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Abstract

Verb–noun idiomatic combinations
(VNICs) are idioms consisting of a verb
with a noun in its direct object position.
Usages of these expressions can be
ambiguous between an idiomatic usage
and a literal combination. In this paper
we propose supervised and unsupervised
approaches, based on word embeddings,
to identifying token instances of VNICs.
Our proposed supervised and unsuper-
vised approaches perform better than the
supervised and unsupervised approaches
of Fazly et al. (2009), respectively.

1 Verb–noun Idiomatic Combinations

Much research on multiword expressions (MWEs)
in natural language processing (NLP) has focused
on various type-level prediction tasks, e.g., MWE
extraction (e.g., Church and Hanks, 1990; Smadja,
1993; Lin, 1999) — i.e., determining which MWE
types are present in a given corpus (Baldwin and
Kim, 2010) — and compositionality prediction
(e.g., McCarthy et al., 2003; Reddy et al., 2011;
Salehi et al., 2014). However, word combinations
can be ambiguous between literal combinations
and MWEs. For example, consider the following
two usages of the expression hit the roof :

1. I think Paula might hit the roof if you start
ironing.

2. When the blood hit the roof of the car I re-
alised it was serious.

The first example of hit the roof is an idiomatic
usage, while the second is a literal combination.1

MWE identification is the task of determining
1These examples, and idiomaticity judgements, are taken

from Cook et al. (2008).

which token instances in running text are MWEs
(Baldwin and Kim, 2010). Although there has
been relatively less work on MWE identification
than other type-level MWE prediction tasks, it is
nevertheless important for NLP applications such
as machine translation that must be able to distin-
guish MWEs from literal combinations in context.

Some recent work has focused on token-level
identification of a wide range of types of MWEs
and other multiword units (e.g., Newman et al.,
2012; Schneider et al., 2014; Brooke et al., 2014).
Many studies, however, have taken a word sense
disambiguation–inspired approach to MWE iden-
tification (e.g., Birke and Sarkar, 2006; Katz and
Giesbrecht, 2006; Li et al., 2010), treating literal
combinations and MWEs as different word senses,
and have exploited linguistic knowledge of MWEs
(e.g., Patrick and Fletcher, 2005; Uchiyama et al.,
2005; Hashimoto and Kawahara, 2008; Fazly
et al., 2009; Fothergill and Baldwin, 2012).

In this study we focus on English verb–noun
idiomatic combinations (VNICs). VNICs are
formed from a verb with a noun in its direct ob-
ject position. They are a common and productive
type of English idiom, and occur cross-lingually
(Fazly et al., 2009).

VNICs tend to be relatively lexico-syntactically
fixed, e.g., whereas hit the roof is ambiguous be-
tween literal and idiomatic meanings, hit the roofs
and a roof was hit are most likely to be literal
usages. Fazly et al. (2009) exploit this prop-
erty in their unsupervised approach, referred to
as CFORM. They define lexico-syntactic patterns
for VNIC token instances based on the noun’s de-
terminer (e.g., a, the, or possibly no determiner),
the number of the noun (singular or plural), and
the verb’s voice (active or passive). They pro-
pose a statistical method for automatically deter-
mining a given VNIC type’s canonical idiomatic
form, based on the frequency of its usage in these
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patterns in a corpus.2 They then classify a given
token instance of a VNIC as idiomatic if it occurs
in its canonical form, and as literal otherwise. Fa-
zly et al. also consider a supervised approach that
classifies a given VNIC instance based on the sim-
ilarity of its context to that of idiomatic and literal
instances of the same expression seen during train-
ing.

Distributed representations of word meaning in
the form of word embeddings (Mikolov et al.,
2013) have recently been demonstrated to benefit
a wide range of NLP tasks including POS tagging
(e.g., Ling et al., 2015), question answering (e.g.,
Dong et al., 2015), and machine translation (e.g.,
Zou et al., 2013). Moreover, word embeddings
have been shown to improve over count-based
models of distributional similarity for predicting
MWE compositionality (Salehi et al., 2015).

