Generating Disambiguating Paraphrases
for Structurally Ambiguous Sentences

Manjuan Duan and Ethan Hill and Michael White
Department of Linguistics
The Ohio State University
Columbus, OH 43210, USA
{duan, mwhite}@ling.osu.edu, hill.1303@gmail.com

Abstract

We present a method that, for the first
time in a broad coverage setting, uses nat-
ural language generation to automatically
construct disambiguating paraphrases for
structurally ambiguous sentences. By
simply asking naive annotators to clar-
ify which paraphrase is closer in mean-
ing to the original sentence, the resulting
paraphrases can potentially enable mean-
ing judgments for parser training and do-
main adaptation to be crowd-sourced on
a massive scale. To validate the method,
we demonstrate that meaning judgments
crowd-sourced in this way via Amazon
Mechanical Turk have reasonably high
accuracy—e.g. 80%, given a strong major-
ity choice between two paraphrases—with
accuracy increasing as the level of agree-
ment among annotators increases. We
also show that even with just the lim-
ited validation data gathered to date, the
crowd-sourced judgments make it possible
to retrain a parser to achieve significantly
higher accuracy in a novel domain. We
conclude with lessons learned for gather-
ing such judgments on a much larger scale.

1

While early dialogue systems such as SHRDLU
(Winograd, 1973) were capable of asking ques-
tions to clarify the meaning of structurally am-
biguous sentences, to our knowledge the task of
generating questions to clarify structural ambigu-
ities has not been investigated on a broad scale.
Given the development in recent years of statisti-
cal parsers and realizers using a reversible gram-
mar or a common set of dependencies, one might
expect that in principle it should be possible to-

Introduction

160

day to generate paraphrases to help clarify the
meaning of structurally ambiguous sentences sim-
ply by chaining the parser and realizer end-to-end.
However, realization ranking models are typically
trained to prefer corpus sentences over possible
variants, and thus statistical realizers chained with
statistical parsers are apt to just reproduce the in-
put sentence, which is of no help for disambigua-
tion. Moreover, while it is easy enough to re-
quire the realizer to output a distinct sentence, for
most realizers there is no guarantee that the real-
ization will in fact unambiguously express one or
the other possible meaning.

In early work in natural language generation,
Neumann and van Noord (1992) investigated al-
gorithms for avoiding ambiguity in surface real-
ization. More recently, Duan and White (2014)
developed a method for using statistical parsers
together with a realization ranking model to bal-
ance the competing concerns of fluency and ambi-
guity avoidance, given that sentences of even mod-
erate length are rarely unambiguous according to a
broad coverage grammar. In this paper, we present
and validate a related method that aims to ensure
that the difference in dependencies between two
competing parses is unambiguously expressed in
the realization corresponding to each parse (albeit
at the expense of fluency), so that the realizations
can serve as disambiguating paraphrases for the
input sentence. To the extent that the method is
successful, it then becomes possible to clarify the
meaning of structurally ambiguous sentences sim-
ply by asking naive annotators which paraphrase
is closer in meaning to the original sentence.

As is well known, the performance of most
NLP tools such as statistical parsers has remained
much higher for the domains and genres for which
large-scale annotated training corpora are avail-
able. Domain adaptation techniques are not al-
ways successful (Dredze et al., 2007), and while

Proceedings of LAW X — The 10th Linguistic Annotation Workshop, pages 160-170,
Berlin, Germany, August 11, 2016. (©2016 Association for Computational Linguistics

self-training can yield substantial error reductions
(McClosky and Charniak, 2008; Honnibal et al.,
2009), large gaps in performance persist. Con-
sequently, to achieve high performance, there re-
mains a need to collect new annotated data in the
target domain and genre. Moreover, experience
with ImageNet (Deng et al., 2009; Russakovsky et
al., 2015) in vision research suggests that break-
throughs in NLP performance might likewise be
enabled by collecting annotated data across do-
mains and genres on a massive scale.

As a first step towards that end, we present a
validation experiment which demonstrates that our
method enables meaning judgments to be crowd-
sourced on Amazon’s Mechanical Turk (AMT)
with reasonably high accuracy, achieving 80%
agreement with our own gold standard judgments
when there is a strong majority choice between
two paraphrases. Moreover, accuracy remains sat-
isfactorily high for the subset of sentences where
the top parse is incorrect. We also present a pre-
liminary experiment which shows that even with
just the limited validation data gathered to date,
the “silver standard” crowd-sourced judgments
make it possible to retrain a parser to achieve sig-
nificantly higher accuracy in a novel domain.

In a previous study on obtaining crowd-sourced
syntactic annotations, Jha et al. (2010) presented
results indicating that with some training, annota-
tors on AMT could accurately select prepositional
phrase (PP) attachment sites, with accuracy also
increasing with the level of agreement among an-
notators. Gerdes (2013) and Zeldes (2016) also
found that it was possible to obtain fairly high
quality class-sourced annotations where students
only received a modest amount of training. Our
work is quite different in that we aim to gather
meaning judgments with no training whatsoever,
simply by asking questions in natural language.
Our work also differs from Jha et al.’s in that it
is not limited to PP-attachment ambiguities. Since
the Jha et al. study used a different corpus, our re-
sults are not directly comparable, though we note
that our method also achieves satisfactory accu-
racy on PP-attachment cases. Finally, we note
that our paper shows that the crowd-sourced data
can enable parser improvements, while their study
does not include parser retraining results.

