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Abstract

Vector models of distributional semantics
can be viewed as a geometric interpreta-
tion of a fragment of dependent type the-
ory. By extending to a bigger fragment to
include the dependent product we achieve
a significant increase in expressive power
of vector models, which allows for an im-
plementation of contextual adaptation of
word meanings in the compositional set-
ting.

1 Introduction

In this paper we discuss a possibility of reconcil-
ing two distinct threads of research in computa-
tional lexical semantics, namely distributional se-
mantics (Lenci, 2008; Baroni et al., 2014) and
formal semantics based on dependent type the-
ory (Ranta, 1994; Luo, 2012). Although both
approaches focus on related problems of lexical
semantics and composition, it is hard to com-
bine them in a unified framework because of dif-
ferences in computational techniques they em-
ploy. However, their theoretical foundations are
compatible and it is possible to incorporate vec-
tor space models into a computational framework
based on dependent type theory. The extensions
of existing vector representations required for this
task are motivated by the geometric interpretation
of type theory.

The reason why such extensions are necessary
is the limitations of the function application model
of compositionality. In formal semantics com-
positionality is traditionally modeled as an ap-
plication of one logical form to another, techni-
cally realized as a reduction of concatenated log-
ical forms expressed in a variant of typed lambda
calculus (Montague, 1975). In distributional se-
mantics this approach is retained, although lambda
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terms are substituted with vectors and tensors of
various ranks (Baroni et al., 2014). This model
of compositionality has difficulties with the com-
positional treatment of certain common types of
natural language expressions, that require context-
dependence of terms and a non-trivial machanism
of meaning adaptation. Paradigmatic examples of
such linguistic phenomena are logical polysemy
and co-predication, which received formal treat-
ment in the works of Pustejovsky (1995) and are
among the central problems of type-theoretical se-
mantics (Cooper, 2005; Asher, 2011; Luo, 2012).
The problems related to logical polysemy in-
clude cases where an intended aspect of meaning
of an argument requires an adaptation of a pred-
icate which is applied to it and vice versa. Con-
sider the case of an adjective applied to a noun in
red apple, red watermelon and red crystal (Lahav,
1989). In these examples a notion of “redness” is
different for each of the arguments. A red apple is
red when most of its surface is red, a watermelon
is red inside, a crystal is red entirely. It is possi-
ble to characterize a watermelon as being ripe by
saying that it is red, which is not the case for a
crystal. As a result, an adaptation of a predicate is
needed to properly account for the meaning varia-
tions in all these cases. Similarly, an argument can
have multiple aspects of meaning selected by var-
ious predicates. In heavy book and boring book
a book is treated as either a physical object or
an information content. Both aspects clearly cor-
respond to different sets of properties, which are
taken into account by the predicates and reflect in
the systemic organization of the lexicon, e. g. hy-
pernym relations between synsets or relations be-
tween word classes (Hanks, 1996). Words both
in argument and predicate positions can demon-
strate capability of contextual meaning adaptation,
sometimes even simultaneously, like in red book.
Such cases violate the direction of application of a

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 230-238,
Berlin, Germany, August 11th, 2016. (©2016 Association for Computational Linguistics



predicate and are problematic for the function ap-
plication model of composition.

Another violation occurs in cases of co-
predication, which takes place when two or more
predicates make use of conflicting meaning as-
pects of an argument, leading to the necessity to
assign at least two incompatible meaning repre-
sentations (e.g. types) to a single word. The
“lunch sentence” proposed by Pustejovsky (1995)
is a classic example:

A lunch was delicious but took forever.

Notwithstanding these obstacles, we find that
the function application model of composition
can in fact be made compatible with context-
dependent meaning alternations. An extension re-
quired for this task follows naturally from an iden-
tification of basic operations of composition in
vector models and computation rules in type the-
ory. The resulting model can in turn be given an
intuitive geometric interpretation, that greatly clar-
ifies the options for its computational implemen-
tation. Recent developments in type theory made
clear a tight connection between computation and
geometry (Univalent Foundations Program, 2013).
In the following sections we give a sketch of a
method of incorporating semantic vector spaces
within a type-theoretical framework of Luo by
interpreting primitive types as vector spaces, de-
pendent types as fibers of a vector bundle and so
forth. Currently we limit ourselves to the depen-
dent product type, leaving an analysis of the de-
pendent sum and dot types for later. However, we
give some general remarks as to how these impor-
tant constructs might be implemented in our set-
ting.

