Quantifying the vanishing gradient and long distance dependency
problem in recursive neural networks and recursive LSTMs

Phong Le and Willem Zuidema
Institute for Logic, Language and Computation
University of Amsterdam, the Netherlands

{p.le, zuidema}Quva.nl

Abstract

Recursive neural networks (RNN) and
their recently proposed extension recur-
sive long short term memory networks
(RLSTM) are models that compute rep-
resentations for sentences, by recursively
combining word embeddings according to
an externally provided parse tree. Both
models thus, unlike recurrent networks,
explicitly make use of the hierarchical
structure of a sentence. In this paper, we
demonstrate that RNNs nevertheless suf-
fer from the vanishing gradient and long
distance dependency problem, and that
RLSTMs greatly improve over RNN’s on
these problems. We present an artificial
learning task that allows us to quantify the
severity of these problems for both mod-
els. We further show that a ratio of gra-
dients (at the root node and a focal leaf
node) is highly indicative of the success of
backpropagation at optimizing the relevant
weights low in the tree. This paper thus
provides an explanation for existing, supe-
rior results of RLSTMs on tasks such as
sentiment analysis, and suggests that the
benefits of including hierarchical structure
and of including LSTM-style gating are
complementary.

1 Introduction

The recursive neural network (RNN) model be-
came popular since the work of Socher et al.
(2010). It has been employed to tackle several
NLP tasks, such as syntactic parsing (Socher et al.,
2013a), machine translation (Liu et al., 2014), and
word embedding learning (Luong et al., 2013).
However, like traditional recurrent neural net-
works, the RNN seems to suffer from the vanish-

87

ing gradient problem, in which error signals prop-
agating from the root in a parse tree to the child
nodes shrink very quickly. Moreover, it encoun-
ters difficulties in capturing long range dependen-
cies: information propagating from child nodes
deep in a parse tree can be obscured before reach-
ing the root node.

In the recurrent neural network world, the long
short term memory (LSTM) architecture (Hochre-
iter and Schmidhuber, 1997) is often used as a so-
lution to these two problems. A natural extension
of the LSTM can be defined for tree structures,
which we call Recursive LSTM (RLSTM), as pro-
posed independently by Tai et al. (2015), Zhu et
al. (2015), and Le and Zuidema (2015). How-
ever, while there is intensive research showing
how the LSTM architecture can overcome those
two problems compared to traditional recurrent
models (e.g., Gers and Schmidhuber (2001)), such
research is, to our knowledge, still absent for the
comparison between RNNs and RLSTMs. There-
fore, in the current paper we investigate the fol-
lowing two questions:

1. Is the RLSTM more capable of capturing
long range dependencies than the RNN?

2. Does the RLSTM overcome the vanishing
gradient problem more effectively than the
RNN?

Supervised learning requires annotated data,
which is often expensive to collect. As a result, ex-
amining a model on natural data on many different
aspects can be difficult because the portion of data
that fits a specific aspect could not be sufficient.
Moreover, studying individual aspects separately
is hard since many aspects are often correlated
with each other. This, unfortunately, is true in our
case: answering those two questions requires us to
evaluate the examined models on datasets of dif-

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 87-93,
Berlin, Germany, August 11th, 2016. (©2016 Association for Computational Linguistics

where W1, Wy € R™ " are weight matrices and
b € R"is abias vector. f is an activation function.

In the RLSTM, a node p is represented by the
vector [p; c,] resulting from concatenating a vec-
tor representing the phrase that the node covers
and a memory vector. F' could be any LSTM
that can compute two such concatenation vectors,
such as Structure-LSTM (Zhu et al., 2015), Tree-
LSTM (Tai et al., 2015), and LSTM-RNN (Le and
Zuidema, 2015). In the current paper, we use the
implementation] of Le and Zuidema (2015) where
an LSTM (for binary trees) has two input gates
i1,%2, two forget gates fi, fo, an output gate o,
and a memory cell c. The vector representation
and memory vector for node p are computed as

(0000) } softmax
000l s

LEN

P [000]
e\

[co0| (000
X y

|000| q
AN

(co0| [000]

z t

Figure 1: A recursive model (such as RNN and
RLSTM) employ a composition function F' in a
bottom-up manner to compute a vector represen-

;)] follows:

tation for each internal node in a tree. If the model
is used for classification on the sentence level, a j, — J(Wﬂx + Wiay + Weirc, + Weac, + bi)
softmax layf?r is qu on the top of th.e root node to =0 (Wﬂy + Winx + Waie, + Wency + bi)
compute a distribution over all possible classes.

f; = O'(Wflx -+ ngy + chlcm + chgcy + bf)

_ _ . fy = o (Wpy + Wpax + Wepicy + Wepae, + by)

ferent tree depths, in which the key nodes which

Cp:f1®cx+f2@cy+

contain decisive information in a parse tree must
be identified. Using available annotated corpora
such as the Stanford Sentiment Treebank (Socher
et al., 2013b) and the Penn Treebank is thus inap-
propriate, as they are too small for this purpose
(10k, 40k trees, respectively, compared to 240k
trees in our experiments), and key nodes are not
marked. Our solution is an artificial task where
sentences and parse trees can be randomly gener-
ated under any arbitrary constraints on tree depth
and key node’s position.

