (Kann and Schiitze,
2016) was the all-around best performing sys-
tem in the shared task. The system builds off of
the encoder-decoder model for machine transla-
tion (Sutskever et al., 2014) with a soft attention
mechanism (Bahdanau et al., 2014). The archi-
tecture is identical to the RNN encoder-decoder
architecture of Bahdanau et al. (2014)—a stacked
GRU (Cho et al., 2014). The key innovation is in
the formatting of the data. The input word along
with both the source and target tags were fed into
the network as a single string and trained to predict
the target string. In effect, this means that if there
are n elements in the paradigm, there is a single
model for all n? possible reinflectional mappings.
Thus, the architecture shares parameters among all
reinflections, using a single encoder and a single
decoder.

BIU-MIT The BIU-MIT (Aharoni et al., 2016)
team submitted two systems. Their first model,
like LMU, built upon the sequence-to-sequence ar-
chitecture (Sutskever et al., 2014; Bahdanau et al.,
2014; Faruqui et al., 2016), but with several im-



Standard Restricted Bonus

System Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
LMU-1 1.0 (95.56) | 1.0(96.35) | 1.0(95.83) || 1.0 (95.56) | 1.0 (95.34) | 1.0 (90.95) || 1.0 (96.71) | 1.0 (96.35) | 1.0 (95.83)
LMU-2 2.0(95.56) | 2.0(96.23) | 2.0 (95.83) || 2.0 (95.56) | 2.0 (95.27) | 2.0 (90.95) — — —
BIU/MIT-1 — — — 4.2(92.65) | 5.2(77.70) | 3.8 (76.39) — — —
BIU/MIT-2 — — — 4.2(93.00) | 4.2 (81.29) — — — —
HEL — — — 3.9(92.89) | 3.5(86.30) | 3.2 (86.48) — — —
MSU 3.8 (84.06) | 3.6 (86.06) | 3.8 (84.87) || 6.2 (84.06) | 6.0 (79.68) | 6.2 (62.16) — — —
CU 4.6 (81.02) | 5.0(72.98) | 5.0(71.75) || 7.3 (81.02) | 6.9 (69.89) | 5.5 (67.91) — — —
EHU 5.5(79.24) — — 8.0 (79.67) — — — — —
COL/NYU || 6.5(67.86) | 4.7 (75.59) | 4.8 (67.61) || 9.2 (67.86) | 7.2 (77.34) | 6.3 (53.56) || 2.7 (72.30) | 2.5 (71.74) | 2.6 (67.61)
OSuU — — — 9.0 (72.71) — — — — —
UA 4.6 (81.83) | 4.7 (74.06) | 4.4 (71.23) — — — 2.3(79.95) | 2.5 (71.56) | 2.4 (70.04)
ORACLEE [ 9749 | 9815 | 9797 [ 9832 9784 | 9580 [ 9814 | 9780 | 9757

Table 6: Summary of results, showing average rank (with respect to other competitors) and average accuracy (equally weighted
average over the 10 languages and marked in parentheses) by system. Oracle ensemble (ORACLE.E) accuracy represents the
probability that at least one of the submitted systems predicted the correct form.

provements. Most importantly, they augment the
encoder with a bidirectional LSTM to get a more
informative representation of the context and they
represent individual morphosyntactic attributes as
well. In addition, they include template-inspired
components to better cope with the templatic mor-
phology of Arabic and Maltese. The second archi-
tecture, while also neural, more radically departs
from previously proposed sequence-to-sequence
models. The aligner from the baseline system is
used to create a series of edit actions, similar to
the systems in Camp 1. Rather than use a CREF, the
BIU-MIT team predicted the sequence of edit ac-
tions using a neural model, much in the same way
as a transition-based LSTM parser does (Dyer et
al., 2015; Kiperwasser and Goldberg, 2016). The
architectural consequence of this is that it replaces
the soft alignment mechanism of (Bahdanau et al.,
2014) with a hard attention mechanism, similar to
Rastogi et al. (2016).

Helsinki The Helsinki system (C)stling, 2016),
like LMU and BIU-MIT, built off of the sequence-
to-sequence architecture, augmenting the system
with several innovations. First, a single decoder
was used, rather than a unique one for all pos-
sible morphological tags, which allows for addi-
tional parameter sharing, similar to LMU. More
LSTM layers were also added to the decoder, cre-
ating a deeper network. Finally, a convolutional
layer over the character inputs was used, which
was found to significantly increase performance
over models without the convolutional layers.
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6.3 Camp 3: Time for Some Linguistics

The third camp relied on linguistics-inspired
heuristics to reduce the problem to multi-way clas-
sification. This camp is less unified than the other
two, as both teams used very different heuristics.

