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Abstract

Layer-wise relevance propagation (LRP)
is a recently proposed technique for ex-
plaining predictions of complex non-linear
classifiers in terms of input variables. In
this paper, we apply LRP for the first time
to natural language processing (NLP).
More precisely, we use it to explain the
predictions of a convolutional neural net-
work (CNN) trained on a topic categoriza-
tion task. Our analysis highlights which
words are relevant for a specific prediction
of the CNN. We compare our technique
to standard sensitivity analysis, both qual-
itatively and quantitatively, using a “word
deleting” perturbation experiment, a PCA
analysis, and various visualizations. All
experiments validate the suitability of LRP
for explaining the CNN predictions, which
is also in line with results reported in re-
cent image classification studies.

1 Introduction

Following seminal work by Bengio et al. (2003)
and Collobert et al. (2011), the use of deep learn-
ing models for natural language processing (NLP)
applications received an increasing attention in re-
cent years. In parallel, initiated by the computer
vision domain, there is also a trend toward under-
standing deep learning models through visualiza-
tion techniques (Erhan et al., 2010; Landecker et
al., 2013; Zeiler and Fergus, 2014; Simonyan et
al., 2014; Bach et al., 2015; Lapuschkin et al.,
2016a) or through decision tree extraction (Krish-
nan et al., 1999). Most work dedicated to under-
standing neural network classifiers for NLP tasks
(Denil et al., 2014; Li et al., 2015) use gradient-
based approaches. Recently, a technique called
layer-wise relevance propagation (LRP) (Bach et
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al., 2015) has been shown to produce more mean-
ingful explanations in the context of image classi-
fications (Samek et al., 2015). In this paper, we ap-
ply the same LRP technique to a NLP task, where
a neural network maps a sequence of word2vec
vectors representing a text document to its cat-
egory, and evaluate whether similar benefits in
terms of explanation quality are observed.

In the present work we contribute by (1) ap-
plying the LRP method to the NLP domain, (2)
proposing a technique for quantitative evaluation
of explanation methods for NLP classifiers, and
(3) qualitatively and quantitatively comparing two
different explanation methods, namely LRP and a
gradient-based approach, on a topic categorization
task using the 20Newsgroups dataset.

2 Explaining Predictions of Classifiers

We consider the problem of explaining a predic-
tion f(x) associated to an input & by assigning to
each input variable 4 a score R4 determining how
relevant the input variable is for explaining the
prediction. The scores can be pooled into groups
of input variables (e.g. all word2vec dimensions of
a word, or all components of a RGB pixel), such
that they can be visualized as heatmaps of high-
lighted texts, or as images.

2.1 Layer-Wise Relevance Propagation

Layer-wise relevance propagation (Bach et al.,
2015) is a newly introduced technique for obtain-
ing these explanations. It can be applied to various
machine learning classifiers such as deep convolu-
tional neural networks. The LRP technique pro-
duces a decomposition of the function value f(x)
on its input variables, that satisfies the conserva-
tion property:

flx) = Zde- (D
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The decomposition is obtained by performing a
backward pass on the network, where for each
neuron, the relevance associated with it is redis-
tributed to its predecessors. Considering neurons
mapping a set of n inputs (z;);e[1,,] to the neuron
activation x; through the sequence of functions:

b
Zij = TiWij + #
2j = D%

r; = g(zj)

where for convenience, the neuron bias b; has
been distributed equally to each input neuron, and
where g(-) is a monotonously increasing activation
function. Denoting by I; and R; the relevance
associated with z; and x;, the relevance is redis-
tributed from one layer to the other by defining
messages R;; indicating how much relevance
must be propagated from neuron z; to its input
neuron z; in the lower layer. These messages are
defined as:

2 + 5(25)

n
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where s(2;) = € (1,50 — 1;<0) is a stabilizing
term that handles near-zero denominators, with e
set to 0.01. The intuition behind this local rele-
vance redistribution formula is that each input x;
should be assigned relevance proportionally to its
contribution in the forward pass, in a way that the
relevance is preserved (3, Ri—; = R)).

Each neuron in the lower layer receives rele-
vance from all upper-level neurons to which it con-
tributes

Ri%j =

Ri =Y ;Rij.