The paper is structured as follows. In Sec-
tion 2, we review the parsing and realization rank-
ing models that serve as a starting point for the pa-

161

per. In Section 3, we present our method for gen-
erating disambiguating paraphrases. In Section 4,
we present our experiment validating the accuracy
of naive annotator choices on AMT. In Section 5,
we present an analysis of errors and a regression
analysis investigating the factors affecting annota-
tor decisions. In Section 6, we present our prelim-
inary parser retraining experiment. In Section 7,
after briefly comparing our results with Jha et al.’s,
we discuss the implications of the analyses for fu-
ture data collection and parser adaptation experi-
ments. Finally, in Section 8, we conclude with a
summary of the lessons learned.

2 Background

To generate disambiguating paraphrases, we use
OpenCCG, an open source framework for pars-
ing and realization with Combinatory Categorial
Grammar (Steedman, 2000). It comes with a
broad coverage English grammar extracted from a
version of the CCGbank (Hockenmaier and Steed-
man, 2007) enhanced to include (inter alia) assign-
ment of consistent semantic roles across diathe-
sis alternations (Boxwell and White, 2008), using
PropBank (Palmer et al., 2005). The parser can
be used with a reimplemented version of Hock-
enmaier & Steedman’s (2002) generative model
or with the Berkeley parser (Petrov et al., 2006;
Fowler and Penn, 2010); in this paper we use the
Hockenmaier & Steedman model. The outputs of
the parser—and the inputs to the realizer—are se-
mantic dependency graphs, or logical forms, ex-
amples of which are given in the next section. In
these graphs, nodes correspond to discourse ref-
erents labeled with lexical predicates and seman-
tic attributes, and dependency relations between
nodes encode argument structure.

The realizer uses a chart-based algorithm
(White, 2006) together with a “hypertagger” for
probabilistically assigning lexical categories to
lexical predicates in the input (Espinosa et al.,
2008). To select preferred outputs from the
chart, we use an averaged perceptron realization
ranking model (White and Rajkumar, 2009) that
combines Clark & Curran’s (Clark and Curran,
2007) normal-form syntactic model and various n-
gram models including a large-scale 5-gram model
based on the Gigaword corpus together with a fea-
ture for dependency length minimization (White
and Rajkumar, 2012) and features for enhanced
syntactic agreement (Rajkumar and White, 2010).

Top Parse

&06\.\1’6

Input Sentence

He stopped Godzilla
with the laser

‘ea\'\le

Reversal

X He stopped Godzilla with the laser

v

X

With the laser, he stopped Godzilla

Rewrite
realize

v Godzilla was stopped
by him with the laser

Reversal

He stopped Godzilla with the laser

Rewrite

Y Godzilla with the laser
was stopped by him

realize

Figure 1: Overview of paraphrasing process (see text)

3 Generating Disambiguating
Paraphrases

3.1 Parsing

At an overview level, the process for automatically
generating disambiguating paraphrases is shown
in Figure 1.! The first step is to obtain n-best
parses of the input sentence (with n = 25 in our
experiments).” Any structurally broken parses,
such as those with two roots, are filtered out. Next,
the remaining parses are examined successively
to determine whether there is a parse that is suf-
ficiently distinct from the top parse so that para-
phrases generated from these two parses can be
meaningfully distinguished. In order to locate
a meaningful difference between two parses, the
unlabeled and unordered dependencies extracted
from the the top parse and a parse from the n-best

!The input sentence He stopped Godzilla with the laser is
one of the simplest in our test domain of Wikipedia articles
on prehistoric reptiles, which contains occasional references
to such creatures appearing in popular media.

2 Although it is possible that some parses which represents
meaningful structure differences might fall outside of the top
25 parses, we choose n to be 25 because the quality of parses
generally goes down quickly when moving down the list.

162

parse list are compared. To be considered suffi-
ciently distinct, the symmetric difference between
the simplified dependencies must be non-empty,
with neither set of dependencies a superset of the
other, so that the difference between the parses
represents a distinct attachment decision. For ex-
ample, ambiguities involving only POS, named
entity or word sense differences are not consid-
ered sufficiently distinct. If successful, this phase
yields a fop and next parse, whose distinct depen-
dencies indicate the meaning difference for which
the parser has the greatest uncertainty, given the
relatively high probabilities assigned to both inter-
pretations.