2 Background

Both the RNN and the RLSTM model are in-
stances of a general framework which takes a sen-
tence, syntactic tree, and vector representations for
the words in the sentence as input, and applies a
composition function to recursively compute vec-
tor representations for all the phrases in the tree
and the complete sentence. Technically speaking,
given a production p — x y, and x,y € R" repre-
senting x, y, we compute p € R" for p by

p:F(va)

where F'is a composition function (Figure 1).
In the RNN, F'is a one-layer feed-forward neu-
ral network:

p = f(Wix + Wyy + b)

88

g(Wax 0i1 + Wey 0z + be)
o= U(Wolx + Wy + Wec + bo)
p=00g(cy)

where u and c,, are the output and the state of the
memory cell at node u; iy, is, fi, f5, o are the
activations of the corresponding gates; W'’s and
b’s are weight matrices and bias vectors; and g is
an activation function.

3 Experiments

We now examine how the two problems, the van-
ishing gradient problem and the problem of how
to capture long range dependencies, affect the
RLSTM model and the RNN model. To do so,
we propose the following artificial task, which re-
quires a model to distinguish useful signals from
noise. We define:

e a sentence is a sequence of tokens which are
integer numbers in the range [0, 10000];

e asentence contains one and only one keyword
token which is an integer number smaller
than 1000;

e a sentence is labeled with the integer result-
ing from dividing the keyword by 100. For

"https://github.com/lephong/lstm-rnn

T 1
0 0
T L 1 I—I—l
0 0 0 0
I_I_l T L 1 | I—I—l
0 0 0 0 7450 0 0
| | I_I_l T L 1 I_I_l |
2757 7759 0 0 0 0 0 0 2502
| | —— —— | |
6095 [607] (? (l) 0 0 4582 4993
T 1 T 1
5846 5845 0 0 0 0
| | | —L—
5982 4015 5484 (l) (|>
1893 4571

Figure 2: Example binary tree for the artificial task. The number enclosed in the box is the keyword of

the sentence.

instance, if the keyword is 607, the label is
6. In this way, there are 10 classes, ranging
from 0 to 9.

The task is to predict the class of a sentence, given
its binary parse tree (Figure 2). Because the label
of a sentence is determined solely by the keyword,
the two models need to identify the keyword in the
parse tree and allow only the information from the
leaf node of the keyword to affect the root node. It
is worth noting that this task resembles sentiment
analysis with simple cases in which the sentiment
of a whole sentence is determined by one key-
word (e.g. “I like the movie”). Simulating com-
plex cases involving negation, composition, etc. is
straightforward and for future work. But here we
believe that the current task is adequate to answer
our two questions raised in Section 1.

The two models, RLSTM and RNN, were im-
plemented with the dimension of vector represen-
tations and vector memories 50. Following Socher
et al. (2013b), we used tanh as the activation
function, and initialized word vectors by randomly
sampling each value from a uniform distribution
U(—0.0001,0.0001). We trained the two models
using the AdaGrad method (Duchi et al., 2011)
with a learning rate of 0.05 and a mini-batch size
of 20 for the RNN and of 5 for the RLSTM. De-
velopment sets were employed for early stopping
(training is halted when the accuracy on the de-
velopment set is not improved after 5 consecutive
epochs). It is worth noting that we also tried other
values for the hyper-parameters but did not gain
significantly better results on development sets.

&9

3.1 Experiment 1

We randomly generated 10 datasets. To generate a
sentence of length [, we shuffle a list of randomly
chosen [— 1 non-keywords and one keyword. The
i-th dataset contains 12k sentences of lengths from
107 — 9 tokens to 107 tokens, and is split into train,
dev, test sets with sizes of 10k, 1k, 1k sentences.
We parsed each sentence by randomly generating
a binary tree whose number of leaf nodes equals
to the sentence length.

