Converting SynTagRus Dependency Treebank into Penn Treebank Style

Alex Luu, Sophia A. Malamud, Nianwen Xue
Brandeis University

415 South Street, Waltham, Massachusetts USA
alexluu, smalamud, xuen@brandeis.edu

Abstract

This paper presents the conversion of Syn-
TagRus dependency structures into Penn
Treebank style phrase structures, whose
resulting data will be used to train a statis-
tical constituency parser for Russian and
create a large-scale constituency-parsed
corpus. The implemented conversion in-
cludes various innovative features in or-
der to create phrase structure trees that are
closest to Penn Treebank style while opti-
mally preserving information of the origi-
nal dependency structure annotations. We
believe the newly converted phrase struc-
ture treebank will be not only an adequate
training dataset for our ongoing project but
also a valuable resource for traditional and
computational linguistic research.

1 Introduction

A treebank is usually created based on either de-
pendency structure (DS) or phrase structure (PS)
such that the selected formalism is optimally com-
patible with the language under consideration.
From this perspective, DS formalism is suited
for SynTagRus, the first general-purpose treebank
(IM words) for Russian, a Slavic language with
a relatively free word order (Boguslavsky et al.,
2002). In contrast, existing gold standard cor-
pora involving language variation and change such
as Penn corpora of historical English (Kroch and
Taylor, 2000; Kroch et al., 2004; Kroch et al.,
2016) and the corpus of Appalachian English (Tor-
tora et al., in progress) use PS formalism simi-
lar to English Penn Treebank (PTB) (Bies et al.,
1995). To facilitate the creation of comparable
corpora for less-configurational languages, and to
enable the use of the wealth of NLP and theoretical

16

research tools, such as CorpusSearch! developed
for PTB-style corpora, we aim to enrich this for-
malism to optimally capture the grammatical de-
tails of a free word order language like Russian,
and to convert SynTagRus DS into this enriched
PTB style PS (henceforth, DS-to-PS conversion?)
without loss of information. Eventually, we will
use the newly converted data to train a statistical
PS parser for Russian and create a large-scale PS-
parsed corpus. In this paper, we report our effort
in developing the enriched PS representation and
implementing DS-to-PS conversion.

2 Related Work

To the best of our knowledge, Avgustinova and
Zhang (2010) is the only prior work addressing
the conversion of SynTagRus DS into PS. Within
the framework of Head-driven Phrase Structure
Grammar (HPSG) the conversion implemented in
this work outputs HPSG-conform PS trees via
three steps: converting DS into pseudo PS by
creating additional constituent nodes that imme-
diately dominate head words and their depen-
dents, annotating the branches of the pseudo PS
with HPSG-oriented schemata, and binarizing the
pseudo PS. This conversion process is specific to
HPSG framework and cannot be straightforwardly
manipulated for PTB style PS. Consequently, we
follow a more universal DS-to-PS conversion pro-
cedure suggested in (Xia, 2008; Bhatt et al., 2011),
including the following steps:

1) DS to DS+: removing non-projectivity

2) DS+ to PS+: simple and general conversion

3) PS+ to PS: handling subtleties

In addition, we adopt the approaches of DS+
to PS+ conversion proposed in (Xia and Palmer,

'"http://corpussearch.sourceforge.net/
index.html.

2The code for this conversion is available at https://
github.com/luutuntin/SynTagRus_DS2PS.

Proceedings of LAW X — The 10th Linguistic Annotation Workshop, pages 16-21,
Berlin, Germany, August 11, 2016. (©2016 Association for Computational Linguistics

2001; Xia et al., 2008), which include simple
heuristic rules and take language-specific infor-
mation as input in defining projections for each
syntactic category and attachment levels for each
head-dependent pair. Compared with other work
on DS-to-PS conversion, (Collins et al., 1999;
Aldezabal et al., 2008, a.o0.), this approach gives
us more flexibility to produce PS that are as close
to PTB style as possible while preserving informa-
tion of the original DS annotations.

An innovation in our proposal is that we use
functional tags to represent the extremely fine-
grained (and open) list of dependency link types in
SynTagRus (Boguslavsky et al., 2002), and utilize
this information in the projection rules that create
the PS representations.