In this work we first propose a supervised ap-
proach to identifying VNIC token instances based
on word embeddings that outperforms the super-
vised method of Fazly et al. (2009). We then pro-
pose an unsupervised approach to this task, that
combines word embeddings with Fazly et al.’s un-
supervised CFORM approach, that improves over
CFORM.

2 Models for VNIC Identification Based
on Word Embeddings

The following subsections propose supervised and
unsupervised approaches to VNIC identification
based on word embeddings.

2.1 Supervised VNIC Identification

For the proposed supervised approach, we first
extract features based on word embeddings from
word2vec representing a token instance of a VNIC
in context, and then use these representations of
VNIC tokens to train a supervised classifier.

We first form a vector ~e representing a given
VNIC token at the type level. ~e is formed by aver-
aging the embeddings of the lemmatized compo-
nent words forming the VNIC.

We then form a vector ~c representing the con-
text of the VNIC token instance. MWEs, includ-
ing VNICs, can be discontiguous. We therefore
form two vectors, ~cverb and ~cnoun, representing
the context of the verb and noun components, re-
spectively, of the VNIC instance, and then average

2In some cases a VNIC may have a small number of
canonical forms, as opposed to just one.

Original text: You can see the stars, now, in the city

Context tokens for verb (see): you, can, the, now

Context tokens for noun (stars): can, the, now, in

~cverb = vec(you)+vec(can)+vec(the)+vec(now)
4

~cnoun = vec(can)+vec(the)+vec(now)+vec(in)
4

~c = ~cverb+~cnoun

2

Figure 1: An example of computing ~c for a win-
dow size (k) of 2, where vec(w) is the vector for
word w obtained from word2vec.

these vectors to form ~c. More precisely, ~cverb and
~cnoun are formed as follows:

~cj =
1
2k

k∑
i=−k,i 6=0

wj
t−i (1)

where k is the window size that the word2vec
model was trained on, and wj

t is the embedding
of the word in position t of the input sentence rel-
ative to the jth component of the MWE (i.e., either
the verb or noun). In forming ~cverb and ~cnoun the
other component token of the VNIC is not con-
sidered part of the context. The summation is
done over the same window size that the word2vec
model was trained on so that ~cj captures the same
information that the word2vec model has learned
to capture. After computing ~cverb and ~cnoun these
vectors are averaged to form ~c. Figure 1 shows the
process for forming ~c for an example sentence.

Finally, to form the feature vector representing
a VNIC instance, we subtract ~e from ~c, and ap-
pend to this vector a single binary feature rep-
resenting whether the VNIC instance occurs in
its canonical form, as determined by Fazly et al.
(2009). The feature vectors are then used to train
a supervised classifier; in our experiments we use
the linear SVM implementation from Pedregosa
et al. (2011). The motivation for the subtraction
is to capture the difference between the context in
which a VNIC instance occurs (~c) and a type-level
representation of that expression (~e), to potentially
represent VNIC instances such that the classifier is
able to generalize across expressions (i.e., to gen-
eralize to MWE types that are unseen during train-
ing). The canonical form feature is included be-
cause it is known to be highly informative as to
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whether an instance is idiomatic or literal.

2.2 Unsupervised VNIC Identification

Our unsupervised approach combines the word
embedding–based representation used in the su-
pervised approach (without relying on training a
supervised classifier, of course) with the unsuper-
vised CFORM method of Fazly et al. (2009). In
this approach, we first represent each token in-
stance of a given VNIC type as a feature vector, us-
ing the same representation as in Section 2.1.3 We
then apply k-means clustering to form k clusters
of the token instances.4 All instances in each clus-
ter are then assigned a single class, idiomatic or lit-
eral, depending on whether the majority of token
instances in a cluster are in that VNIC’s canoni-
cal form or not, respectively. In the case of ties
the method backs off to a most-frequent class (id-
iomatic) baseline. This method is unsupervised in
that it does not rely on any gold standard labels.

3 Materials and Methods

In this section we describe training details for the
word embeddings and the dataset used for evalua-
tion.