This pooling ensures layer-wise conservation:
>.iRi = > ;R;. Finally, in a max-pooling
layer, all relevance at the output of the layer
is redistributed to the pooled neuron with max-
imum activation (i.e. winner-take-all). An im-
plementation of LRP can be found in (La-
puschkin et al., 2016b) and downloaded from
www.heatmapping.orgl.

2.2 Sensitivity Analysis

An alternative procedure called sensitivity analy-
sis (SA) produces explanations by scoring input
variables based on how they affect the decision
output locally (Dimopoulos et al., 1995; Gevrey

! Currently the available code is targeted on image data.

et al., 2003). The sensitivity of an input variable is
given by its squared partial derivative:

of \2
Ry=(32)"
d 0xq
Here, we note that unlike LRP, sensitivity analysis

does not preserve the function value f(x), but the
squared lo-norm of the function gradient:

IVaf(@)l5 =3 4Ra- )

This quantity is however not directly related to
the amount of evidence for the category to de-
tect. Similar gradient-based analyses (Denil et al.,
2014; Li et al., 2015) have been recently applied in
the NLP domain, and were also used by Simonyan
et al. (2014) in the context of image classification.
While recent work uses different relevance defini-
tions for a group of input variables (e.g. gradient
magnitude in Denil et al. (2014) or max-norm of
absolute value of simple derivatives in Simonyan
et al. (2014)), in the present work (unless other-
wise stated) we employ the squared lo-norm of
gradients allowing for decomposition of Eq. 2 as
a sum over relevances of input variables.

3 Experiments

For the following experiments we use the 20news-
bydate version of the 20Newsgroups® dataset con-
sisting of 11314/7532 train/test documents evenly
distributed among twenty fine-grained categories.

3.1 CNN Model

As a document classifier we employ a word-based
CNN similar to Kim (2014) consisting of the fol-
lowing sequence of layers:

Conv — RelLU — 1-Max-Pool — FC

By 1-Max-Pool we denote a max-pooling
layer where the pooling regions span the whole
text length, as introduced in (Collobert et al.,
2011). Conv, ReLU and FC denote the con-
volutional layer, rectified linear units activation
and fully-connected linear layer. For building
the CNN numerical input we concatenate horizon-
tally 300-dimensional pre-trained word2vec® vec-
tors (Mikolov et al., 2013), in the same order the
corresponding words appear in the pre-processed

http://qwone.com/%$7Ejason/20Newsgroups/
2’GoogleNews—vectors—negative3OO,
https://code.google.com/p/word2vec/



document, and further keep this input representa-
tion fixed during training. The convolutional oper-
ation we apply in the first neural network layer is
one-dimensional and along the text sequence di-
rection (i.e. along the horizontal direction). The
receptive field of the convolutional layer neurons
spans the entire word embedding space in verti-
cal direction, and covers two consecutive words in
horizontal direction. The convolutional layer filter
bank contains 800 filters.

3.2 Experimental Setup

As pre-processing we remove the document head-
ers, tokenize the text with NLTK?, filter out punc-
tuation and numbers>, and finally truncate each
document to the first 400 tokens. We train
the CNN by stochastic mini-batch gradient de-
scent with momentum (with /3-norm penalty and
dropout). Our trained classifier achieves a classifi-
cation accuracy of 80.19%5.

Due to our input representation, applying LRP
or SA to our neural classifier yields one relevance
value per word-embedding dimension. From these
single input variable relevances to obtain word-
level relevances, we sum up the relevances over
the word embedding space in case of LRP, and
(unless otherwise stated) take the squared l2-norm
of the corresponding word gradient in case of
SA. More precisely, given an input document d
consisting of a sequence (wi,ws,...,wy) of N
words, each word being represented by a D-
dimensional word embedding, we compute the rel-
evance R(w;) of the ™ word in the input docu-
ment, through the summation:

D
R(w) =Y Riy 3)
=1

where R; ; denotes the relevance of the input vari-
able corresponding to the i'" dimension of the ¢*»
word embedding, obtained by LRP or SA as spec-
ified in Sections 2.1 & 2.2.