3 SynTagRus DS-to-PS Conversion

The converted SynTagRus includes 66 depen-
dency link types, 49,420 sentences, 708,480 to-
kens excluding punctuation marks, 38,311 lem-
mas, and 1,365 phantom nodes, corresponding to
the omitted elements in elliptical constructions.

3.1 Phrase Labeling

We constructed the tag set for our target PS tree-
bank (see Table 1), taking into account language-
specific information in SynTagRus.

DS (SynTagRus) | DS POS | PTB phrase
POS tag (X) label (XP)

Noun S NP
Adjective A ADJP
Verb v VP
Adverb ADV ADVP
Numeral NUM QP
Preposition PR PP
Conjunction CONJ CONJP
Particle PART PRT
Exclamation yes, no | P INTJ
Interjection INTJ INTJ
uninflected word NID NIDP
combining form COM NP modifier

Table 1: POS tags and phrase labels.

In addition to the phrase labels presented in Ta-
ble 1, we use two clause labels, SS and SBAR,
corresponding to S (simple declarative clause) and

17

SBAR (relative/subordinate clause) in PTB, re-
spectively. To handle wh-phrases, we assign the
wh-feature to every word whose lemma belongs to
the list of wh-lemmas and whose POS tag is not
CONJ, using functional tag -WH.

3.2 DS toDS+

The free word order of Russian causes a
large number of non-projective dependency trees
in SynTagRus (cf. Bhatt et al. (2011) for
Hindi/Urdu). We propose an algorithm (Table 2)
that converts non-projective to projective depen-
dency trees, using traces and co-indexation in the
form of null elements *NP2P* (see section 3.5 for
a converted example). The recursive helper func-
tion path(G) in this algorithm generates a specific
sequence of all the nodes in a DS graph G such that
any dependent node comes before its head. We
call this specific order tree-oriented.

Input: a non-projective DS graph G

DS Graph nonprojective-to-projective(G)
for (each edge of head i & dependent j in G)
if is-nonprojective-edge(G, i,)
insert a null element headed by i and
co-indexed with j into G
for (each node i in path(G))
if (i is a null element)
get the co-indexed node j
assign head of j to variable A
while (is-nonprojective-edge(G, h, j))
assign head of A to h
make % the new head of j
remove edge between j and its old head

Output: a projective DS graph G

Table 2: DS to DS+ conversion.

3.3 DS+ to PS+

To convert projective dependency graphs (DS+)
into the preliminary form of PTB style PS trees
(PS+), we decompose the conversion of a com-
plete DS+ (corresponding to a sentence) into a se-
ries of conversions for each subgraph of a head
node and its (immediate) dependents, which we
call a unit subgraph. When converting a unit sub-
graph (Fig. 1), we construct a specific head projec-
tion chain for each node in the subgraph, taking
into account its POS tag and the dependency links
(if any) between it and its head as well as its de-
pendent(s)(see more details in sections 3.3.1 and

3.3.2). In the next step, we attach the root of each
dependent’s projection chains to the correspond-
ing node in the head’s projection chain to form a
complete representation of the subgraph.

Link type

Link projection

Actant: Predicative
Attributive: Relative
Coordinative
Auxiliary: Expletive

SS — X P-PRD? XpP-SBJ
XuP — Xy Xp-RLT

Xy P-CRD — Xy P XpP
XuP — Xy XpP-EXP

Unit subgraph of
the head node X, and

PS+ form of
phrase structure

its dependents X, , X ., X, . construction

DI’ D2

Head projection chain
X — XP'|—SS']

Figure 1: Unit-subgraph DS+ to PS+ conversion.

3.3.1 Head Projection Table

The projection of each node to the phrase level (X
— XP) is defined by the head projection rules (Ta-
ble 3), based on its POS tag in DS.

DS POS X — XP
Noun S — NP
Adjective A— ADJP
Verb V-VP
Adverb ADV — ADV P
Numeral NUM — QP
Preposition PR — PP
Conjunction CONJ — CONJP
Particle PART — PRT
exclamation yes, no P— INTJ
Interjection INTJ — INTJ
uninflected word NID — NIDP

Table 3: Head projections at the phrase level.