The test accuracies of the two models on the 10
datasets are shown in Figure 3; For each dataset
we run each model 5 times and reported the high-
est accuracy for the RNN model, and the distribu-
tion of accuracies (via boxplot) for the RLSTM
model. We can see that the RNN model per-
forms reasonably well on very short sentences
(less than 11 tokens). However, when the sentence
length exceeds 10, the RNN’s performance drops
so quickly that the difference between it and the
random guess’ performance (10%) is negligible.
Trying different learning rates, mini-batch sizes,
and values for n (the dimension of vectors) did not
give significant differences. On the other hand,
the RLSTM model achieves more than 90% ac-
curacy on sentences shorter than 31 tokens. Its
performance drops when the sentence length in-
creases, but is still substantially better than the ran-
dom guess when the sentence length does not ex-
ceed 70. When the sentence length exceeds 70,
both the RLSTM and RNN perform similarly.

3.2 Experiment 2

In Experiment 1, it is not clear whether the tree
size or the keyword depth is the main factor of the
rapid drop of the RNN’s performance. In this ex-

100

80

60

wf

accuracy %

20 -

e

-

—*— RNN's accuracy
average keyword depth

1-10

I
11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

dataset (minLength-maxLength)

Figure 3: Test accuracies of the RNN (red solid curve, the best among 5 runs) and the RLSTM (boxplots)

on datasets of different sentence lengths.

periment, we kept the tree size fixed and vary the
keyword depth. We generated a pool of sentences
of lengths from 21 to 30 tokens and parsed them by
randomly generating binary trees. We then created
10 datasets each of which has 12k trees (10k for
training, 1k for development, and 1k for testing).
The ¢-th dataset consists of only trees in which dis-
tances from keywords to roots are ¢ or ¢ + 1 (to
stop the networks from exploiting keyword depths
directly).

Figure 4 shows test accuracies of the two mod-
els on those 10 datasets. Similarly in Experiment
1, for each dataset we run each model 5 times
and reported the highest accuracy for the RNN
model, and the distribution of accuracies for the
RLSTM model. As we can see, the RNN model
achieves very high accuracies when the keyword
depth does not exceed 3. Its performance then
drops rapidly and gets close to the performance
of the random guess. This is evidence that the
RNN model has difficulty capturing long range de-
pendencies. By contrast, the RLSTM model per-
forms at above 90% accuracy until the depth of the
keyword reaches 8. It has difficulty dealing with
larger depths, but the performance is always better
than the random guess.

3.3 Experiment 3

We now examine whether the two models can en-
counter the vanishing gradient problem. To do so,
we looked at the the back-propagation phase of
each model in Experiment 1 on the third dataset
(the one containing sentences of lengths from 21
to 30 tokens). For each tree, we calculated the ra-

90

tio
g2t |
axkeyword
[Frael

OXroot

where the numerator is the norm of the error vector
at the keyword node and the denominator is the
norm of the error vector at the root node. This ratio
gives us an intuition how the error signals develop
when propagating backward to leaf nodes: if the
ratio < 1, the vanishing gradient problem occurs;
else if the ratio > 1, we observe the exploding
gradient problem.

Figure 5 reports the ratios w.r.t. the keyword
node depth in each epoch of training the RNN
model. The ratios in the first epoch are always
very small. In each following epoch, the RNN
model successfully lifts up the ratios steadily (see
Figure 7a for a clear picture at the keyword depth
10), but a clear decrease when the depth becomes
larger is observable. For the RLSTM model (see
Figure 6 and 7b), the story is somewhat different.
The ratios go up after two epochs so rapidly that
there are even some exploding error signals sent
back to leaf nodes. They subsequently go down
and remain stable with substantially less explod-
ing error signals. This is, interestingly, concurrent
with the performance of the RLSTM model on the
development set (see Figure 7b). It seems that the
RLSTM model, after one epoch, quickly locates
the keyword node in a tree and relates it to the root
by building a strong bond between them via error
signals. After the correlation between the keyword
and the label at the root is found, it tries to stabilize
the training by reducing the error signals sent back

100 : - ==
Aﬁ + T

80 [\
60 [

40 [\

accuracy %

20

0 Il Il Il Il
1-2 2-3 3-4 45

5-6

6-7 7-8 8-9 9-10 10-11

dataset (minDepth-maxDepth)

Figure 4: Test accuracies of the RNN (red solid curve, the best among 5 runs) and the RLSTM (boxplots)

on datasets of different keyword depths.

epoch 1

o =N WwhH O

O =N Whr O

Hithin,

depth

0 4

epoch 5

o TN

depth

o =N WHOG

0 4

epoch 2

5

4

8 T oi o O

2

a0ddiiisg,

0 2 4 6 8 10 12 14
depth
epoch 4

5

4 + T

ol

RNEAALE

:J i;iiﬁ

0 2 4 6 8 10 12 14
depth
epoch 6

5

4

3 ;%“;

2

kg L]

0 2 4 6 8 10 12 14
depth

Figure 5: Ratios of norms of error vectors at keyword nodes to norms of error vectors at root nodes w.r.t.
the keyword node depth in each epoch of training the RNN. Gradients gradually vanish with greater

depth.

to the keyword node. Comparing the two models
by aligning Figure 5 with Figure 6, and Figure 7a
with Figure 7b, we can see that the RLSTM model
is more capable of transmitting error signals to leaf
nodes.