3.2 Reverse Realizations

Once the top and next parses have been selected,
the next step is to realize the two distinct parses
into their respective surface realizations, choosing
the realizations which meet the criteria listed be-
low for being disambiguating paraphrases of the
original sentences. Paraphrases obtained in this
process are called reversals in our study. Specifi-
cally, each parse is realized back into a n-best re-

alization list (with n = 25), which is traversed
in order to find a qualifying paraphrase. The first
criterion is that the realization needs to be differ-
ent from the original sentence to be qualified as
a paraphrase; in Figure 1, such non-helpful exact
matches are crossed off. However, not just any
realization that differs from the original sentence
is necessarily disambiguating: it may just have a
minor change in a part of the sentence unrelated to
the ambiguity in question. Thus, we define the rel-
evant ambiguity span for the sentence, and ensure
that this span is altered in the realization.

Take a sentence from Prehistoric Reptiles cor-
pus as an example.

(1) The two adult T-Rex and their baby are
shown to have been returned safely.

Here the unlabeled dependency set of the top parse
contains the dependency returned — safely, while
a parse down in the n-best list has the depen-
dency shown — safely. The three words shown <
returned < safely form an ambiguity span in the
original sentence for this ambiguity. When select-
ing the paraphrases from the n-best realizations,
we choose the realization which has different rel-
ative distances for the words involved in the ambi-
guity span in the original sentence. For the depen-
dency returned — safely, the realization The two
adult T-Rex and their baby are shown to have been
safely returned, in which the relative distances be-
tween shown, safely and returned are changed, is
selected. In the same way, for the other depen-
dency shown — safely, the realization The two
adult T-Rex and their baby are shown safely to
have been returned is selected. The two realiza-
tions are then parsed to verify that the most likely
interpretation does include the two dependencies
from which they are generated. By doing so, we
want to make sure that the realizations are struc-
turally representative of the meaning for which
it is chosen. If they pass the verification, these
two realizations will be selected as the two para-
phrases of the original sentence, each paraphrase
representing a possible interpretation of the orig-
inal sentence. These two paraphrases are called
two-sided paraphrases of the original sentence.

In some cases, we fail to find two paraphrases of
the original sentence, i.e. the algorithm fails to find
a sentence in the n-best realizations of one of the
distinct parses which is different from the original
sentence, breaks up the ambiguity span and passes
the verification. In these cases, we only generate

163

one paraphrase for the original sentence, with the
assumption that the other interpretation of the sen-
tence is expressed by the original sentence. We
call these cases one-sided paraphrases here.

3.3 Logical Form Rewrites

As noted above, there are some cases where it is
impossible to generate a reversal that expresses
one of the possible interpretations of the original
sentence without repeating the original sentence.
For example, the sentence He stopped Godzilla
with the laser is ambiguous about whether the
prepositional phrase with the laser is modifying
Godzilla or the verb stop, as shown in Figure 1.
It is impossible to have a reversal which expresses
the interpretation where the prepositional phrase is
modifying Gozilla and where the ambiguity span
is altered, as the figure shows. In cases like these,
we force structure changes in the dependency
graphs, which, when realized, can demonstrate the
parse’s interpretation more adequately. The result-
ing realizations are referred to as rewrites.

Specifically, we experiment with three types
of logical form rewriting: passive rewrites, cleft
rewrites and coordination rewrites. Passive and
cleft rewrites are designed for PP-attachment am-
biguities, while coordination rewrites are for am-
biguities in the scope of modifiers with coordi-
nated phrases.’

For passive and cleft rewrites, we first detect
the presence of a PP-attachment ambiguity by ex-
amining the POS tags of the dependents involved
in the ambiguous dependencies. If we find the
same prepositional phrase is attaching to different
heads in distinct parses, we regard this as a PP-
attachment ambiguity case. We then examine the
main verb of the sentence to make sure the verb
can be passivized or clefted. To force a passive
rewrite, we create a passive node with the same
tense as the original sentence and make the Argl
of the main verb the Arg0 of the new node and
attach the main verb to the passive node as a com-
plement. The original Arg0 is replaced by a prepo-
sitional phrase by Arg0 attached to the main verb,
as illustrated in Figure 1.

For cleft rewrites (not shown in the figure),
we create a be verb node, with the same tense
as the original sentence, above the main verb of
the clause containing the PP-attachment ambigu-

3These ambiguities are frequently found to be involved in
the errors of most parsers; we leave experimenting with other
kinds of rewrites for future work.

ity. We then create a what reference node taking
the whole verb phrase as its complement and at-
tach the what reference node to the verb be as a
complement, yielding for example Godzilla with
the laser was what he stopped.*

A coordination ambiguity refers to the cases
where a modifier can be modifying the first con-
junct or modifying the whole conjoined phrase,
e.g. the modifier East/West in He also was selected
to play in [the] East/West Shrine game and Hula
bowl.> For the parse in which the modifier mod-
ifies the first conjunct only, we swap the order of
the two conjuncts, so the conjunct with a modi-
fier will occur after the conjunction, as in He also
was selected to play in [the] Hula bowl and [the]
East/West Shrine game. In the case where the
modifier is modifying the whole conjoined phrase,
we force verbosity in the logical form by moving
the modifier to each conjunct and then swap the
order of the two conjuncts, as in He also was se-
lected to play in [the] East/West Hula bowl and
[the] East/West Shrine game.