3.3.2 Link Projection Table

Each syntactic dependency link type, involving a
head Xy and a dependent Xp, has its own projec-
tion rule. As there are 66 link types in SynTagRus,
Table 4 only presents some examples to show the
diversity of projection rules that best describe their
desired PS construction (e.g. a relative link be-
tween Xz and Xp will project to Xz P, which is
similar to the projection of link I in Figure 1).
Here, we not only reuse as many PTB func-
tional tags (e.g., PRD for predicate and SBJ for

3Tag -PRD is only applied for non-VP predicates

Table 4: Link projections.

subject) as possible, but also create new tags that
reflect the fine-grained syntactic links in SynTa-
gRus (e.g., RLT for relative and EXP for expletive)
and therefore are invaluable for implementing dif-
ferent transformations at the PS+ to PS stage.

Our treatment of the differentiation between sis-
ter and Chomsky adjunction departs from Xia and
Palmer (2001) and is similar to the optimization
implemented in Xia et al. (2008). This differen-
tiation is needed to produce PS that are close to
the trees in PTB. To treat each type of dependency
link in SynTagRus appropriately, we directly in-
corporate the concrete adjunction styles into the
projection rules for each link, rather than distin-
guishing them in the modification table and im-
plementing an additional step to handle Chomsky
adjunction structures, as Xia and Palmer (2001)
do. For example, in Table 4 the coordinative link
corresponds to Chomsky adjunction (in which the
head node necessarily projects to the phrase level)
while the expletive link corresponds to sister ad-
junction (in which the head node does not neces-
sarily project to the phrase level).

3.3.3 Construction of PS+ Trees

We use the algorithm presented in Table 5 for con-
verting DS+ into PS+.

Input: a projective DS graph G

Tree DS-toPS(G)
for (each node i in G)
get projection chain ¢ of i
build (non-branching) PS tree for i using ¢
for (each node i in path(G))
attach dependents’ PS trees to i’s PS tree
return PS tree T of the root node

Output: aPS tree T

Table 5: DS+ to PS+ conversion.

In order to preserve the linear word order of all
nodes in a unit subgraph, the projection chain of
the dependent which is linearly farther from the
head should not be attached to a lower position

in the projection chain of the head. If this viola-
tion occurs, we will move up the attachment po-
sition of this dependent chain until it is at least
equal to those of the dependents which are linearly
closer to the head. In other words, we attach it
as low as possible as long as this does not cause
non-projectivity. Additionally, we insert a null el-
ement *, co-indexed with the moved-up node, in
the original attachment position of the moved-up
node. This null element as well as the null ele-
ment *NP2P*, which is introduced when elimi-
nating non-projective trees, are descriptive devices
for capturing scrambling phenomena in Russian in
a theory-neutral manner.

Linear word order of a unit subgraph: X, X, X, X,

D1 D2 D3

PS+ forms of phrase structure construction:

Figure 2: Insertion of null element *.

34 PS+toPS

In this stage we implement the following types of
tree transformations:

1) Label replacement, e.g. changing CONJP to
SBAR for subordinative structures

2) Wh-movement, e.g. adding null elements
T, SBAR nodes for relative clauses

3) Eliminating intermediate nodes, so that in
phrase structure trees, the dependents in formerly
non-projective edges c-command their traces null
elements *NP2P*

4) Label merging, mainly used for handling co-
ordinative structures

It is worth emphasizing that the resulting PS in
PTB style adequately preserve all the enriched in-
formation of SynTagRus DS annotation.

3.5 A Converted Example

We examine the sentence in Figure 3, involving
several phenomena characteristic of Russian: an
impersonal modal nado “its necessary” which
takes an infinitival phrase as its argument, a
scrambled accusative object of the infinitive
knopku “button.ACC” which participates in

19

Knonky Haoo HaxCuMants moi JHce
Knopku nado naZimat’ toj Ze
Button.ACC necessary press.INST thatINF PRT
PVKoIL, Komopoil denaemcs X00.
rukoj, kotoroj delaetsja xod.

hand INST, which INST make.3S.SPASS move. NOM.