2 Related Work

In this section we give an overview of the gen-
eral framework of composition currently adopted
in distributional semantic, followed by a brief dis-
cussion of type-theoretical semantics.

2.1 Compositional Vector Models

Lack of support for compositionality remains a
serious limitation of distributional semantics, al-
though many techniques were proposed to enable
compositional treatment of vector representations.
These proposals include methods based on vector
addition and multiplication (Mitchell and Lapata,
2010), tensor operations (Smolensky, 1990; Wid-
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dows, 2008), linear maps (Baroni et al., 2014; Co-
ecke et al., 2010), tensor decomposition (Van de
Cruys et al., 2013), co-composition based on vec-
tor space projections (Tsubaki et al., 2013), simul-
taneous processing of meaning and composition
in neural embeddings (Socher et al., 2013; Pen-
nington et al., 2014) and more. There is an ev-
ident tradeoff between expressiveness and com-
putational properties of the compositional vector
models. Simple additive and multiplicative mod-
els cannot capture important properties of com-
position in natural language, such as its non-
commutative character, relation to syntax, poly-
semy and contextual meaning adaptation. Com-
plex models generally make use of tensors of var-
ious ranks to represent different word types and
linear maps that operate on them and in principle
are better suited for compositional analysis. How-
ever, the actual implementations are very difficult
to train and to date no methods of training such
models on a large scale were proposed.

Although commutative (vector mixture) meth-
ods of composition are easier to implement, non-
commutativity is dictated by both linguistic prop-
erties and the properties of vector representations.
In the analysis of adjective-noun pairs Baroni and
Zamparelli (2010) used an asymmetric function
application model of compositionality, where an
adjective is represented as a matrix applied to a
noun vector to produce a new vector. This ap-
proach turned into a large research program of
compositional distributional semantics (Baroni et
al., 2014), which is currently widely accepted.

A similar program was proposed earlier by Co-
ecke et al. (2010), where category theory was used
to devise a method of validating paths of compo-
sition accross multiple vector spaces specific for
various word types in order to arrive to a distin-
guished ‘“‘sentence” space, where comparison of
the meanings of sentences could be performed.
The composition here is modeled on the basis of
a linear map sending a tensor product of meaning
representations of words (i. e. their superposition)
to a vector in the sentence space. The particular
structure of this linear map is determined by the
sentence structure explicated as a reduction in the
pregroup grammar formalism. Since linear maps
V' — W are actually in a bijective correspondence
with vectors in a tensor product space V ® W,
the actual procedure of computation of the sen-
tence meaning consists in “carving out” the right



sequence of function applications from the space
of all possible reduction paths. The model of com-
position here is slightly different, but it does not
diverge too much from Baroni’s proposal. Under
the aforementioned bijection a transitive verb can
also be viewed as a function applied to the mean-
ing representations of its participants to produce a
vector in the sentence space.

Contextual variation of meaning in relation to
word sense disambiguation and semantic similar-
ity has been investigated almost since inception
of the field (Schiitze, 1998; Thater et al., 2010;
Thater et al., 2011). However, disambiguation
is different from composition (Kartsaklis et al.,
2013). Attempts to give an analysis of logical
polysemy and contextual adaptation in the com-
positional setting are limited (Erk and Pad6, 2008;
Tsubaki et al., 2013).

2.2 Type-Theoretical Semantics

Type-theoretical semantics is an approach to
modeling semantics of natural language initiated
by Ranta (1994) and heavily influenced by Puste-
jovsky’s Generative Lexicon (Pustejovsky, 1991;
Pustejovsky, 1995). It proved capable of giv-
ing a convincing analysis of logical polysemy,
copredication and systemic organization of the
lexicon modeled as subtyping. Although it be-
longs roughly in the tradition of Montague Gram-
mar (Montague, 1975), it diverges from formal
semantics in a number of ways. The distinction
between a formal meaning representation and its
interpretation in a model is not present. Mean-
ing representations are type expressions and their
justification is achieved by an effective computa-
tional process. As a consequence, type-theoretical
meaning representations have a strong connection
with computability due to the Curry-Howard cor-
respondence. Unlike in Montague Grammar, in
type-theoretical semantics words are not treated as
atomic entities. Instead, their meaning is analysed
on the basis of argument-predicate structures. The
meaning of a predicate is represented as a function
type, which incorporates types of its arguments to
the effect similar to selectional restrictions in the
study of verb classes (Levin, 1993). Explication
of a word meaning through argument type restric-
tions, i.e. constraints on co-occurence, leads to a
duality between argument-predicate structure and
lexical meaning (Pustejovsky, 2013). To our view,
this notion of duality is closely related to the dis-

232

tibutional hypothesis of Z. Harris and justifies an
attempt to give a unified treatment of lexical se-
mantics based on both theories.