4 Validation Experiment

4.1 Data

We collected 6,335 sentences from Prehistoric
Reptiles and 7,779 from Big 10 Conference Foot-
ball from English Wikipedia. Only sentences
with length of 5 to 20 words were selected to
parse, assuming simple sentences would gener-
alize better for parser adaptation. After parsing
these sentences, for 2,458 sentences (38.8% of to-
tal sentences) from Prehistoric Reptiles and 2,605
sentences (33.5% of total sentences) on Big 10
Conference Football, we found meaningfully dis-
tinct parses in their n-best parse list. Of these
5,063 sentences, valid paraphrases are generated
for 3605 sentences (71.2% of 5,063).

From these sentences, we randomly chose 515
sentences from each domain to be our test set,
weighted to favor two-sided cases. In these 1030
sentences, 75% are two-sided cases and 25% are
one-sided cases; 65% are reversals and 35% are
rewrites (15% from cleft rewrites, 15% from coor-
dination rewrites, and 10% from passive rewrites).

“The what-node is actually underspecified between what
and who(m), leaving the realizer to make the choice.

This sentence, from our test domain of Big 10 Football,
is mistakenly missing the determiner the in Wikipedia.

4.2 Annotation

For the 1030 sentences, we decided on the opti-
mal (‘gold’) interpretation of the disputed depen-
dencies represented by the two distinct parses. We
annotated the correct parse by examining the de-
pendency graphs. If the top parse was correct in
the ambiguous dependency, the sentence was an-
notated as ‘top’. A sentence was annotated as
‘next’ if the next best parse was correct in terms
of the disputed dependencies. When neither of
the two parses was more correct than the other
one (e.g., when neither parse had the correct PP-
attachment), the sentence was annotated as ‘nei-
ther’; this label also covered some cases where
there was no discernible semantic difference be-
tween the cases.

100 sentences were triple-annotated; for these
sentences, inter-annotation agreement was 82.5%
for all three labels and 90.8% excluding the ‘nei-
ther’ cases. The remaining sentences were single-
annotated, with discussion of difficult cases. Of
the 1030 sentences, 56.3% were annotated as top,
25.4% were ‘next’ and 18.3% were ‘neither’ cases.
To calculate accuracy of Turker judgments below,
we excluded the ‘neither’ cases; however, we in-
cluded them for data collection since in a typical
(non-validation) data collection scenario, the iden-
tity of the ‘neither’ cases would not be known.

4.3 Judgment Collection

For each of the 1030 sentences, we collected 5
judgments from the workers on Amazon Mechan-
ical Turk. For each sentence, we provided a com-
prehension question to prevent random choosing;
accuracy on comprehension questions was 93%,
indicating that workers were paying attention to
the task. For the sentences with two paraphrases,
we asked the worker to choose which out of these
two was closer to the original sentence in terms
of meaning. For the one-sided cases, we simply
asked them to decide whether that paraphrase had
the same meaning as the original sentence.

We put 25 sentences into each survey and paid
$2 per survey. It took around 20 minutes on av-
erage to finish a survey. In total, we paid $400
for 5000 judgments from AMT workers. While it
took the authors days to come up with the gold an-
notations by examining the parses, the AMT judg-
ments were collected in just a few hours.

164

Maj S.Maj Unani
Coverage | 99.3 69 36
Accuracy | 68.1 76.4 82.6

Table 1: Coverage and Accuracy

Maj S.Maj Unani

One-sided 59.1 65.2 70.6
Two-sided 71 79.9 87.2
Reversals 69.3 799 88.2
Rewrites 74.8 79.8 84.6
Cleft 79.7 82.1 83.3
Passive 68 714 66.6
Coordination | 70 79.2 88

Table 2: Accuracy of AMT workers’ judgments

4.4 Results

Table 1 shows the trade-off between the accuracy
of the judgments collected from AMT and the cov-
erage of the data. In Table 1, sentences which
have more than 50% agreement from AMT work-
ers are called ‘Majority’ cases (Maj); those with
more than 75% agreement are ‘Strong Majority’
cases (S. Maj) and those with 90% or more agree-
ment are ‘Unanimity’ cases (Unani).% As the table
shows, the ‘unanimity’ sentences have the high-
est accuracy, however, at the expense of losing the
coverage of 64% data.

Table 2 shows the accuracy of the AMT work-
ers’ judgments under different settings. The re-
sults shown in Table 2 are all significantly better
than random choice (p = 0.5) at a level a = 0.05
(binomial sign test). Table 2 shows that two-
sided paraphrases have considerably higher accu-
racy than one-sided cases, which means two-sided
paraphrases are better in highlighting the ambigu-
ity in the original sentence.

Table 2 also shows the accuracy of reversals
and rewrites for the two-sided paraphrases. It
is good to see that reversals work better than
rewrites in strong majority cases and unanimity
cases, because reversals can be obtained without
any changes to the logical forms and are able to
capture various kinds of structural ambiguities de-
tected by the automatic parser, not just those the
rewrites have been designed to capture. ‘Strong

SThere are a few duplicated sentences in the validation
dataset. For each of these sentences, we might have 10 or
15 Turker judgments. As such, we define ‘Strong Majority’
as agreement more than 75% and ‘Unanimity’ as agreement
more than 90%.

