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Abstract

In this work, we evaluate different sen-
tence encoders with emphasis on exam-
ining their embedding spaces. Specifi-
cally, we hypothesize that a “high-quality”
embedding aids in generalization, promot-
ing transfer learning as well as zero-shot
and one-shot learning. To investigate this,
we modify Skipthought vectors to learn a
more generalizable space by exploiting a
small amount of supervision. The aim is
to introduce an additional notion of sim-
ilarity in the embeddings, rendering the
vectors informative for different tasks re-
quiring less adaptation. Our embeddings
capture human intuition on similarity fa-
vorably than competing models, while we
also show positive indications of transfer
from the task of natural language inference
to paraphrase detection and paraphrase
ranking. Further, our model’s behaviour
on paraphrase detection when trained with
an increasing amount of labelled data is in-
dicative of a generalizable model. Finally,
we support our hypothesis on generaliz-
ability of our embeddings through inspec-
tion of their statistics.

1 Introduction

Natural language is an integral part of numerous
applications, such as web search, information re-
trieval, and automatic text summarization, to name
just a few. Therefore, constructing high-quality
text representations is very important. In addi-
tion, despite having well-established methods to
construct word representations, it remains an open
problem to capture the semantics of larger pieces
of text in a vector that is useful for different tasks
with minimal adaptation. In this paper we report
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on our efforts towards building such generalizable
sentence representations.

Representing a sentence as a vector can be
thought of as “embedding” it into a high-
dimensional space. Therefore, a meaningful rep-
resentation relies on a function which sends “re-
lated” sentences to neighbouring points in this
vector space. There are, however, many possi-
ble notions of closeness that may be desirably
reflected in the embeddings. For instance, two
sentences could be considered similar if they are
likely to be found in the same context (“distribu-
tional similarity”), or if the second is entailed from
the first, or if they are paraphrases of each other.

We hypothesize that an embedding space which
adheres to multiple of these notions can host more
generalizable vectors. For instance our hypothesis
is that in a “generalizable” space, two sentences
that are likely to be found in the same context
and also entail each other are closer that two other
sentences which are also likely to be found in the
same context but contradict each other.

Moreover, we believe that “supervised evalua-
tion” of sentence encoders is not informative of the
embedding quality: a classifier is trained on top of
the sentence embeddings and then the accuracy for
the task is computed, and is used as a proxy for the
quality of the embeddings. This approach has the
disadvantage that it hides the embedding proper-
ties due to the extra training which allows to mend
its potential shortcomings. We instead focus our
attention on directly inspecting the model space.

In this work, we introduce a sentence encoder
that is learned by injecting supervised information
from the Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015) in the com-
monly used Skipthought embeddings. The aim is
to enhance the embeddings with an additional no-
tion of similarity, rendering them more general-
izable. We experiment with this model and with
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sentence encoders of different training objectives
in order to compare both their performance in the
commonly used supervised fashion (Kiros et al.,
2015; Collobert et al., 2011; Mikolov et al., 2013a;
Wieting et al., 2015) for reference, but more im-
portantly their embedding quality. We perform
supervised evaluation on paraphrase detection, se-
mantic relatedness, natural language inference and
various classification benchmarks. We then eval-
uate the embeddings through paraphrase ranking,
correlation of their similarity notion with human
judgements (Hill et al., 2016; Hill et al., 2015;
Levy et al., 2015; Baroni et al., 2014), through
paraphrase detection with little or no training, and
through examination of embedding statistics.

2 Related Work

The Skip-gram model for word embeddings
(Mikolov et al., 2013a; Mikolov et al., 2013b), is
trained on a text corpus with the objective of pre-
dicting the vectors of the surrounding words of a
given word, when conditioned on its vector repre-
sentation. Its success inspired Kiros et al. (2015)
to create its sentence analogue, Skipthought vec-
tors, which are trained by predicting the surround-
ing sentences when conditioned on the current
one. Despite this simple objective, Skipthoughts
perform remarkably well on various tasks: se-
mantic relatedness, paraphrase detection, image-
sentence ranking, and a number of classification
benchmarks. In this paper we investigate how we
can improve their embedding space through inject-
ing small amounts of supervised information.