Current proposals are targeted at developing a
formal system that would incorporate words as ei-
ther terms of a certain type or as types themselves
and provide a set of type formation, introduction,
elimination and computation rules to be used in
derivations. Traditional formal semantics is based
on the simply typed lambda calculus a la Church
and is given a set-theoretical interpretation. A
type-theoretical formalism proposed by Asher and
Pustejovsky (2006) builds on a type theory which
is close to that used in formal semantics. The
distinction between terms and types is retained,
a subtyping relation is inherited from the Gener-
ative Lexicon and is modeled on the basis of a
subsumption relation. In (Asher, 2011) a conflict
between subsumptive subtyping and an intended
interpretation of dot types is resolved by modifi-
cations of the interpertation procedure, which is
based on a category-theoretic interpretation in a
topos. Other systems (Cooper, 2005; Mery et al.,
2007; Luo, 2012) are based on Martin-Lof’s de-
pendent type theory, where the boundary between
terms and types is blurred. The framework of de-
pendent type semantics (Luo, 2012) makes use of
a special mechanism of coercive subtyping, which
will be characterized in the next section.

An obvious limitation of type-theoretical se-
mantics is that to date no method of large scale
building of such representations on the basis of
real-world data has been given, which greatly hin-
ders empirical evaluation. A possible way to over-
come this limitation is to adapt logical form learn-
ing techniques developed for other types of sym-
bolic semantic representation (Zettlemoyer and
Collins, 2012; Liang and Potts, 2015).

3 Formal Background

In this section we give a motivation for the use of
dependent types in formal semantics, followed by
a brief overview of the coercive subtyping frame-
work of Luo as applied to natural language expres-
sions. The notion of a vector bundle plays a crucial
role in our interpretation, so we also give here the
definition.

3.1 Dependent Type Theory

Martin-Lof’s type theory can be viewed as a for-
mal system of deduction. When used as a meta-



language, a type theory can incorporate both rules
of formation of logical statements and deduction
rules of a logical system. The basic elements of
a formal system of type theory are judgements of
various forms. A judgement that proposition A
is true is written A frue, a : A is a judgement
saying that ¢ is an element of type A, a judge-
ment ¢ = b : A says that a and b are equal ob-
jects of type A. Besides simple judgements of the
forms given above there are hypothetical judge-
ments that depend on another judgements, e.g.
f(a) : B (a : A) says that an object f(a) is of
type B given that a is an object of type A. With
hypothetical judgements and a number of deduc-
tion rules which can bind hypotheses it is possi-
ble to construct a derivation of a particular judge-
ment, which does not depend on any hypothesis,
i.e. a derivation in a system of natural deduction
for judgements. Such a system can be presented in
two forms, the so called Prawitz and Gentzen style
natural deduction, the latter uses sequents, i. €. ex-
pressions involving typing contexts and a turnstile.

As a short example, consider the introduction
and elimination rules for conjunction implemented
inside a metalanguage of type theory (Gentzen
style):

'+ A true '+ B true

I
I'- AN B true A
' AN B true ' AN B true
'+ A true A '+ B true A

Since all components of a logical system are im-
mersed in the same metalanguage, it is possible to
extend the language by allowing types to depend
on terms of another types, which significantly
raises expressivity. A dependent type is written
A(z), and two special type expressions are intro-
duced, the dependent product type II(z : A)B(x)
and the dependent sum type ¥(x : A)B(z). When
there is no actual dependency of B(z) on the ele-
ments of A, the product type simplifies to a func-
tion type A — B, and the sum type to a direct
product A x B.