165

Maj S.Maj Unani
Total 59.6 68 74.6
One-sided 49.1 53.5 70.6
Two-sided 63.2 739 87.2
Reversal 55.3 663 75.9
Rewrite 67.5 70.5 85.7
Cleft 81.8 86.6 85.7
Passive 58.8 57.1 62.5
Coordination | 63.2 68.8 78.6

Table 3: Accuracy of ‘next’ parses (accuracies sig-
nificantly higher than chance in bold)

majority’ two-sided cases appear to offer the best
balance between coverage and accuracy.

In order to judge whether the crowd-sourced
judgments can be potentially beneficial for parser
retraining, we need to examine the proportion of
‘next’ cases (i.e., those sentences one of whose
non-top parses is more accurate than the top parse)
that can be correctly annotated. Table 3 shows that
majority, strong majority and unanimous annota-
tions are all significantly better than chance over-
all in these cases (p < 0.05, exact binomial test).
Some of the individual results in Table 3, however,
fail to reach the significance level because of the
small sample sizes. For example, the unanimous
annotations for cleft are correct in 6 sentences out
of 7 sentences; although the accuracy is as high
as 85.7%, it still fails to be significant because of
the small sample size. In general, two-sided para-
phrases still work better than the one-sided ones
and rewrites work better than reversals in terms of
correctly annotating ‘next’ cases.

5 Error Analysis

51

We did not directly evaluate paraphrase quality in
this study, as we were primarily concerned with
whether they sufficed to enable accurate crowd-
sourced judgments. However, we did manually
analyze 43 sentences where the unanimous AMT
worker judgments do not agree with the expert an-
notations and found the following reasons: incom-
petent or broken realizations (29 out of 43); bad
parses (11 out of 43); lack of context (3 out of 43).

Incompetents realizations refer to those para-
phrases which fail to convey the distinct mean-
ings in the parses in a distinguishable way. Some-
times a change of adverbial position in a sentence
or punctuation deletion/insertion does not alter a

Manual analysis

human reader’s interpretation of the sentence. For
example, in (2) below, (2a) is the original sen-
tence, which is ambiguous as to whether with at-
taches to the verb crush, which is realized as (2c¢),
or to the noun animal, whose realization is the
same as the original sentence. The correct inter-
pretation is that with attaches to animals, so the
expert annotation is (2b). Compared with the orig-
inal sentence, (2¢) has a comma inserted after ani-
mals. However, all 5 AMT workers think (2¢) has
the same meaning as the original sentence in spite
of this change, as the punctuation difference is too
subtle for reliable interpretation.

@

a. The teeth were adapted to crush bivalves, gas-
tropods and other animals with a shell or ex-
oskeleton.

(animals—with): Same as original sentence

c. (crush—with): The teeth were adapted to crush
bivalves, gastropods and other animals, with a
shell or exoskeleton.

In some cases, the AMT workers fail to choose
the correct parse because the realization of the
correct parse is much less fluent than the other
one. In (3) below, (3a) is the original sentence,
and it is ambiguous as to whether the preposi-
tional phrase during the Triassic-Jurassic extinc-
tion event modifies gone or thought. The cor-
rect interpretation is that the during prepositional
phrase modify gone. However, the paraphrase of
the correct parse, (3b), is not very fluent because
the long prepositional phrase separates the verb
and its complement, which causes the AMT work-
ers to all choose (3c) as the best paraphrase. A
disfluent paraphrase usually happens when the re-
alizer needs to go far down the n-best realization
list to find a realization which is different from the
original sentence.

3

a. They are thought to have gone extinct during
the Triassic-Jurassic extinction event.

b. (gone—during): They are thought to have gone

during the Triassic-Jurassic extinction event
extinct.

(thought—during): They are thought during
the Triassic-Jurassic extinction event to have
gone extinct.

In other cases, although one parse is better than
the other one for the disputed dependency, the rest
of both parses is so broken that the realization can-
not represent the meaning effectively. In those
cases, the AMT workers usually could not give re-
liable annotations, because the realizations of the
mangled parses make it hard for the AMT workers
to see any reliable meaningful difference.

166

In some rare cases (3 out of 43), the AMT work-
ers fail to choose the correct parse because they do
not have the specific context to correctly under-
stand the original sentence:

“

a. Michigan’s backup center, Gerald Ford, ex-
pressed a desire to attend the fair while in
Chicago.

(attend—while): Michigan’s backup center,
Gerald Ford, expressed a desire to attend while
in Chicago the fair.

(expressed—while): Michigan’s backup center,
Gerald Ford, expressed while in Chicago a de-
sire to attend the fair.