It’s necessary to press the button with the same
hand with which the move is made.

Figure 3: An example sentence.

Kronky ----_/[NP2P [1. Button.ACC | S
Hano{)| 2 necessary | ADV
NP2P-1

HaXHMaTh

s
PR v
- A
FED pagT
s

9. make.3S.SPASS | V
_PRD »»| 10. move.NOM | S

xe

PYKOI, 7. hand.INST
KOTOpO#
Jenaercs

Figure 4: Non-projective SynTagRus DS.

Kuomky (NPzP [1. Button.ACC | S

Hano-{)=p| 2. necessary | ADV

FNP2P*- 1\ (COM-1)[3."NP2P*1 | S

HaKHMaTh
A
(RES [6.PRT | PART
S

COM-2 8. which.INST | S
9. make.35.SPASS | V
_PRD)| 10. move.NOM | S

we

PYKOt, COM-2 [7. hand.INST
KOTOpOit
nenaetcs

Figure 5: Projective SynTagRus DS+.

NP-1 X3 NP VP-SBJ ADJP-MDF
| | | | |
S ADVP s v A
| | [| |
Button. ACC ADVP *NP2P*-1 press.INF thatINST
|
ADV
|
necessary
PRT NP NP SS-RLT NP-SBJ
| | | % I
PART s S-WH VIP T
| | |
PRT handINST whichINST v move.NOM

|

make.3S.SPASS

Figure 6: Non-branching PS trees.

a non-projective dependency, and a relative
clause containing a sja-passive. The original
DS of this sentence in SynTagRus, presented
in Figure 4, includes the non-projective edge
of syntactic link COM-1 (i.e. Ist completive)
between “button.ACC” and “‘press.INF”. This
non-projectivity is resolved by the DS to DS+

SS-RLT SS-RLT SS-RLT
| |
VP NP-SBJ vp NP-SBJ VP
NP Vv S NP v S NP \
| | l | | l \
S.WH make.3S.SPASS move.NOM S-WH make.3S.SPASS move.NOM S-WH make.3S.SPASS
| | |
which.INST which.INST which.INST
Figure 7: PS+ construction for a unit subgraph.
S§
ADVP-NP2P-PRD VP-SBJ
___,___—4—_'_’;’_—?.1__*_‘—%_%__
\.I'P NP v NP
| | | -
s ADV s press INF ADJP-MDF-RES s SS-RLT
| | \
Button ACC necessary @ A PRT hand.INST vpP NP-SBJ
\ | |
thatINST ~ PART NP Y s
| | |
NP-I PRT S-WH make.35.SPASS move.NOM
c-commanding |
NP2P.1 which. INST
SS
n - whmovement
—— T
5 ADV NP v NP
| | | |
Button ACC necessary S press.INF ADJP-MDF-RES s SBAR-RLT
|
p
A PRT hand.INST WHNP-122100 SS-RLT
I | \ L — T
thatINST ~ PART S-WH VH
I P
PRT which.INST NP v S
| | |
T-122100 make.3S.SPASS maove. NOM

Figure 8: PS+ to PS conversion.

conversion, whose output DS+ is shown in Figure
5. Specifically, “button.ACC” is moved up to
attach to “necessary” via general link NP2P;
meanwhile, null element *NP2P*-1, co-indexed
with “button.ACC” (the first node in DS), is
inserted between “necessary” and “press.INF”,
occupying the original position of “button.ACC”
in DS. To create PS+, we first build the non-
branching PS trees for all nodes in DS+ (Fig.
6). Next, we construct a PS tree for every unit
subgraph in DS+ according to the following
tree-oriented order: “move.NOM” — *NP2P*-]
“PRT” “that.INST” — “whichINST”
“make.3S.SPASS” “hand.INST”
“press.INF” — “button.ACC” — “necessary”.
For example, the construction of PS+ for the
unit subgraph headed by “make.3S.SPASS” is
presented in Figure 7. Finally, Figure 8 shows the
conversion from the PS+, the upper tree, to the
PS, the lower tree, which involves such transfor-

— —

— — —

20

mations as scrambled constituents c-commanding
their traces and wh-movement.

