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Abstract

Recent works in Natural Language Pro-
cessing (NLP) using neural networks have
focused on learning dense word repre-
sentations to perform classification tasks.
When dealing with phrase prediction
problems, is iS common practice to use
special tagging schemes to identify seg-
ments boundaries. This allows these tasks
to be expressed as common word tagging
problems. In this paper, we propose to
learn fixed-size representations for arbi-
trarily sized chunks. We introduce a model
that takes advantage of such representa-
tions to perform phrase tagging by di-
rectly identifying and classifying phrases.
We evaluate our approach on the task of
multiword expression (MWE) tagging and
show that our model outperforms the state-
of-the-art model for this task.

1 Introduction

Traditional NLP tasks such as part-of-speech
(POS) tagging or semantic role labeling (SRL)
consists in tagging each word in a sentence with a
tag. Another class of problems such as Named En-
tity Recognition (NER) or shallow parsing (chunk-
ing) consists in identifying and labeling phrases
(i.e. groups of words) with predefined tags. Such
tasks can be expressed as word classification prob-
lems by identifying the phrase boundaries instead
of directly identifying the whole phrases. In prac-
tice, this consists in prefixing every tag with an
extra-label indicating the position of the word in-
side a phrase (at the beginning (B), inside (I), at
the end (E), single word (S) or not in a phrase (O)).
Different schemes have been used in the literature,
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such as the IOB2, IOEI and IOE2 schemes (Sang
and Veenstra, 1999) or IOBES scheme (Uchimoto
et al., 2000) with no clear predominance.

These tasks have been tackled using various
machine learning methods such as Support Vec-
tor Machines (SVM) for POS tagging (Giménez
and Marquez, 2004) or chunking (Kudoh and Mat-
sumoto, 2000), second order random fields for
chunking (Sun et al., 2008) or a combination of
different classifiers for NER (Radu et al., 2003).
All these approaches use carefully selected hand-
crafted features.

Recent studies in NLP introduced neural net-
work based systems that can be trained in an
end-to-end manner, using minimal prior knowl-
edge. These models take advantage of continu-
ous representations of words. In Collobert et al.
(2011) the authors proposed a deep neural net-
work, which learns the word representations (the
features) and produces IOBES-prefixed tags dis-
criminatively trained in an end-to-end manner.
This system is trained using a conditional ran-
dom field (Lafferty et al., 2001) that accounts
for the structure of the sentence. This architec-
ture has been applied to various NLP tasks, such
as POS tagging, NER or semantic role labeling
and achieves state-of-the-art performance in all of
them.

In this paper, we propose to learn fixed-size con-
tinuous representations of arbitrarily sized chunks
by composing word embeddings. These represen-
tations are used to directly classify phrases with-
out using the classical IOB(ES) prefixing step.
The proposed approach is evaluated on the task
of multiword expression (MWE) tagging. Using
the SPRML 2014 data for French MWE tagging
(Seddah et al., 2013), we show that our phrase
representations are able to capture enough knowl-
edge to perform on par with the IOBES-based
model of Collobert et al. (2011) applied to MWE
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tagging. Furthermore, we show that our system
outperforms the winner of the SPMRL (Syntactic
Parsing of Morphologicaly Rich Language) 2013
shared task for MWE tagging (Constant et al.,
2013) which is currently the best published sys-
tem.

2 The model

The proposed model computes fixed-size continu-
ous vectors of arbitrarily sized chunks which are
then used as inputs to a classifier. Every possi-
ble window of sizes from 1 to K (/) being the
maximum size) is projected onto a common vector
space (the same for all k), using a different neural
network for each size k. The resulting represen-
tations are passed on to a classifier which outputs
a score for every possible tag. To ensure that a
word belongs to one chunk at most, decoding is
performed using structured graph decoding using
the Viterbi algorithm.

2.1 Word representation

Given an input sentence S = wi,...,wy, each
word is embedded into a D-dimensional vector
space by applying a lookup-table operation (Ben-
gio et al., 2000):

LTy (wy,) = Wy,

where the matrix W e RP*W! represents the
parameters of the lookup layer. Each column
W, € RP corresponds to the vector embedding
of the n*™ word in the dictionary W.

Additional features, such as part-of-speech tags,
can be used by using a different lookup table
for each discrete feature. The input becomes the
concatenation of the outputs of all these lookup-
tables. For simplicity, we consider only one
lookup-table in the rest of the architecture descrip-
tion.