3.1 Word embeddings

The word embeddings required by our proposed
methods were trained using the gensim5 imple-
mentation of the skip gram version of word2vec
(Mikolov et al., 2013). The model was trained on a
snapshot of English Wikipedia from 1 September
2015. The text was pre-processed using wp2txt6 to
remove markup, and then tokenized with the Stan-
ford tokenizer (Manning et al., 2014). Tokens oc-
curring less than 15 times were removed, and the
negative sampling parameter was set to 5.

3.2 VNC-Tokens Dataset

The VNC-Tokens dataset (Cook et al., 2008) con-
tains instances of 53 VNIC types — drawn from
the British National Corpus (Burnard, 2007) —
that have been manually annotated at the token
level for whether they are literal or idiomatic us-
ages. The 53 expressions are divided into three

3Based on results in preliminary experiments we found
that normalizing the feature vectors led to modest improve-
ments in this case.

4In our experiments we use the implementation of k-
means clustering from Pedregosa et al. (2011).

5https://radimrehurek.com/gensim/
6https://github.com/yohasebe/wp2txt

Window Dimensions Dev Test
50 87.3 85.9

1 100 88.2 85.5
300 86.3 88.3
50 86.4 84.2

2 100 86.7 84.2
300 86.5 86.7
50 86.0 83.4

5 100 85.9 84.2
300 87.3 85.7
50 85.5 84.3

8 100 85.6 85.9
300 85.8 86.3

Baseline 62.1 61.9
Fazly et al. (2009) CFORM 72.3 73.7
Fazly et al. (2009) Supervised 80.1 82.7

Table 1: Percent accuracy using a linear SVM
for different word2vec parameters. Results for a
most-frequent class baseline, and the CFORM and
supervised methods from Fazly et al. (2009), are
also shown.

subsets: DEV, TEST, and SKEWED. SKEWED con-
sists of 25 expressions that are used primarily id-
iomatically, or primarily literally, while DEV and
TEST consist of 14 expressions each that are more
balanced between their idiomatic and literal us-
ages. Fazly et al. (2009) focus primarily on DEV

and TEST; we therefore only consider these sub-
sets here. DEV and TEST consist of a total of 597
and 613 VNIC tokens, respectively, that are anno-
tated as either literal or idiomatic usages.7

4 Experimental Results

In the following subsections we describe the re-
sults of experiments using our supervised ap-
proach, the ability of this method to generalize
across MWE types, and finally the results of the
unsupervised approach.

4.1 Supervised Results

Following Fazly et al. (2009), the supervised ap-
proach was evaluated using a leave-one-token-out
strategy. That is, for each MWE, a single token
instance is held out, and the classifier is trained
on the remaining instances. The trained model is
then used to classify the held out instance. This is

7Both DEV and TEST also contain instances that are anno-
tated as “unknown”; following Fazly et al. (2009) we exclude
these instances from our study.
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CFORM Oracle
k Dev Test Dev Test
2 67.8 ±3.13 64.2 ±2.57 82.6 ±0.65 81.5 ±2.86
3 68.2 ±4.36 71.1 ±2.99 84.2 ±2.94 83.2 ±2.58
4 69.7 ±5.24 78.1 ±3.30 86.0 ±3.02 85.9 ±2.82
5 71.8 ±6.58 76.5 ±4.07 86.9 ±3.54 87.9 ±2.36

Table 2: The percent accuracy, and standard deviation, of our unsupervised approach incorporating
CFORM (left), and an oracle (right), for differing values of k.

repeated until all the instances of the MWE type
have been classified. The idiomatic and literal
classes have roughly comparable frequencies in
the dataset, therefore, again following Fazly et al.,
macro-averaged accuracy is reported.8 Neverthe-
less, the idiomatic class is more frequent; there-
fore, also following Fazly et al., we report a most-
frequent class baseline that classifies all instances
as idiomatic. Results are shown in Table 1 for a
variety of settings of window size and number of
dimensions for the word embeddings.

The results reveal the general trend that smaller
window sizes, and more dimensions, tend to give
higher accuracy, although the overall amount of
variation is relatively small. The accuracy on DEV

and TEST ranges from 85.5%–88.2% and 83.4%–
88.3%, respectively. All of these accuracies are
higher than those reported by Fazly et al. (2009)
for their supervised approach. They are also sub-
stantially higher than the most-frequent class base-
line, and the unsupervised CFORM method of Fa-
zly et al.