Aside from Skipthoughts, there are numerous
sentence encoders. (Socher et al., 2013; Yin and
Schiitze, 2015; Wang and Nyberg, 2015; Socher
et al., 2014) create sentence encoders which are
optimized for a specific task of interest. On the
other hand, methods which aim at constructing
“universal” embeddings include (Le and Mikolov,
2014; Socher et al., 2011; Li et al., 2015; Pham
et al., 2015). Le and Mikolov (2014) learn para-
graph embeddings by predicting sentences within
a paragraph when conditioned on its representa-
tion, Pham et al. (2015) predict context in all lev-
els of a syntactic tree, whereas Socher et al. (2011)
and Li et al. (2015) present autoencoder-type mod-
els.

Hill et al. (2016) presented an extensive eval-
uation of unsupervised sentence encoders. They
showed that Bag of Words (BOW) models on av-

erage perform on par with non-BOW models. Our
results agree with this and we provide a possible
explanation through examining the statistics of the
datasets used for evaluation. An important distinc-
tion between our work and theirs is that Hill et
al. (2016) focused on models that were trained in
an unsupervised fashion, whereas we also present
models finetuned or trained on SNLI for natural
language inference.

Wieting et al. (2015) learned “universal” sen-
tence vectors by exploiting a database of para-
phrases: they optimize an objective which en-
courages paraphrases to lie closer to each other
in space than to negative examples. Similarly to
their work, we also use supervised information to
construct informative embeddings, but our super-
vision comes from the task of natural language in-
ference.

Transfer learning is the process of exploiting
knowledge from one task or domain in order
to benefit from it for a different (“target”) task
or domain. This method has enjoyed consider-
able success in computer vision applications (no-
tably the use of features derived from neural net-
works trained for object classification such as
(Krizhevsky et al., 2012) for other tasks) but is less
successful in language applications. Collobert and
Weston (2008) perform mutli-task learning on var-
ious natural language processing tasks and report
a very small gain for each task. Mou et al. (2016)
presented negative results on their effort to trans-
fer from the task of natural language inference to
paraphrase detection. In this work, we show pos-
itive results on transfer from natural language in-
ference to paraphrase detection and to the related
task of paraphrase ranking.

3 Models

The success of Skipthoughts verify that predicting
the “context” of a sentence is a valuable objective.
However, sentences are also a nontrivial function
of the words comprising them, so we believe that
explicitly capturing their “content” in addition to
their “context” can yield more informative embed-
dings.

Therefore, we experimented with several ways
of capturing content, and evaluate the quality of
content-only encoders as well as that of an en-
coder that combines a content with a context ob-
jective. The content-only models we use are two
autoencoders (AEs): a BOW one which we re-
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fer to as “BOW AE”, and a Recurrent Neural
Netowrk (RNN)-based one, referred to as “RNN
AE”. BOW AE is the model proposed in (Lauly et
al., 2014) which encodes the sentence as a vector
that indicates which vocabulary words are present
in the sentence, irrespective of their order. The ob-
jective is to reconstruct this indicator vector when
given a nonlinear function of the sum of the em-
beddings of the present words according to the in-
dicator. RNN AE, on the other hand, uses an RNN
encoder with GRU units to represent the sentence
and a similar RNN decoder which is trained to pre-
dict the same sentence when conditioned on its en-
coded representation. We trained these models on
the Toronto book corpus (Zhu et al., 2015).

We also made use of the SNLI dataset for the
purpose of capturing content, and created 3 “SNLI
models”: a BOW and an RNN-based “content
SNLI” models, which we refer to as “SNLI BOW”
and “SNLI RNN”, respectively, as well as a fine-
tuned version of Skipthoughts which we argue has
encoded a combination of context and content and
refer to as “SNLI-finetuned Skipthoughts”. These
3 SNLI models are illustrated in Figure 1.