The original sentence in (4a) is ambiguous as to
whether the while adverbial phrase is modifying
attend or expressed. After consulting the context
of the Wikipedia article we know that when Gerald
Ford made this speech, he was actually in Michi-
gan and expressed this desire to visit the fair in
Chicago. Accordingly, we annotated that while
modifies attend. However, this information might
not be available for the AMT workers. Also, per-
haps because (4b) is a less fluent sentence where
the while adverbial occurs between the verb attend
and its object the fair, AMT workers all chose (4¢)
as the better paraphrase.

5.2 Regression analysis

We also conducted a regression analysis to de-
termine the factors that affect AMT workers’
choices. The predictors included in the analy-
sis are ranks of the underlying parse of the para-
phrase (parse), an arithmetic-mean approximation
of BLEU between the paraphrase and the original
sentence (bleu), and the fluency score of the para-
phrase calculated by OpenCCG realizer, normal-
ized globally across all the realizations in the data
set (rlz.glb). For the two-sided paraphrases, all
four predictors are calculated as the corresponding
value of the paraphrase of the top parse minus the
value of the paraphrase of the ‘next’ parse. The
dependent variable in two-sided cases is 1 if the
top parse is correct, 0 otherwise.

We fit four regression models respectively for
the four combinations of majority (Maj) and
strong majority (S. Maj) choices with one- and
two-sided paraphrases. The regression analysis
shows bleu has a significant effect on AMT work-
ers’ choice across all four settings. The posi-
tive coefficients of the predictor bleu indicates that
AMT workers tend to choose the paraphrase that is
similar to the original sentence in terms of its sur-
face form. In some cases this likely means that the

One-sided Two-sided
Maj S.Maj Maj S. Maj
parse | -0.03 -0.05 0.01 0.01
bleu 3.05*% 4.38%* 1.68*% 3.07%*
rlz.glb | 0.01 0.01 0.07** (0.103***
Table 4: Coefficients of regression analysis of

AMT workers’ choice (significance codes are *:
p < 0.05; **: p < 0.01; #**: p < 0.001)

Data Size

Figure 2: Accuracy and coverage trade-off plot for
majority and strong majority choices

annotator is overly influenced by superficial simi-
larity, which may partially explain the poor perfor-
mance of one-sided paraphrases. We also observe
a significant effect from the fluency score of the
paraphrases in the two-sided case.

Inspired by the results above, we investigate the
possibility of increasing the accuracy at the ex-
pense of coverage. We trained a logistic regression
model on AMT workers’ majority correct choices
and plotted the accuracy of their choices in de-
creasing order of their likelihood of correctness,
also plotting the accuracy of corresponding strong
majority choices for comparison.

Figure 2 shows that in order to improve the ac-
curacy of majority choices to 80%, we will lose
around 80% data. However, the accuracy of strong
majority choices, with 40% less coverage, is above
80%. Thus the results show that if we are willing
to sacrifice some data coverage for higher quality
annotation, strong majority choices are the better
option. If data is quite plentiful (or nearly unlim-
ited), only the most fluent items could be selected
for annotation, in which case accuracy could po-
tentially be pushed up past 90%.

Dinosaur Football
Train size 471 356
Eval size 2901 226
Original acc. 0.701 0.668
Retrained acc. 0.749 0.717
Correction rate 0.243 0.32

Table 5: Parser retraining

6 Parser Retraining

As a preliminary experiment just using the val-
idation data gathered to date, we retrained the
OpenCCG parser with the majority judgments col-
lected from AMT (along with the original CCG-
bank data). Results appear in Table 5. The
training set of the dinosaur domain contains 471
parses and that of the football domain contains 356
parses, corresponding to the parses chosen by ma-
jority judgments of the AMT workers. We trained
the OpenCCG parser on the two domains sepa-
rately with ten-fold cross validation, and evaluated
the parsing performance of the retrained parsers
against our manually annotated gold dependencies
(excluding ‘neither’ cases). Parses were consid-
ered correct if the parse matching the gold correct
dependencies ranked higher than the parse match-
ing the gold incorrect dependencies in the n-best
list. For some sentences, we could not find a parse
to match the annotated correct or wrong depen-
dencies in the n-best list, especially the annotated
wrong dependencies; we also excluded these sen-
tences from the evaluation. In the end, we had
291 sentences in the dinosaur domain and 226 sen-
tences in football for evaluation. Original acc. is
the accuracy of the original OpenCCG parser eval-
uated on the gold annotated dependencies, while
Retrained acc. is the accuracy of the retrained
parsers and Correction rate is the proportion of
original mistakenly parsed sentences that are cor-
rectly parsed by the retrained parsers.

MacNemar’s chi-square test shows that the re-
trained parser achieves significantly higher accu-
racy in the dinosaur domain (p = 0.02). The same
test on football data shows a trend but not a sig-
nificant improvement (p = 0.1), most likely due
to the smaller size of the training and evaluation
sets for this domain. Meanwhile, the performance
of the retrained parsers on the CCGbank develop-
ment section does not differ significantly from the
original parser (p > 0.05 for both).