To establish an equality of two terms of a type it
is necessary to reduce each of them to their cor-
responding canonical objects. Then an equality
judgement is justified by the syntactic equivalence
of canonical objects. As an example, consider an
inductive type for natural numbers N, which has
two type constructors 0 : N and succ(n) : N (n :
N). To prove 1 + 1 = 2 : N both sides of the
equality are reduced to the form succ(succ(0)).
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The rules used for reducing an object to its canon-
ical form are called computation rules, reduction
itself is often called computation.

Types and propositions are identified. For in-
stance, in the judgement A true a symbol A
is treated as a proposition assumed to be true,
whereas in a : A it is treated as a type. Under
such identification an object of type A is treated as
an evidence (a proof object) that proposition A is
true. To prove A is to construct an object of type
A using the rules of the system. That justifies the
possibility to use type theory for formal semantics,
since to say that a proposition is provable is to say
that its truth conditions are satisfied (Ranta, 1994).

One of the main obstacles to applying depen-
dent type theory to the task of modeling lexical
semantics is that the subtyping relation, which nat-
urally represents hypernym relations between con-
cepts and is traditionally modeled as subsump-
tion (Pustejovsky, 1995), is incompatible with the
notion of canonical object (Luo et al., 2013). For
example, the subsumptive subtyping justifies in-
ferences of the form

l'Fa:A r-A<B
I'kFa:B

In case of dependent types, an inference like

'k a: List(A) '-A<B
I'+a: List(B)

is incorrect. To justify that we would need to re-
duce both a : List(A) and a : List(B) to the
same canonical representation, which is impossi-
ble to do since canonical objects of these two types
are built with different sets of type constructors.
To solve this Luo (2012) proposed a mechanism
of type coercions, which allows for the substitu-
tion of a term of a subtype in a context where a
term of its supertype is required. The actual coer-
cion is achieved by applying a coercion function
to the term. A coercion judgement of the form
I' F A <. B : Type states that objects of the form
c(a), where a is an object of type A and c is a
coercion function, can be used in contexts where
objects of type B are expected. By using such a
mechanism it becomes possible to justify relations
between predicates such as [human] — [book] —
Prop < [man] — X([book],[heavy]) — Prop
by declaring coercions [man] <., [human] and
Y (A, B) <, A. The resulting subtyping is con-
travariant in arguments as is usually expected. Co-
ercive subtyping is a conservative extension (in the



weak sense) of dependent type theory, s. (Luo et
al., 2013) for details.

3.2 Vector Bundles

Intuitively, a vector bundle is a set of vector
spaces parameterized by points of some topolog-
ical space. Formal definitions follow (Luke and
Mishchenko, 2013).

A vector bundle is a continuous mapp : £ — B
s.t. p~1(b) is a vector space for each b € B.
Additionally, there is an open cover {U,} of B
and for each U, there exists a homeomorphism
ha @ p Y (Us) — Uy x RE s.t. ho(p™t(b)) is
a vector space isomorphic to {b} x R¥ for each
b € U,. This is called a local trivialization con-
dition. The resulting construct is a locally trivial
real vector bundle of rank k (we say vector bundle
for short), F is the total space, B is the base space,
p~L(b) is a fiber over b.

A pair of trivializations h : p~H(Uy) — Uy X
R¥ and hg : p~1(Ug) — Us x R* induces a map
hahg' : (UaNUp) xR* — (UaNUp) x R* called
transition function. Transitions can be thought of
as continuous changes of coordinates.

4 Vector Models for Dependent Types

In this section we discuss a geometric interpreta-
tion of a dependent type system, resulting from the
treatment of types as vector spaces. Such an inter-
pretation provides insights into a possible compu-
tational implementation.

4.1 Geometric Interpretation

The usual way to represent words in vector mod-
els is to identify them with vectors. In our ap-
proach, instead of using vectors as primitive ele-
ments, we switch to an equivalence class of vec-
tors w. 1. t. multiplication by a scalar. Such a mod-
ification does not affect our ability to compute the
cosine similarity between primitive elements. We
do not identify equivalence classes of vectors with
words right away. Instead, it is more convenient to
think of a word as a region or a neighbourhood in
the space obtained from the initial vector space by
the factorization we have just described, cf. (Erk,
2009). We denote that initial vector space A and
treat it as a primitive type of our system. This ap-
proach allows to make all types and their objects
be vector spaces. For example, if A = R?, then
a : A is a one-dimensional linear subspace of A.

Function types are built recursively with an ar-
row constructor. The simplest possible function
type in our system is A — A, objects of this
type are linear operators on A. Analogously to the
primitive type, we would like to consider equiva-
lence classes of operators as objects of that type.