SNLI is comprised of pairs of sentences with
a label of “entailment”, “contradiction”, or “neu-
tral” associated with each pair. Each SNLI model
creates the representation of each sentence of
the given pair separately (but using the same
encoder), and then concatenates the two sen-
tence embeddings, and feeds these into a sin-
gle hidden layer neural network, with a softmax
on top for the three-way classification of SNLIL
We backpropagate through the encoder and the
word embeddings as well. In the case of SNLI-
finetuned Skipthoughts, the encoder is initialized
from Skipthoughts, and subsequently finetuned to
add “content-based” SNLI information. On the
other hand, the encoder of SNLI BOW merely
corresponds to the sum of the word embeddings
(which are initialized from Skipthought word em-
beddings and modified during training), while the
encoder of SNLI RNN is an RNN which is initial-
ized “from scratch”.

An overview of the model space is presented in
figure 2.

4 Training Details

The Skipthought model that we compare with in
the experiments is the model which is referred
to as combine-skip in (Kiros et al., 2015). This
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Figure 1: The 3 SNLI models are all formed
from the same formulation, illustrated above. For
SNLI-finetuned Skipthoughts, E1 and E2 are ini-
tialized to the Skipthought Encoder, for SNLI
BOW El1 and E2 are the sum of the word embed-
dings and for SNLI RNN E1 and E2 are an RNN
encoder which is initialized from scratch.
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Figure 2: An overview of the models used in the
experiments of this paper.

model is created from the combination of two
separate encoders: a “uni-directional” and a “bi-
directional” one. The uni-directional model is
comprised of an RNN encoder with GRU units
whose hidden state consists of 4800 dimensions.
The bi-directional model is the concatenation of
a 1200-dimensional GRU RNN encoder which
reads the sentence in forward order (from left to
right) and an equally sized GRU RNN encoder
which reads the sentence in reverse order. After
the separate training of the uni-directional and bi-
directional models, their representations are com-
bined for the creation of the 4800-dimensional
combine-skip embedding.

In order to fairly compare with the combine-



skip model, we have created the analogous
SNLI-finetuned Skipthoughts model. The uni-
directional and bi-directional Skipthought models
were finetuned separately using the architecture
mentioned in the previous section (Figure 1) and
subsequently combined to yield 4800-dimensional
embeddings. This is the model which we refer to
as SNLI-finetuned Skipthoughts in the remainder
of this paper.

The word embeddings of all 3 SNLI models
and the 2 autoencoder models was initialized from
the Skipthought word embeddings, which are 620-
dimensional. The RNN of SNLI RNN, and the en-
coder and decoder RNNs of RNN AE have GRU
units and their hidden state is 2400-dimensional.
We initialized these recurrent weights with orthog-
onal initialization (Saxe et al., 2013). The non-
recurrent weights of the hidden and softmax layers
for the SNLI models are initialized from a uniform
distribution in the range [-0.1, 0.1].

Adam optimizer (Kingma and Ba, 2014) was
used for training all of these models.

In the following sections we present our results
in two evaluation settings: Firstly, we perform
supervised evaluation (Section 5), and then more
importantly we directly evaluate the embedding
space of the different models (Section 6).

5 Supervised Evaluation

In this section we present results on a number of
supervised tasks. These results are obtained by
encoding the sentence at hand (or each sentence
of the pair when applicable) and using this encod-
ing as the features of a logistic regression which is
trained for the given task, following the approach
in (Kiros et al., 2015). For the tasks involving
pairs of sentences, the features that were given to
the logistic classifier were computed as follows:
the element-wise product and absolute difference
between the two sentence embeddings were com-
puted and then concatenated, resulting in a 9600-
dimensional vector, as was also done in (Kiros et
al., 2015). In the next paragraph we briefly de-
scribe the tasks that we report experiments on.
Paraphrase detection (MSRP dataset) is the task
where given pairs of sentences, the goal is to as-
sign a binary label indicating whether the sen-
tences of each pair are paraphrases. For seman-
tic relatedness we use SICK (Marelli et al., 2014),
and the objective is to assign a score of related-
ness in the range 1-5 to pairs of sentences. Nat-