167

7 Discussion

By directly asking AMT annotators to specify the
attachment site for a PP, Jha et al. (2010) achieve
84% accuracy overall, rising to an impressive 95%
in strong majority cases. However, their results are
not directly comparable to our PP-disambiguation
items since the texts are different and since they
consider all PPs, rather than just the ones that the
parser finds the most difficult. In addition, they
allow annotators to indicate additional attachment
sites if none of the automatically suggested ones
are correct, yielding a considerably more complex
annotation task than ours that requires explicit up-
front instruction on the notion of PP-attachments;
moreover, to extend their method to additional
kinds of structural ambiguities, the instructions
would be elaborated in each case.

The results and analysis indicate that the ac-
curacy of our method could be improved sim-
ply by leaving aside the one-sided cases, where
the AMT annotators may have been overly influ-
enced by superficial similarity, as well as the pas-
sive rewrites, which performed much worse than
the cleft rewrites on PP-attachment cases for rea-
sons that are not clear. Realization fluency was
also found to be a significant predictor of annota-
tor choices in the two-sided cases, suggesting that
accuracy could be further improved by taking this
factor into account when selecting sentences if do-
main data is plentiful. Another alternative worth
pursuing in future work would be to split sentences
whose realizations are not sufficiently fluent, bor-
rowing methods employed in syntactic simplifica-
tion (Siddharthan, 2006; Siddharthan, 2011).

In future work we also plan to experiment with
multiple parsers and additional collected data in
order to measure the extent to which parsing per-
formance on all attachments can be improved in
new domains. Here we plan to use not only the
OpenCCG reimplementation of the Hockenmaier
& Steedman generative model, but also the Berke-
ley latent variable model and the Clark & Cur-
ran CCG parser, along with additional dependency
parsers. To do so, we will take into account the
“silver standard” nature of the annotations, namely
that the parse corresponding to the selected disam-
biguating paraphrase may not be entirely correct,
just closer than its competitor parse. In particu-
lar, using just the dependencies that differ between
these two parses, we will select the highest-ranked
parse that retains more of the correct (unlabeled,

168

unordered) dependencies than any other in the n-
best list. In this way, the dependencies yielded by
each parser need not closely match the ones used
to collect the data.

8 Conclusion

In this paper, we have shown that it is possi-
ble to obtain accurate crowd-sourced judgments
of meaning by simply asking naive annotators to
answer clarification questions, namely which of
two automatically generated disambiguating para-
phrases is closer to the original sentence in mean-
ing. In a validation experiment, accuracy reached
80% or higher when there was a strong majority
among the AMT annotators, both when using LF
rewrites for PP-attachment and coordination am-
biguities, as well as for direct reverse realizations,
which cover a broader range of ambiguity types.
Moreover, accuracy remains reasonably high for
the subset of sentences where the top parse is in-
correct, sufficiently so to enable a retrained parser
to achieve significantly higher accuracy in a novel
domain, even using just the limited validation data
gathered to date. Data from the validation experi-
ment is made available as a supplement to the pa-
per.’

An analysis of errors revealed that one-sided
cases (where only one disambiguating paraphrase
could be generated) performed poorly, as did pas-
sive rewrites, and a regression analysis also re-
vealed that realization fluency was a significant
factor in predicting annotator decisions. In future
work, we plan to take these lessons into account
when collecting a much larger dataset in order
to enable experiments on parser adaptation with
multiple parsers, treating the crowd-sourced an-
notations as “silver standard” when retraining the
parsers on in-domain sentences.

Acknowledgments

We thank James Curran, Eric Fosler-Lussier, the
OSU Clippers Group and the anonymous re-
viewers for helpful comments and discussion.
This work was supported in part by NSF grant
1319318.

"http://www.ling.osu.edu/-mwhite/data/
law—-x—-2016-duan-hill-white—-data.zip

References

[Boxwell and White2008] Stephen Boxwell and
Michael White. 2008. Projecting Propbank roles
onto the CCGbank. In Proc. LREC-08.

[Clark and Curran2007] Stephen Clark and James R.
Curran. 2007. Wide-Coverage Efficient Statistical
Parsing with CCG and Log-Linear Models. Compu-
tational Linguistics, 33(4):493-552.

[Deng et al.2009] J. Deng, W. Dong, R. Socher, L.-J. Li,
K. Li, and L. Fei-Fei. 2009. ImageNet: A Large-
Scale Hierarchical Image Database. In CVPR09.

[Dredze et al.2007] Mark Dredze, John Blitzer, Partha
Pratim Talukdar, Kuzman Gancheyv, Joao Graca, and
Fernando Pereira. 2007. Frustratingly hard domain
adaptation for dependency parsing. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, pages 1051-1055, Prague, Czech Re-
public, June. Association for Computational Lin-
guistics.

[Duan and White2014] Manjuan Duan and Michael
White. 2014. That’s not what I meant! Using
parsers to avoid structural ambiguities in generated
text. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 413-423, Baltimore,
Maryland, June. Association for Computational Lin-

guistics.
[Espinosa et al.2008] Dominic Espinosa, = Michael
White, and Dennis Mehay. 2008. Hypertag-

ging: Supertagging for surface realization with
CCG. In Proceedings of ACL-08: HLT, pages
183-191, Columbus, Ohio, June. Association for
Computational Linguistics.