A dependent product II(z : A)B(z) is inter-
preted as a vector bundle. Its fibers are vec-
tor spaces, parameterized by points of the base
space. An easy way to imagine this situation is
to consider an orthogonal complement of a one-
dimensional subspace in R? with the usual scalar
multiplication, which is isomorphic to R2. Then
for any one-dimensional subspace in R? there is
a corresponding orthogonal subspace of dimen-
sion two, which is a fiber of a vector bundle p :
FE — B. A section of a vector bundle is a map
s : U — E, where U is an open subset of B,
such that p(s(b)) = b. We interpret predicates as
global sections, which have B as the domain and
send every point b € B to some vector in the fiber
p~ (D).

Consider the previous example, where the base
space is a two-dimensional euclidean space em-
bedded in R? and the fibers are two-dimensional
subspaces orthogonal to the lines in the base space.
We can view this construct as a real vector bundle
of rank two. A global section sends in a continu-
ous manner a vector from the base space to some
vector in the plane orthogonal to it.

We summarize corespondences between vari-
uos interpretations in Table 1.

4.2 Computation

The notion of canonical object is central to the de-
pendent type theory. The computation of a canon-
ical representation of an object of some type is
achieved by a series of reductions in an order pre-
scribed by the structure of that type. More pre-
cisely, application of an object of type II(z
A)B(x) to an object of type A amounts to select-
ing a point from the “result space” B(a) parame-
terized by the argument, given a point ¢ : A as an
input:

Pk f:1(z: A)B(x) 'Fa:A
't app(f,a,1(z: A)B(x),A) = f(a) : B(a)

Elements of the same type are comparable,
whereas elements of different types are not. For
instance, objects of type B(x), which is the type
of a fiber, are not comparable with objects of type
A, which is the type of the base. This is exactly

Cn
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Type theory

Vector model

Geometric interpretation

Linguistic interpretation

element x: A
dependent type A(x)

product type I1(z: A) B(z)

element f:1I(x: A)B(x)

a vector in R?

a vector space parameter-
ized by = € R?

linear maps parameterized
by vectors in R?

a parameterized linear map

a point in the base space B
afiber p~*(x)

a vector bundle

a global section

a word

contextual modifications of
words w.r.t a word x

a set of predicates adapted
to an argument

an adapted predicate

Table 1: Correspondences between interpretations.

where the coercive subtyping shows up. Recall
that coercions are formulated in such a way as to
make it possible to use an object of some type
instead of an object of its supertype in a given
context. Also note, that in the framework of Luo
coercions are maps. To make things easier, cur-
rently we impose a restriction on vector bundles
that the dimensionality of fibers be equal to the
dimensionality of the base space. Note, that the
general definition of a vector bundle does not re-
quire that. Then coersions from B(z) to A can be
implemented uniformly as trivial maps from fibers
to the base, which we normally omit writing down
explicitly. Comparing objects of B(a) to objects
of B(b), given that a and b are points in the base
space, does not require any special arrangements.
Coercions in that case are determined by the usual
transition functions.

4.3 Implementation

We give an example of the construct for the sim-
plest possible case.

Let A ~ R? be a distinguished plane of a three-
dimensional euclidean space. Its one-dimensional
subspaces are equivalence classes of vectors with
respect to multiplication by a scalar. We build a
vector bundle p : £ — A with a fiber isomor-
phic to R? and therefore also isomorphic to the
base space. It is natural to use an associated pro-
jective space instead of R?, denoted P(R?). Pro-
jectivization has a number of advantages. Under
identification of projective points with rotations of
an underlying R?, it can be seen as a compact
Lie group, namely a projective special orthogo-
nal group PSO(2,R). The usual cosine similarity
measure for words translates to an additive met-
ric on P(R?). In the induced topology the no-
tion of a neighborhood of a word is well-defined.
Analogously, switching to an associated projec-
tive bundle P(E) allows us to treat fibers in the
same manner. As usual, we can represent P(R?)
as a circle S' with opposite points identified, then
the projective bundle can be represented as a torus

S1 x S, this time with four antipodal points iden-
tified. Care is needed to correctly assign orienta-
tions on the fibers.