ural language inference is the task of predicting
a label of “entailment”, “contradiction”, or “neu-
tral” for each pair. Note that SNLI is a dataset
for this task, but the results we report here are on
SICK, which has both relatedness scores as well
as these 3-way classifications labels for each pair.
TREC is a dataset for (6-way) question-type clas-
sification and finally, MR and SUBJ come from a
movie review dataset and they are binary classifi-
cation tasks for sentiment polarity (MR) and sub-
jectivity status (SUBJ).

The results are shown in tables 1, 2, 3, and
4. In all tables, we use the following abbrevi-
ations for model names. ST: Skipthoughts, FT-
ST: SNLI-FineTuned Skipthoughts, BOW: SNLI-
BOW, RNN: SNLI-RNN. Results which outper-
form or perform on par with Skipthoughts are
shown in bold, since Skipthoughts have shown to
perform remarkably well in this supervised evalu-
ation setting as demonstrated in detail in (Kiros et
al., 2015), and verified in (Hill et al., 2016).

ST | FI-ST | BOW | RNN | BOW-AE | RNN-AE
testacc | 0.73 | 0.75 0.70 | 0.71 0.71 0.67
testf1 | 0.82 | 0.83 0.80 | 0.81 0.80 0.80

Table 1: Results on paraphrase detection (MSRP).

ST | FI-ST | BOW | RNN | BOW-AE | RNN-AE
testacc | 0.80 | 0.83 0.81 | 0.82 0.79 0.75

Table 2: Results on natural language inference
(SICK). Note that this is the same task as SNLI,
but different dataset.

ST | FT-ST | BOW | RNN | BOW-AE | RNN-AE
testPR | 0.84 | 0.85 | 0.81 | 0.82 0.79 0.70
test SR | 0.78 | 0.79 | 0.76 | 0.77 0.72 0.64
test SE | 0.30 | 0.28 | 0.36 | 0.34 0.39 0.52

Table 3: Results on semantic relatedness (SICK).
PR, SR, SE: Pearson, Spearman correlation coeffi-
cient and mean squared error, resp. between model
scores and human scores.

Overall, the most important observation is that
a lot of these results are very comparable, with
the reported numbers being within a small range
in most cases, despite the very different nature of
these models. For example, the fact that SNLI-
RNN performs comparably with Skipthoughts on
Semantic Relatedness is surprising given their
training objectives. Recall that the encoder in
SNLI-RNN was initialized from scratch. This fact
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ST | FT-ST | BOW | RNN | BOW-AE | RNN-AE
MR |0.76 | 0.79 | 0.76 | 0.71 0.75 0.65
SUBJ | 0.94 | 094 | 093 | 0.89 0.92 0.86
TREC | 0.92 | 092 | 0.86 | 0.87 0.85 0.82

Table 4: Results on various classification tasks.
Each row stores test accuracies of the correspond-
ing dataset.

could suggest that SNLI information, when in-
jected into an RNN encoder and fed into a logistic
regression classifier, is adequate in order to per-
form reasonably well on paraphrase detection and
semantic relatedness. But we believe that this ob-
servation underlines the weakness of this method
of evaluation.

The 2% improvment of SNLI-Finetuned
Skipthoughts over skipthoughts for paraphrase
detection is an indication of transfer from SNLI
to MSRP, on which (Mou et al., 2016) presented
negative results. Our results on transfer to the
related task of paraphrase ranking which also uses
MSRP (Section 6.1) are even more encouraging.