It is worth noting that we do see the vanish-
ing gradient problem happening when training the
RNN model in Figure 5; but Figure 7a suggests
that the problem can become less serious after a

91

long enough training time. This might be because
depth 10 is still manageable for the RNN model.
(Notice that in the Stanford Sentiment Treebank,
more than three quarters of leaf nodes are at depths
less than 10.) The fact the the RNN model still
doesnot perform better than random guessing can
be explained using the arguments given by Ben-
gio et al. (1994), who show that there is a trade-off
between avoiding the vanishing gradient problem

epoch 1

5

4

3

2

1 Q

0

0 2 4 6 8 10 12 14
depth
epoch 3

5 ot

4 +

3

21 +

1 -f- H

0

0 2 4 6 8 10 12 14
depth
epoch5

5

4

3

2 é

1 é Q

! é

0 14
depth

o =N WA~ O

Lo
%ng

4 6
depth

14

Figure 6: Ratios of norms of error vectors at keyword nodes (at different depths) to norms of error vectors
at root nodes, in the RLSTM. Many gradients explode in epoch 2, but stabilize later. Gradients do not

vanish, even at depth 12 and 13.

and capturing long term dependencies when train-
ing traditional recurrent networks.

4 Conclusion

Because long range dependencies and vanishing
gradients are serious challenges in deep learning,
evaluating how well a model overcome these chal-
lenges is necessary. In this current paper, we focus
on two recursive models, RNN and RLSTM. Due
to lack of natural data, we proposed a novel arti-
ficial task where the label of a sentence is solely
determined by a key word it contains. The exper-
imental results show that the RLSTM is superior
to the RNN. This is in parallel with general con-
clusions about the power of the LSTM architec-
ture compared to traditional Recurrent neural net-
works.

Although our proposed task is simple, it is suf-
ficient for testing recursive models since solving
the task requires models to be capable of captur-
ing long range dependencies and propagating er-
rors to leaf nodes far from the root. It is, moreover,
straightforward to extend the task such that more
complex cases can be taken into account. For in-
stance, for compositionality, a sentence can con-
tain more than one keywords and the sentence la-
bel is determined by some kind of interaction be-

92

tween those keywords (such as addition).

References

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE
Transactions on, 5(2):157-166.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, pages 2121-2159.

Felix A Gers and Jiirgen Schmidhuber. 2001. Lstm
recurrent networks learn simple context-free and
context-sensitive languages. Neural Networks,
IEEE Transactions on, 12(6):1333-1340.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Phong Le and Willem Zuidema. 2015. Compositional
distributional semantics with long short term mem-
ory. In Proceedings of the Joint Conference on Lex-
ical and Computational Semantics (*SEM). Associ-
ation for Computational Linguistics.

Shujie Liu, Nan Yang, Mu Li, and Ming Zhou. 2014.
A recursive recurrent neural network for statistical
machine translation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational

251

O

o
o +
o + +
© g I 3 i I
s 8 + ; Es # i I 1
o + T +
+ *
I
05 h
[¢}
o
0 - I N |
0 2 4 6 8 10 12
epoch
(a) RNN
3 T T T T T 100
k% — —#rf—ﬁfff* «—*— accuracy
+ M ¥ + +
+ * +
+ 1
25 $
+ <80
ok
- 60
15 ®
©
Q
Q
740 £
/ QO
17 / [:2
420
0.5)

4

6

epoch

(b) RLSTM (with development accuracies)

8 10

Figure 7: Ratios at depth 10 in each epoch of training the RNN (a) and the RLSTM (b).

Linguistics (Volume 1: Long Papers), pages 1491—
1500, Baltimore, Maryland, June. Association for
Computational Linguistics.

Minh-Thang Luong, Richard Socher, and Christo-
pher D Manning. 2013. Better word representa-
tions with recursive neural networks for morphol-
ogy. CoNLL-2013, 104.

Richard Socher, Christopher D. Manning, and An-
drew Y. Ng. 2010. Learning continuous phrase
representations and syntactic parsing with recursive
neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning
Workshop.

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y Ng. 2013a. Parsing with compo-
sitional vector grammars. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics, pages 455—-465.

93

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013b. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings EMNLP.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556-1566, Beijing, China, July. Association
for Computational Linguistics.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo.
2015. Long short-term memory over recursive
structures. In Proceedings of International Confer-
ence on Machine Learning, July.