2.2 Phrase representation

We denote k-window a window of size k € [1, K]
where K is the maximum window size. Phrase
representations for all k-windows within a given
sentence are produced by looking, for all sizes
from 1 to K, at all successive windows of text,
sliding over the sentence, from position 1 to N —
K + 1. Formally, if we denote
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xn,k :[LTw(’wn_c), ey LTw(’wn)

LT (Wngk—1), -+ LTw (Wnyk—14¢)]

the concatenated word representations corre-
sponding to the n*" k-window (c being the context
from each side of the the k-window), its represen-
tation is given by

1
T'nk = Mk Tk,

where M} € RUF+20Dxnhu 5 3 matrix of pa-
rameters and nhu the dimension of the phrase rep-
resentations (which is the same for all k). Words

outside the sentence boundaries are assigned a
special "PADDING” embedding.

2.3 Phrase scoring

We denote 7 the set of tags and 7, the set of tags
for a k-window. We denote t;, € 7 thetagt € 7
for a k-window. The scores for all k-windows are
computed by a linear layer, using their correspond-
ing representations as input. Formally, the score
for the n' k-window are given by

Spk = tanh(MQTn,k),

where M2 e R™u*I|Tl is a matrix of parameters.
We define s,, 4, the score for the tag ¢, € 7}, start-
ing at the positionn < N — k + 1.

2.4 Structure tag inference
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Figure 1: Constrained graph for structured infer-
ence. Each node is assigned a score from the scor-
ing layer. For instance, the first node of the line
2-NP correspond to the score for the tag NP for
the phrase “’the cat”. Nodes in gray represent final
nodes.
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The scoring layer outputs a matrix of |7;| X
(N — k + 1) scores for each window size k € K.



The next module (see Figure 1) of our system is
a structured graph G constrained in order to en-
sure that a word is tagged only once. Each node
Gh.t, 1s assigned the score s, 4, (the score of the
tag ty, € 7 starting at the positionn < N —k—+1)
from the scoring layer. Only transitions from node
G, to node Gn+k’t;€/ (with n + k£ <= N) are
possible since a word cannot be tagged twice along
the same path. The Viterbi algorithm is an efficient
choice to find the best path in the lattice. The score
for a sentence S of size N along a path of tags
[t] is then given by the sum of the tag scores:

Nt
s(S, [t]]l\[tﬂg) = Z Snty,
n=1

where 6 represents all the trainable parameter.

2.5 Training

The proposed neural network is trained by maxi-
mizing the likelihood over the training data, using
stochastic gradient ascent. Following Collobert
et al. (2011), the score s(S, [t])*, 6) can be inter-
preted as a conditional probability by exponenti-
ating this score and normalizing it with respect to
all possible path scores. Taking the log, the con-
ditional probability of the true path [t]]* is given
by

logp(S(S, [t]]1\7t7 9)) = S(S7 [t]]l\[t’ 0)
—log (Y s(S, [ul™

u

) 0)

Following Rabiner (1990), the normalization
term (second term of this equation) can be com-
puted in linear time thanks to a recursion similar to
the Viterbi algorithm. The whole architecture (in-
cluding the input feature, phrase representations
and scoring layer) is trained through the graph in
order to encourage valid paths of tags during train-
ing, while discouraging all other paths.

3 Experiments

3.1 Multiword expression

Multiword expressions are groups of tokens which
act as single units at some level of linguistic anal-
ysis. They cover a wide range of linguistic con-
structions such as idioms ("’kick the bucket”), noun
compound (’traffic light”) or fixed phrases (ad
hoc”). As they can carry meaning that can not
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be inferred directly from the meaning of individ-
ual constituents (as for idioms), they are difficult
to handle by automatic systems and represent a
key issue for many NLP systems addressing, for
instance, machine translation and text generation
tasks.

3.2 Corpus

Experiments were conducted on the SPMRL
french corpus provided for the Shared Task 2013
(Seddah et al., 2013). This dataset provides
14.7k sentences (443k tokens) with 22.6k identi-
fied MWE. A given MWE is defined as a continu-
ous sequence of terminals, plus a POS tag among
the 10 possible POS tags. As presented in Table
1, a wide majority of the chunks are 2-chunks or
3-chunks (91.2%).

Chunk size | 2 3 4 5 5+
#chunk 11108 10188 1702 309 250
percentage | 47.2 432 72 13 1.1

Table 1: Number of k-sized chunks in the training
corpus

3.3 Evaluation

We evaluate the performance of the proposed net-
work on MWE tagging using the three metrics de-
scribed in Seddah et al. (2013), reporting for each
of them the recall, precision and F-score. MWE
correspond to the full MWEs, in which a predicted
MWE counts as correct if it has the correct span
(same group as in the gold data). MWE+POS is
defined in the same fashion, except that the pre-
dicted MWE counts as correct if it has both correct
span and correct POS tag. COMP correspond to
the non-head components of MWESs: a non-head
component of MWE counts as correct if it is at-
tached to the head of the MWE, with the specific
label indicating that it is part of an MWE.