Further, on natural language inference all SNLI
models (slightly) outperform the non-SNLI ones.
This is not surprising given their training objec-
tive, and constitutes a less impressive sign of trans-
fer between these two datasets of the same task.

Finallyy, @we note that SNLI-finetuned
Skipthoughts perform either better or on par
with Skipthoughts on all tasks considered. This
shows that the added SNLI information does not
hurt Skipthoughts’ performance on this evaluation
while outperforming it in terms of embedding
space quality as demonstrated in the next section,
which we argue is more important.

6 Evalutating Embedding Spaces
directly

In this section we evaluate the embedding qual-
ity directly. We do this firstly through para-
phrase ranking, secondly though correlating em-
bedding similarity with human scores, thirdly
through paraphrase detection with few or no la-
belled examples, and finally through examination
of the statistics of the embeddings.

6.1 Paraphrase Ranking

Paraphrase ranking is the task of assigning a rank
to each sentence from a pool S, representing how
likely they are to be paraphrases of a given sen-
tence. To compute the ranks that Sy assigns to the
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ST | FI-ST | BOW | RNN | BOW-AE | RNN-AE
accuracy@1 | 0.63 | 0.77 0.87 | 0.56 0.90 0.33
accuracy@10 | 0.74 | 0.86 | 0.93 | 0.67 0.96 0.40
accuracy@100 | 0.86 | 0.96 0.99 | 0.84 1 0.54
MRC B3] 15 | 6 | o7 2 455
Table 5: Results on paraphrase ranking. accu-

racy @k is the proportion of sentences for which
the true paraphrase received rank at most k. MRC
is the Mean Rank of the Correct paraphrase.

sentences, sim(vy,ve) is computed VSy # S €
S, where sim stands for cosine similarity and v
and vo are the embeddings of S7 and S5, respec-
tively. Ranks are then assigned by sorting these
similarities in decreasing order. In this setting, the
sentence to which S assigns rank 1 is predicted to
be its paraphrase.

For this, we used the sentences from the MSRP
dataset, which is comprised of pairs of sentences
with a binary label indicating whether or not they
are paraphrases. We “break” the pair ties and treat
all sentences as members of a large pool, mak-
ing use of the (binary) labels of MSRP in order
to yield the (non-binary) label for this new task.
We use both the training and test set of MSRP for
this, totalling over 11000 sentences. The evalua-
tion metrics we used are “Mean Rank of the Cor-
rect paraphrase”, referred to as MRC from now on,
and accuracy @k which is the proportion of sen-
tences for which the true paraphrase is contained
in the top k ranked sentences.

The results are shown in Table 5. We ob-
serve that BOW AE outperforms Skipthoughts by
a large margin, with BOW following closely be-
hind. In fact, it is not a coincidence that BOW
models perform well on this task. To investigate
this effect even further, we created a very simple
BOW model which represents the sentence as the
sum of its word embeddings, which are randomly
generated 620-length vectors. Its performance is
shown in Table 6. This model is in no way infor-
mative of the semantics, syntax, structure, or any
useful property of the sentence whatsoever, and
yet it outperforms Skipthoughts for example. This
problematic behavior may be due to the fact that
sentences in pairs with positive labels in MSRP
have a very high word overlap. This suggests that
any BOW model has an unfair advantage when
evaluated on this dataset. We elaborate on this in
the Discussion section, and provide statistics from
the datasets to support this hypothesis.
the between

However, comparison



Skipthoughts and SNLI-finetuned Skipthoughts
here is valuable. The superiority of the latter
model constitutes positive results of transfer from
SNLI to paraphrase ranking using MSRP, support-
ing our conjecture regarding the generalizability
of the SNLI-finetuned Skipthought space.

random BOW
accuracy @1 79
accuracy @10 88
accuracy @100 96
MRC 21

Table 6: Very simple baseline for paraphrase rank-
ing. random BOW is no way capturing anything
informative about the sentence (see section 5.1
for description). These results suggest that BOW
models may have an unfair advantage for MSRP.