Columbia — New York University Abu Dhabi
The system developed jointly by Columbia and
NYUAD (Taji et al., 2016) is based on the work
of Eskander et al. (2013). It is unique among
the submitted systems in that the first step in the
pipeline is segmentation of the input words into
prefixes, stems, and suffixes. Prefixes and suf-
fixes are directly associated with morphological
features. Stems within paradigms are further pro-
cessed, using either linguistic intuitions or an em-
pirical approach based on string alignments, to ex-
tract the stem letters that undergo changes across
inflections. The extracted patterns are intended
to capture stem-internal changes, such as vowel
changes in Arabic. Reinflection is performed by
selecting a set of changes to apply to a stem, and
attaching appropriate affixes to the result.

Moscow State The Moscow State system
(Sorokin, 2016) is derived from the work of
Ahlberg et al. (2014) and Ahlberg et al. (2015).
The general idea is to use finite-state techniques to
compactly model all paradigms in an abstract form
called an ‘abstract paradigm’. Roughly speaking,
an abstract paradigm is a set of rule transforma-
tions that derive all slots from the shared string
subsequences present in each slot. Their method
relies on the computation of longest common sub-
sequence (Gusfield, 1997) to derive the abstract
paradigms, which is similar to its use in the re-
lated task of lemmatization (Chrupata et al., 2008;



Miiller et al., 2015). Once a complete set of ab-
stract paradigms has been extracted from the data,
the problem is reduced to multi-way classifica-
tion, where the goal is to select which abstract
paradigm should be applied to perform reinflec-
tion. The Moscow State system employs a multi-
class SVM (Bishop, 2006) to solve the selection
problem. Overall, this was the best-performing
non-neural system. The reason for this may be
that the abstract paradigm approach enforces hard
constraints between reinflected forms in a way that
many of the other non-neural systems do not.

6.4 Performance of Submitted Systems

Relative system performance is described in Ta-
ble 6, which shows the average rank and per-
language accuracy of each system by track and
task. The table reflects the fact that some teams
submitted more than one system (e.g. LMU-1 &
LMU-2 in the table). Full results can be found
in the appendix. Table 7 shows that in most
cases, competing systems were significantly dif-
ferent (average p < (.05 across 6 unpaired per-
mutation tests for each pair with 5000 permuta-
tions per test). The only case in which this did not
hold true was in comparing the systems submitted
by LMU to one another.

Three teams exploited the bonus re-
sources in some form: LMU, Alberta and
Columbia/NYUAD. In general, gains from the
bonus resources were modest. Even in Arabic,
where the largest benefits were observed, going
from track 2 to track 3 on task 1 resulted in an
absolute increase in accuracy of only ~ 3% for
LMU’s best system.

The neural systems were the clear winner in
the shared task. In fact, the gains over classical
systems were quite outstanding. The neural sys-
tems had two advantages over the competing ap-
proaches. First, all these models learned to align
and transduce jointly. This idea, however, is not
intrinsic to neural architectures; it is possible—in
fact common—to train finite-state transducers that
sum over all possible alignments between the in-
put and output strings (Dreyer et al., 2008; Cot-
terell et al., 2014).

Second, they all involved massive parameter
sharing between the different reinflections. Since
the reinflection task entails generalizing from only
a few data pairs, this is likely to be a boon. In-
terestingly, the second BIU-MIT system, which
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trained a neural model to predict edit operations,
consistently ranked behind their first system. This
indicates that pre-extracting edit operations, as all
systems in the first camp did, is not likely to
achieve top-level performance.

Even though the top-ranked neural systems do
very well on their own, the other submitted sys-
tems may still contain a small amount of comple-
mentary information, so that an ensemble over the
different approaches has a chance to improve ac-
curacy. We present an upper bound on the possible
accuracy of such an ensemble. Table 6 also in-
cludes an ‘Oracle’ that gives the correct answer if
any of the submitted systems is correct. The aver-
age potential ensemble accuracy gain across tasks
over the top-ranked system alone is 2.3%. This is
the proportion of examples that the top system got
wrong, but which some other system got right.

7 Future Directions

Given the success of the submitted reinflection
systems in the face of limited data from typolog-
ically diverse languages, the future of morpho-
logical reinflection must extend in new directions.
Further pursuing the line that led us to pose task
3, the problem of morphological reinflection could
be expanded by requiring systems to learn with
less supervision. Supervised datasets could be
smaller or more weakly supervised, forcing sys-
tems to rely more on inductive bias or unlabeled
data.

One innovation along these lines could be to
provide multiple unlabeled source forms and ask
for the rest of the paradigm to be produced. In
another task, instead of using source and target
morphological tags, systems could be asked to in-
duce these from context. Such an extension would
necessitate interaction with parsers, and would
more closely integrate syntactic and morphologi-
cal analysis.