Sections can be viewed as vector-valued func-
tions defined on the base space. Since in our
case the vectors can be obtained by an action of
PSO(2,R), a single parameter is sufficient to en-
code the vectors. This parameter is actually an an-
gle between the zero and the value vectors in the
fiber. That allows us to represent each section as
a big cirle on a torus and to encode the required
value as an angular offset assigned to each point.
Such a scalar function must be smooth and peri-
odic to satisfy the properties of a vector bundle,
and it suffices to limit its range to [0, ), since we
sum angles modulo 7. The function can be ap-
proximated with a square table with entries peri-
odic accross both rows and columns. It is easy to
vizualize the scalar function on a torus as a heat
map or as a 2D surface over the square, with the
height of a point being equal to the value of the
function at that point. The periodicity and smooth-
ness requirements suggest that it should be pos-
sible to approximate that surface with a partial
weighted sum of two-dimesional harmonics.

5 Discussion

A characteristic trait of our model is that both ar-
guments and predicates are treated as entities of a
continuous nature. Their co-adaptation turns into
a process of evaluation of stability areas where
small changes of both the predicate and the argu-
ment do not lead to drastic changes in the mean-
ing of a composite expression. This is a property
that we pursue by intention and it is reminiscent
of multiple examples of zonal reasoning in cog-
nitive linguistics and perception (Stevens, 1972;
Girdenfors, 2004). Symbolic representations are
often considered to be incompatible with that type
of meaning representations. However, a more ex-
pressive formalism like that of dependent type the-
ory makes the boundary less apparent. It is still
to be determined whether our model can be given

235



a sound interpretation in terms of cognitive lin-
gusitics.

Early vector models were based on words co-
occurence in a corpus and required very high di-
mensionality of representations (Deerwester et al.,
1990; Landauer and Dumais, 1997). Vector co-
ordinates could be interpreted as contextual co-
occurence counts or as weights of the latent fac-
tors, depending on the model. Later the field was
revolutionized by introduction of machine learn-
ing techniques, which allowed to approximate low
dimensional vector representations (Mikolov et
al., 2013; Pennington et al., 2014). It made the
problem more tractable, while at the same time it
became impossible to interpret single coordinates,
as in these approaches the size of the vectors is
determined on the basis of the desired accuracy of
approximation and not the actual counts. In our
model we consider the primitive elements of rep-
resentation as abstract vectors. We also consider
complex mathematical structures such as inverse
image and fibration as parts of our representation.
As a consequence, it would be incorrect to com-
pare the dimensionality of a local trivialization of
a vector bundle with the number of vector compo-
nents in the previous models. Usually raising the
dimensionality of vector representations is used to
achieve better approximation and numerical sta-
bility of algorithms. Whether it is more appropri-
ate to raise the dimensionality of the model (i.e.,
the rank of a vector bundle) or the number of har-
monics used for approximation to achieve these
goals in our case is an open question.

Another way of making the model more expres-
sive is to incorporate other forms of dependent
types, which are considered in type theoretical se-
mantics, namely dependent sums and dot types. In
the framework of Luo (2012) an adjective-noun
pair is treated as an element of a dependent sum
Y (z : A)B(z), where a noun is substituted for the
x, e. g. arepresentation for heavy book is an object
of type X([book], [heavy]). Objects of this type
are pairs (a, b), where a is a noun and b is a vari-
ant of an adjective adapted to the noun similarly to
the way the verbs are adapted to their objects. In
the geometric interpretation such a pair is an ele-
ment of a direct product of the base space and the
fiber over a point in the base. Since the elements
of A and the elements of X(z : A)B(x) are not di-
rectly comparable, a mechanism of type coercion
is required to make such a construct work.
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6 Conclusion

In this paper we proposed a geometric interpre-
tation for a fragment of lexical semantics based
on dependent type theory. The fragment includes
the dependent product, which is the type of func-
tions with a range dependent on the argument,
therefore the fragment also includes function types
of traditional formal semantics as a special case.
The types are interpreted as vector spaces, which
makes it possible to treat vector models of dis-
tributional semantics as a computational realiza-
tion of a fragment of type-theoretical semantics.
By making extensions suggested by the geomet-
ric interpretation, we achieve a significant increase
in expressive power of the model while retaining
control over its computability. The meaning eval-
uation technique arising from the geometric inter-
pretation is compositional and allows for an anal-
ysis of non-trivial phenomena of logical polysemy
and co-predication.
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