6.2 Semantic Relatedness

SICK is comprised of pairs of sentences, each as-
sociated with a relatedness score in the range from
1 to 5. In order to directly evaluate the merit of the
embeddings in capturing semantics, we used co-
sine similarity to estimate the relatedness of each
pair. These similarity scores were then correlated
with the human-annotated scores using Pearson’s
and Spearman’s correlation coefficients and mean
squared error. The results are shown in Table 7.

ST | FTI-ST | BOW | RNN | BOW-AE | RNN-AE
test PR | 0.50 | 0.57 0.69 | 0.62 0.64 0.39
test SR | 0.48 | 0.56 | 0.65 | 0.59 0.57 0.39
test SE | 1.53 | 1.10 1.12 | 0.98 1.21 1.84

Table 7: Results on semantic relatedness (SICK)
based on cosine distances. PR, SR, SE: Pear-
son, Spearman correlation coefficient and mean
squared error, resp. between model scores and hu-
man scores.

As was the case for the MSRP dataset, we be-
lieve that SICK offers an unfair advantage to BOW
models, therefore we do not believe that the suc-
cess of BOW AE and SNLI BOW is necessarily
indicative of their quality.

We observe that SNLI-Finetuned Skipthoughts
outperform Skipthoughts on this task as well,
supporting the conjecture that adding supervision
through SNLI has lead to a more informative
space. Moreover, the performance of SNLI RNN
is impressive, outperforming both Skipthought-
based models. Finally, out of the BOW models,
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the SNLI one performs better than the AE one.
These are indications that SNLI information can
aid in inducing a notion of similarity which is
compatible with human intuition.

6.3 Towards Zero Shot Paraphrase Detection

We claimed earlier that learning an informative
embedding space would facilitate zero-shot and
one-shot learning applications. The aim of this
section is to investigate whether SNLI-finetuned
Skipthoughts are a more appropriate model for this
purpose than the other models we explored.

By zero-shot paraphrase detection, we refer to
the task of predicting a binary label for the “para-
phrase status” of a pair of sentences without per-
forming any training for this task. This amounts
to choosing a threshold so that a pair is classified
positively if and only if the similarity of its sen-
tence embeddings surpasses this threshold. Since
the choice of such a threshold is not obvious,
we present the precision-recall curve in Figure 3
which corresponds to multiple thresholds.

100 Zero-shot Paraphrase Detection

0.95
0.90

c

S 0.85

2

g 0.80

%0715
0.70 |

0.65
0.0

— ST
— FT-sT
— AEBOW [{

0.6 0.8

recall

0.4

0.2

10

Figure 3: Precision-Recall curve for zero-shot
paraphrase detection. (FT-)ST stands for (SNLI-
Finetuned) Skipthoughts.

In figure 3 we have included the best-
performing model for this task for reference,
which is BOW AE, but we are more interested in
the comparison between Skipthoughts and SNLI-
Finetuned Skipthoughts. This is because we be-
lieve that the success of BOW AE on this task does
not necessarily reflect its merit as a sentence en-
coder, as we elaborate on in the Discussion sec-
tion.

The superior performance of SNLI-finetuned
Skipthoughts in Figure 3 advocates for the gen-
eralizability of the former model since it requires
less adaptation for paraphrase detection compared
to Skipthoughts.

It is also interesting to investigate the behav-
ior of our models when given various amounts of
training data for the task of paraphrase detection.



For this, we plot in Figure 4 how the test set accu-
racy increases as more data is fed into the models.

Test Accuracy on MSRP with increasing amounts of data

o
~
%

ST |
FT-ST
AE BOW |]

102 102 104
# training examples (log scale)

o
o
S

accuracy (mean over 15 sets)

—
=3

Figure 4: Test accuracy when an increasing
amount of data was used for training. (FT-)ST
stands for (SNLI-Finetuned) Skipthoughts.