4 Conclusions and Future Work

In this paper, we report on a conversion of the
SynTagRus DS corpus into PTB style PS, preserv-
ing the information contained in the original DS
annotations. We are currently working to refine
our PS annotation guidelines and manually cor-
rect the converted data to create the gold standard
for evaluating the implemented conversion. After
this evaluation, the newly converted corpus will be
distributed under the same noncommercial license
as SynTagRus in its original form. We believe
that the resulting PS treebank and the enriched
PS formalism will be not only an adequate train-
ing dataset for automatic parsing of new Russian
data, but also a valuable resource for traditional
and computational linguistic research.

Acknowledgments

We would like to thank Marie Meteer and the
anonymous reviewers for very constructive com-
ments and valuable suggestions. All errors and
mistakes are, of course, the responsibility of the
authors.

References

Izaskun Aldezabal, Maria Jesus Aranzabe,
Arantza Diaz de Ilarraza, and Enrique Ferndndez.
2008. From dependencies to constituents in the
reference corpus for the processing of Basque.
Procesamiento del Lenguaje Natural, 41:147-154.

Tania Avgustinova and Yi Zhang. 2010. Conversion of
a Russian dependency treebank into HPSG deriva-
tions. In Ninth International Workshop on Tree-
banks and Linguistic Theories, page 7.

Rajesh Bhatt, Owen Rambow, and Fei Xia. 2011. Lin-
guistic phenomena, analyses, and representations:
Understanding conversion between treebanks. In
IJCNLP, pages 1234—-1242. Citeseer.

Ann Bies, Mark Ferguson, Karen Katz, Robert Mac-
Intyre, Victoria Tredinnick, Grace Kim, Mary Ann
Marcinkiewicz, and Britta Schasberger. 1995.
Bracketing guidelines for Treebank II style Penn
Treebank project. University of Pennsylvania,
97:100.

Igor Boguslavsky, Ivan Chardin, Svetlana Grigorieva,
Nikolai Grigoriev, Leonid L Iomdin, Leonid Krei-
dlin, and Nadezhda Frid. 2002. Development of
a dependency treebank for Russian and its possible
applications in NLP. In LREC. Citeseer.

Michael Collins, Lance Ramshaw, Jan Haji¢, and
Christoph Tillmann. 1999. A statistical parser for
Czech. In Proceedings of the 37th annual meeting
of the Association for Computational Linguistics on
Computational Linguistics, pages 505-512. Associ-
ation for Computational Linguistics.

Anthony Kroch and Ann Taylor. 2000. The
Penn-Helsinki parsed corpus of Middle English
(PPCME2). Department of Linguistics, University
of Pennsylvania, CD-ROM.

Anthony Kroch, Beatrice Santorini, and Lauren Delfs.
2004. The Penn-Helsinki parsed corpus of early
modern English (PPCEME). Department of Lin-
guistics, University of Pennsylvania, CD-ROM.

Anthony Kroch, Beatrice Santorini, and Ariel Diertani.
2016. The penn parsed corpus of modern British En-
glish (PPCMBE2). Department of Linguistics, Uni-
versity of Pennsylvania, CD-ROM.

Christina Tortora, Beatrice Santorini, and Frances
Blanchette. The audio-aligned and parsed corpus of
Appalachian English (AAPCAppE). In progress.

21

Fei Xia and Martha Palmer. 2001. Converting depen-
dency structures to phrase structures. In Proceed-
ings of the first international conference on Human
language technology research, pages 1-5. Associa-
tion for Computational Linguistics.

Fei Xia, Owen Rambow, Rajesh Bhatt, Martha Palmer,
and Dipti Misra Sharma. 2008. Towards a multi-
representational treebank. LOT Occasional Series,
12:159-170.

Fia Xia. 2008. General techniques for creating tree-
banks. Lectures of TCS NLP Winter School, collo-
cated with the Third International Joint Conference
on Natural Language Processing, Hyderabad, India.