[Fowler and Penn2010] Timothy A. D. Fowler and Ger-
ald Penn. 2010. Accurate context-free parsing with
Combinatory Categorial Grammar. In Proceedings
of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 335-344, Upp-
sala, Sweden, July. Association for Computational
Linguistics.

[Gerdes2013] Kim Gerdes. 2013. Collaborative depen-
dency annotation. In Proceedings of the Second In-
ternational Conference on Dependency Linguistics
(DepLing 2013), pages 88-97, Prague, Czech Re-
public, August. Charles University in Prague, Mat-
fyzpress.

[Hockenmaier and Steedman2002] Julia Hockenmaier
and Mark Steedman. 2002. Generative models
for statistical parsing with Combinatory Categorial
Grammar. In Proc. ACL-02.

[Hockenmaier and Steedman2007] Julia Hockenmaier
and Mark Steedman. 2007. CCGbank: A Cor-
pus of CCG Derivations and Dependency Structures
Extracted from the Penn Treebank. Computational
Linguistics, 33(3):355-396.

[Honnibal et al.2009] Matthew Honnibal, Joel Noth-
man, and James R. Curran. 2009. Evaluating a
statistical CCG parser on Wikipedia. In Proceed-
ings of the 2009 Workshop on The People’s Web
Meets NLP: Collaboratively Constructed Semantic
Resources, pages 38—41, Suntec, Singapore, August.
Association for Computational Linguistics.

[Jha et al.2010] Mukund Jha, Jacob Andreas, Kapil
Thadani, Sara Rosenthal, and Kathleen McKeown.
2010. Corpus creation for new genres: A crowd-
sourced approach to PP attachment. In Proceed-
ings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechan-
ical Turk, pages 13-20, Los Angeles, June. Associ-
ation for Computational Linguistics.

[McClosky and Charniak2008] David McClosky and
Eugene Charniak. 2008. Self-training for biomedi-
cal parsing. In Proceedings of ACL-08: HLT, Short
Papers, pages 101-104, Columbus, Ohio, June. As-
sociation for Computational Linguistics.

[Neumann and van Noord1992] Giinter Neumann and
Gertjan van Noord. 1992. Self-monitoring with
reversible grammars. In Proceedings of the 14th
conference on Computational linguistics - Volume
2, COLING ’92, pages 700-706, Stroudsburg, PA,
USA. Association for Computational Linguistics.

[Palmer et al.2005] Martha Palmer, Dan Gildea, and
Paul Kingsbury. 2005. The Proposition Bank: A
corpus annotated with semantic roles. Computa-
tional Linguistics, 31(1).

[Petrov et al.2006] Slav Petrov, Leon Barrett, Romain
Thibaux, and Dan Klein. 2006. Learning accurate,
compact, and interpretable tree annotation. In Pro-
ceedings of COLING-ACL.

[Rajkumar and White2010] Rajakrishnan Rajkumar
and Michael White. 2010. Designing agreement
features for realization ranking. In Coling 2010:
Posters, pages 1032—-1040, Beijing, China, August.
Coling 2010 Organizing Committee.

[Russakovsky et al.2015] Olga Russakovsky, Jia Deng,
Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. 2015. ImageNet Large Scale Visual
Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211-252.

[Siddharthan2006] A. Siddharthan. 2006. Syntactic
simplification and text cohesion. Research on Lan-
guage & Computation, 4(1):77-109.

[Siddharthan2011] Advaith Siddharthan. 2011. Text
simplification using typed dependencies: A compar-
ision of the robustness of different generation strate-
gies. In Proceedings of the 13th European Work-
shop on Natural Language Generation, pages 2—11,
Nancy, France, September. Association for Compu-
tational Linguistics.

169

[Steedman2000] Mark Steedman. 2000. The syntactic
process. MIT Press, Cambridge, MA, USA.

[White and Rajkumar2009] Michael White and Rajakr-
ishnan Rajkumar. 2009. Perceptron reranking for
CCQG realization. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, pages 410—419, Singapore, August. As-
sociation for Computational Linguistics.

[White and Rajkumar2012] Michael White and Rajakr-
ishnan Rajkumar. 2012. Minimal dependency
length in realization ranking. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 244-255, Jeju
Island, Korea, July. Association for Computational
Linguistics.

[White2006] Michael White. 2006. Efficient Realiza-
tion of Coordinate Structures in Combinatory Cate-
gorial Grammar. Research on Language & Compu-
tation, 4(1):39-75.

[Winograd1973] Terry Winograd. 1973. A procedu-
ral model of language understanding. In Roger
Schank and Ken Colby, editors, Computer Models of
Thought and Language, pages 152—186. W.H. Free-
man. Reprinted in Grosz et al. (eds), Readings in
Natural Language Processing. Los Altos CA: Mor-
gan Kaufmann Publishers, 1986, pp.249-266.

[Zeldes2016] Amir Zeldes. 2016. The GUM cor-
pus: Creating multilayer resources in the classroom.
Language Resources and Evaluation, pages 1-32.

170