We notice that AE BOW is less “data hun-
gry” in that its performance ceases to increase
significantly with the increase of data. SNLI-
Finetuned Skipthoughts reach higher accuracy
than Skipthoughts when given the same amount of
data, supporting its aptness for one shot learning.

Figure 4 justifies the fact that Skipthought-
based models outperform BOW AE in the super-
vised evaluation setting even though these roles
are reversed in the zero-shot setting of Section 5.
In particular, it appears that BOW AE is less capa-
ble of taking advantage of training data to improve
its quality.

6.4 Diving into Embedding Space

In this section, we use the sentences from MSRP
and examine their relationships in model space.
The histograms in Figure 5 show the distribu-
tion of the pairwise-similarity for these sentences
in Skipthought and SNLI-Finetuned Skipthought
spaces.

Crucially, we observe that in Skipthought space,
pairwise sentence similarities are significantly
higher than in its SNLI-Finetuned variant, and
there is less variation. This behavior can be at-
tributed to their training objective. In particular,
two sentences are neighbours in this space if they
are likely to be found in the same contexts, result-
ing to sentences such as “I love sushi”, “I really
really like sushi” and “I hate sushi” to be possibly
equidistant neighbours.

On the other hand, the histogram for SNLI-
Finetuned Skipthoughts contains more variation,
which we conjecture is due to the fact that a sec-
ond notion of relatedness is introduced, which
pushes sentences with contradictory meanings fur-
ther away from each other, in order to keep sen-
tences which entail each other close.
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Figure 5: Distribution of Pairwise Similarities in
Embedding Space (best viewed in color). Green
and red denote positive and negative pairs, respec-
tively.

Moreover, it is of interest to examine the red
and green histograms, corresponding to the dis-
tributions of pair-wise similarities for positively
and negatively labelled pairs, respectively. In both
cases the similarity for green tends to be higher
than that for red, as desired. However, in the case
of SNLI-Finetuned Skipthoughts this separation is
more prominent, possibly justifying the better per-
formance shown in the precision recall curve in
Figure 3.

7 Discussion

In this section we discuss a limitation of the
datasets used for evaluation. Specifically, both
MSRP and SICK have a high mean proportion of
common words between the two sentences of the
pairs. Further, this average is significantly higher
for “positive pairs” (ie. labelled as paraphrases in
the case of MSRP, or assigned a high human relat-
edness score, for the case of SICK), than it is for
“negative” pairs. Figure 6 shows the histograms
for the distribution of word overlap between pairs
of sentences from these datasets, where word over-
lap for a pair is the proportion of words that are
common between its two sentences.

Therefore, it may be inappropriate to draw con-
clusions on the quality of BOW models merely
from their superior performance on these datasets.
For example, models like the baseline in Table 6
are not expected to generalize to other tasks. We
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Figure 6: Distribution of Pairwise Word Overlap
in MSRP and SICK (best viewed in color)

remind the reader that this model represents a sen-
tence as a sum of its word embeddings, which
are randomly-generated vectors. We do not ex-
pect this to capture any meaningful aspects of
sentences, but yet it performs well in this set-
ting. On the other hand, more complicated models
like Skipthoughts, SNLI-finetuned Skipthoughts,
SNLI RNN, and RNN AE attempt to capture a “la-
tent” notion of relatedness, which does not rely on
identifying common words. These models are un-
fairly penalized in this setting, rendering compar-
isons between these and BOW models irrelevant.

However, we believe that comparisons between
models from within this “more complicated”
group are still valid. For example, it is appropri-
ate to compare Skipthoughts with SNLI-Finetuned
Skipthoughts on these datasets: they both make
the same effort to capture the more abstract sense
of relatedness, and are in this sense equally penal-
ized when evaluated on these datasets.