3.4 Baseline models

We compare the proposed model to our imple-
mentation of the IOBES-based model described
in Collobert et al. (2011), applied to MWE tag-
ging. We also report the results of the LIGM-
Alpage architecture which obtained the best re-
sults for French SPMRL 2013 MWE recognition
shared task (Constant et al., 2013). Their system is
based on Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) and on external lexicons which



are known to greatly improve MWE segmentation
(Constant and Tellier, 2012).

3.5 Setup

The network is trained using stochastic gradient
descent over the training data, until convergence
on the validation set. Hyper-parameters are tuned
on the validation set. The look-up table size for
the words is 64. Word embeddings are pre-trained
by performing PCA on the matrix of word co-
occurrences (Lebret and Collobert, 2014) using
Wikipedia data. These embeddings are fine-tuned
during the training process. As additional fea-
tures, we only use the part-of-speech tags obtained
using the freely available tool MarMoT (Mueller
et al., 2013)!. The POS-tag embedding size is 32.
The context size is ¢ = 2 The maximum size for
a window is K = 7. The common embedding
size for the k-window is nhu = 300. We fix the
learning rate to 0.01. Following Legrand and Col-
lobert (2015), to prevent units from co-adapting,
we adopt a dropout regularization strategy (Srivas-
tava et al., 2014) after every lookup-table, as the
capacity of our network mainly lies on the input
embeddings.

For the IOBES-based model, we use the follow-
ing parameters: the context size is set to 2, word
and tags feature sizes are 64 and 32 respectively,
the hidden layer size is 300 and the learning rate
is 0.001. We use the same dropout regularization
strategy and the same word initialization as for the
proposed model.

4 Results

We first compare our approach with the IOBES-
model from Collobert et al. (2011). Table 2
presents the results obtained for the two models.
We see that, our model performs on par with the
IOBES-based model. Interestingly, adding the
POS features has little effect on the performance
for MWE identification but helps to determine the
MWE POS-tags.

In Table 3, we compare our model with the win-
ner of the SPMRL 2013 shared task for MWE
recognition (Constant et al., 2013). Both the
IOBES and chunk based models are obtained us-
ing an ensemble of 5 model and averaging the ob-
tained scores. We see that both our model and the

'The tags used are available here: http://cistern.
cis.lmu.de/marmot/models/CURRENT/

COMP MWE MWE+POS
IOBES-model | 79.4 78.5 75.4
+ WI 80.8 80.1 76.7
+ WI + POS 80.8 80.1 77.6
Chunk-model 79.1 78.3 75.2
+ WI 80.7 79.6 76.4
+ WI + POS 80.9 79.8 77.5

Table 2: Results on the test corpus (4043 MWE5s)
in terms of F-measure. WI stands for word initial-
ization.

IOBES-based model outperform this state-of-the-
art model.

COMP MWE MWE+POS
LIGM-Alpage | 81.3 80.7 717.5
IOBES-model 81.4 80.7 78.2
Chunk-model 81.3 80.7 78.1

Table 3: Results on the test corpus (4043 MWE?5s)
in terms of F-measure.

5 Representation analysis

As the proposed chunk-based model produces
continuous phrase representations, it allows for
phrase comparison. Table 4 presents some of
the closest neighbors (in terms of Euclidean dis-
tance) for some chosen phrases. We see that close
representations correspond to semantically close
phrases.

président de la république
chef de I’état
présidence de la république
ministre de I’intérieur

évasion fiscale

fraude fiscale
détournements financiers
libéralisme sauvage

impdt sur le revenu
impdt sur la fortune
impdt sur le patrimoine
impdts sur la fortune

Table 4: Closest neighbors for three input phrases
in terms of euclidean distance.



6 Conclusion

In this paper, we proposed a neural network model
that learns fixed-size continuous representations of
arbitrarily-sized chunks by composing word em-
beddings. These representations are used to di-
rectly identify and classify phrases. Evaluating
our model on the task of multiword expression
tagging, we showed that the proposed representa-
tions perform on par with a baseline IOBES-based
system. We also showed that it outperforms the
model obtaining the best published performance
for this task while not using any external lexicon
and relying on few input features. As the pro-
posed model computes phrase representations, it
allows for comparison between phrases. In the fu-
ture, the potential of this approach for higher-level
tasks such as bilingual word alignment are to be
explored.
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