Reflecting the traditional linguistic approaches
to morphology, another task could allow the use
of phonological forms in addition to orthographic
forms. While this would necessitate learning a
grapheme-to-phoneme mapping, it has the poten-
tial to actually simplify the learning task by re-
moving orthographic idiosyncrasies (such as the
Spanish ‘c/qu’ alternation, which is dependent on
the backness of the following vowel, but preserves
the phoneme /k/).

Traditional morphological analyzers, usually



EHU  BIM-1 BI/M-2 CU COL/NYU HEL MSU  LMU-I LMU-2 oSU
UA | 90% (10) — — 67%(30)  93% (58) — 79% (28) 100% (60) 100% (30) —
EHU — 100% (10) 100% (10) 85% (20) 100% (18) 100% (10) 85% (20) 100% (20) 100% (20)  100% (9)

BI/M-1 - —  70% (20) 86% (28) 100% (22)  67% (30) 93% (28) 100% (30) 100% (30) 100% (9)
BI/M-2 — — — 95%(19) 100% (12)  80% (20) 79% (19)  95% (20)  95% (20)  100% (9)
cuU — — — 86% (49)  96% (28) 84% (56) 100% (58) 100% (58) 100% (9)

COL/NYU — — — — —  95%(22) 96% (47) 100% (80) 100% (50) 100% (8)
HEL — — — — — — 89%(28) 97%(30) 97% (30) 100% (9)
MSU — — — — — — —  96%(56)  96% (56) 100% (9)

LMU-1 - - - — — — — —  3%(60) 100% (9)
LMU-2 - - — - — — — — —  100% (9)

Table 7: How often each pair of systems had significantly different accuracy under a paired permutation test (p < 0.05), as a
fraction of the number of times that they competed (on the same language, track and task). The number of such competitions is

in parentheses.

implemented as finite state transducers (Beesley
and Karttunen, 2003), often return all morpho-
logically plausible analyses if there is ambiguity.
Learning to mimic the behavior of a hand-written
analyzer in this respect could offer a more chal-
lenging task, and one that is useful within un-
supervised learning (Dreyer and Eisner, 2011) as
well as parsing. Existing wide-coverage morpho-
logical analyzers could be leveraged in the design
of a more interactive shared task, where hand-
coded models or approximate surface rules could
serve as informants for grammatical inference al-
gorithms.

The current task design did not explore all po-
tential inflectional complexities in the languages
included. For example, cliticization processes
were generally not present in the language data.
Adding such inflectional elements to the task can
potentially make it more realistic in terms of
real-world data sparsity in L1 learning scenarios.
For example, Finnish noun and adjective inflec-
tion is generally modeled as a paradigm of 15
cases in singular and plural, i.e. with 30 slots in
total—the shared task data included precisely such
paradigms. However, adding all combinations of
clitics raises the number of entries in an inflection
table to 2,253 (Karlsson, 2008).

Although the languages introduced in this
year’s shared task were typologically diverse with
a range of morphological types (agglutinative, fu-
sional; prefixing, infixing, suffixing, or a mix),
we did not cover reduplicative morphology, which
is common in Austronesian languages (and else-
where) but is avoided by traditional computational
morphology since it cannot be represented using
finite-state transduction. Furthermore, the focus
was solely on inflectional data. Another version of
the task could call for learning derivational mor-
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phology and predicting which derivational forms
led to grammatical output (i.e. existing words or
neologisms that are not subject to morphological
blocking; Poser (1992)). This could be extended
to learning the morphology of polysynthetic lan-
guages. These languages productively use not
only inflection and derivation, which call for the
addition of bound morphemes, but also incorpo-
ration, which involves combining lexical stems
that are often used to form independent words
(Mithun, 1984). Such languages combine the need
to decompound, generate derivational alternatives,
and accurately inflect any resulting words.

8 Conclusion

The SIGMORPHON 2016 Shared Task on Mor-
phological Reinflection significantly expanded the
problem of morphological reinflection from a
problem of generating complete paradigms from
a designated lemma form to generating requested
forms based on arbitrary inflected forms, in some
cases without a morphological tag identifying the
paradigm cell occupied by that form. Further-
more, complete paradigms were not provided in
the training data. The submitted systems em-
ployed a wide variety of approaches, both neu-
ral network-based approaches and extensions of
non-neural approaches pursued in previous works
such as Durrett and DeNero (2013), Ahlberg et al.
(2015), and Nicolai et al. (2015). The superior
performance of the neural approaches was likely
due to the increased parameter sharing available
in those architectures, as well as their ability to
discover subtle linguistic features from these rel-
atively large training sets, such as weak or long-
distance contextual features that are less likely to
appear in hand-engineered feature sets.
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