The histograms in Figure 6 underline the need
for creation of high-quality datasets to evaluate a
model’s understanding of “latent” relatedness. For
this, we have put together a small number of sen-
tences, grouped into two semantically contradic-
tory groups, as shown in Figure 7. Each model
was used to compute the similarities of all pairs
and assign ranks in the same way as for paraphrase
ranking. The aim is to assign lower ranks (higher
similarities) to sentences from the same group as
the current sentence, than to sentences from the
contradictory group.
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Group 1

e There is steam coming out of my soup

e My tongue got burned when I tasted my soup

o [ just heated up my soup

Group 2

e My soup is very cold

e My tongue did not get burned when I tasted my
soup

e My soup is not hot anymore

Figure 7: Our small dataset for evaluating how
well the encoders have captured “latent” related-
ness (which does not rely on common word iden-
tification)

The results for the ranks and corresponding sim-
ilarities that sentence “My soup is not hot any-
more” assigns to the rest of the sentences are dis-
played in Table 8.

SNLI-Skipthoughts, SNLI BOW, SNLI RNN
and BOW AE all assign the two highest ranks to
the remaining sentences of Group 2, as desired.
This means that they all have perfect average pre-
cision, outperforming Skipthoughts. However, it
is more important to examine the “closeness” of
these sentences in space (columns “sim” of Ta-
ble 8). BOW AE, for example, produces a per-
fect ranking but sentences with ranks 2, 3 and 4
have approximately equal similarity with the “ref-
erence” sentence, casting doubts on the quality of
the embeddings.

With this in mind, maybe the best performing
method for this small group of sentences is SNLI
RNN: the similarities between sentences of Group
2 with the reference sentence are much higher than
those between Group 1 sentences and the refer-
ence sentence. Specifically, there is a gap of 13%
between the lowest similarity with a Group 2 sen-
tence and the highest with a Group 1 sentence.
SNLI BOW is second best according to this met-
ric, followed by SNLI-Skipthoughts.

This dataset is far too small to draw confident
conclusions from but these results may serve as a
preliminary indication of the benefit of SNLI in-
formation for separating semantically contradic-
tory sentences and understanding “latent” related-
ness.

8 Conclusion

In conclusion, we have exploited supervised
information from SNLI to enrich the model



Skipthoughts SNLI-Skipthoughts SNLI BOW SNLI RNN BOW AE
stm Sentence stm Sentence sim Sentence sim Sentence sim Sentence
0.61 | Mysoupis | 0.48 | Mysoupis | 0.59 | My tongue | 0.51 | My tongue | 0.51 | My soup is

very cold very cold did not get did not get very cold
burned ... burned ...
0.43 There is 0.32 | My tongue | 0.45 | Mysoupis | 0.47 | Mysoupis | 0.35 | My tongue
steam ... did not get very cold very cold did not get
burned ... burned ...
0.39 I just 0.29 I just 0.39 | My tongue | 0.34 | My tongue | 0.35 I just
heated ... heated ... got burned ... got burned ... heated ...
0.39 | My tongue | 0.29 There is 0.37 I just 0.30 I just 0.35 There is
did not get steam ... heated ... heated ... steam ...
burned ...
0.38 | My tongue | 0.28 | My tongue | 0.32 There is 0.28 There is 0.31 | My tongue
got burned ... got burned ... steam ... steam ... got burned ...

Table 8: Results of the ranking task for the reference sentence My soup is not hot anymore. sim refers
to the similarity between the reference sentence and the sentence of the corresponding row in embedding
space. Sentences which are “’relevant” to this one (Group 2), and thus should receive lower ranks, are

shown in bold.

space of Skipthoughts, inducing SNLI-Finetuned
Skipthoughts. Aside from performing better or on
par with Skipthoughts on the supervised evalua-
tions, this model exhibits properties of a superior
embedding space. We report results on transfer
from SNLI to MSRP in Table 1, and more en-
couraging results from SNLI to paraphrase rank-
ing in Table 5. We also showed that SNLI-induced
embedding spaces capture human intuition about
relatedness favorably to other models. Finally,
SNLI-finetuned Skipthoughts perform better than
its competitors when few or no labelled examples
are available for paraphrase detection.
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