That a window size of just 1 performs well is in-
teresting. A word2vec model with a smaller win-
dow size gives more syntactically-oriented word
embeddings, whereas a larger window size gives
more semantically-oriented embeddings (Trask
et al., 2015). The CFORM method of Fazly et al.
(2009) is a strong unsupervised benchmark for
this task, and relies on the lexico-syntactic pat-
tern in which an MWE token instance occurs. A
smaller window size for the word embedding fea-
tures might be better able to capture similar infor-
mation to CFORM, which could explain the good
performance of the model using a window size of
1.

4.2 Generalization to Unseen VNICs

We do not expect to have substantial amounts of
annotated training data for every VNIC. We there-

8This is equivalent to macro-averaged recall.

fore further consider whether the supervised ap-
proach is able to generalize to MWE types that are
unseen during training. Indeed, this scenario mo-
tivated the choice of representation of VNIC token
instances in Section 2.1. In these experiments we
perform a leave-one-type-out evaluation. In this
case, all token instances for a single MWE type are
held out, and the token instances of the remaining
MWE types (limited to those within either DEV or
TEST) are used to train a classifier. The classifier
is then used to classify the token instances of the
held out MWE type. This process is repeated until
all instances of all MWE types have been classi-
fied.

For these experiments we consider the setup
that performed best on average over DEV and TEST

in the previous experiments (i.e., a window size
of 1 and 300 dimensional vectors). The macro-
averaged accuracy on DEV and TEST is 68.9%
and 69.4%, respectively. Although this is a sub-
stantial improvement over the most-frequent class
baseline, it is well-below the accuracy for the
previously-considered leave-one-token-out setup.
Moreover, the unsupervised CFORM method of
Fazly et al. (2009) gives substantially higher ac-
curacies than this supervised approach. The lim-
ited ability of this model to generalize to unseen
MWE types further motivates exploring unsuper-
vised approaches to this task.

4.3 Unsupervised Results

The k-means clustering for the unsupervised ap-
proach is repeated 100 times with randomly-
selected initial centroids, for several values of k.
The average accuracy and standard deviation of
the unsupervised approach over these 100 runs are
shown in the left panel of Table 2. For k = 4 and
5 on TEST, this approach surpasses the unsuper-
vised CFORM method of Fazly et al. (2009); how-
ever, on DEV this approach does not outperform
Fazly et al.’s CFORM approach for any of the val-
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ues of k considered. Analyzing the results on indi-
vidual expressions indicates that the unsupervised
approach gives especially low accuracy for hit roof
— which is in DEV— as compared to the CFORM

method of Fazly et al., which could contribute to
the overall lower accuracy of the unsupervised ap-
proach on this dataset.

We now consider the upperbound of an unsuper-
vised approach that selects a single label for each
cluster of usages. In the right panel of Table 2 we
show results for an oracle approach that always se-
lects the best label for each cluster. In this case, as
the number of clusters increases, so too will the
accuracy.9 Nevertheless, these results show that,
even for relatively small values of k, there is scope
for improving the proposed unsupervised method
through improved methods for selecting the label
for each cluster, and that the performance of such a
method could potentially come close to that of the
supervised approach. A word’s predominant sense
is known to be a powerful baseline in word-sense
disambiguation, and prior work has addressed au-
tomatically identifying predominant word senses
(McCarthy et al., 2007; Lau et al., 2014). The
findings here suggest that methods for determining
whether a set of usages of a VNIC are predom-
inantly literal or idiomatic could be leveraged to
give further improvements in unsupervised VNIC
identification.

5 Conclusions

In this paper we proposed supervised and unsu-
pervised approaches, based on word embeddings,
to identifying token instances of VNICs that per-
formed better than the supervised approach, and
unsupervised CFORM approach, of Fazly et al.
(2009), respectively. In future work we intend to
consider methods for determining the predominant
“sense” (i.e., idiomatic or literal) of a set of usages
of a VNIC, in an effort to further improve unsu-
pervised VNIC identification.
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