*We employ NLTK’s version 3.1 recommended tok-
enizers sent_tokenize and word_-tokenize, module
nltk.tokenize.

SWe retain only tokens composed of the following char-
acters: alphabetic-character, apostrophe, hyphen and dot, and
containing at least one alphabetic-character.

%To the best of our knowledge, the best published
20Newsgroups accuracy is 83.0% (Paskov et al., 2013). How-
ever we notice that for simplification we use a fixed-length
document representation, and our main focus is on explain-
ing classifier decisions, not on improving the classification
state-of-the-art.

In particular, in case of SA, the above word rel-
evance can equivalently be expressed as:

Rsa(wr) = ||V, f(d)]13 )

where f(d) represents the classifier’s prediction
for document d.

Note that the resulting LRP word relevance is
signed, while the SA word relevance is positive.

In all experiments, we use the term farget class
to identify the function f(x) to analyze in the rel-
evance decomposition. This function maps the
neural network input to the neural network output
variable corresponding to the target class.

3.3 Evaluating Word-Level Relevances

In order to evaluate different relevance models, we
perform a sequence of “word deletions” (hereby
for deleting a word we simply set the word-vector
to zero in the input document representation), and
track the impact of these deletions on the classifi-
cation performance. We carry out two deletion ex-
periments, starting either with the set of test docu-
ments that are initially classified correctly, or with
those that are initially classified wrongly’. We es-
timate the LRP/SA word relevances using as target
class the true document class. Subsequently we
delete words in decreasing resp. increasing order
of the obtained word relevances.

Fig. 1 summarizes our results. We find that
LRP yields the best results in both deletion exper-
iments. Thereby we provide evidence that LRP
positive relevance is targeted to words that sup-
port a classification decision, while LRP negative
relevance is tuned upon words that inhibit this de-
cision. In the first experiment the SA classifica-
tion accuracy curve decreases significantly faster
than the random curve representing the perfor-
mance change when randomly deleting words, in-
dicating that SA is able to identify relevant words.
However, the SA curve is clearly above the LRP
curve indicating that LRP provides better expla-
nations for the CNN predictions. Similar results
have been reported for image classification tasks
(Samek et al., 2015). The second experiment indi-
cates that the classification performance increases
when deleting words with the lowest LRP rele-
vance, while small SA values points to words that
have less influence on the classification perfor-
mance than random word selection. This result

"For the deletion experiments we consider only the test

documents whose pre-processed length is greater or equal to
100 tokens, this amounts to a total of 4963 documents.



—
o
Iy
=}

~—e LRP

b
)

: J/:F{
/

o
)

~— random

o
)
o
)

o
]

o
)

A

[S)
N
o,

I
S

.

e
")

Accuracy (4154 documents)
o
n
‘,.”'

Accuracy (809 documents)
o
n

=}
N
e,

o
)

— LRP
=—a SA
~— random pasbdasapaa
0.0lussts sy
10 20 30 40 50 0 10 20 30 40 50
Number of deleted words Number of deleted words

=}
=
o ¢
=
= —

o
=]

Figure 1: Word deletion on initially correct (left)
and false (right) classified test documents, using
either LRP or SA. The target class is the true
document class, words are deleted in decreasing
(left) and increasing (right) order of their rele-
vance. Random deletion is averaged over 10 runs
(std < 0.0141). A steep decline (left) and incline
(right) indicate informative word relevances.

can partly be explained by the fact that in contrast
to SA, LRP provides signed explanations. More
generally the different quality of the explanations
provided by SA and LRP can be attributed to their
different objectives: while LRP aims at decompos-
ing the global amount of evidence for a class f(z),
SA is build solely upon derivatives and as such
describes the effect of local variations of the in-
put variables on the classifier decision. For a more
detailed view of SA, as well as an interpretation
of the LRP propagation rules as a deep Taylor de-
composition see Montavon et al. (2015).

3.4 Document Highlighting

Word-level relevances can be used for highlighting
purposes. In Fig. 2 we provide such visualizations
on one test document for different relevance target
classes, using either LRP or SA relevance mod-
els. We can observe that while the word ride
is highly negative-relevant for LRP when the tar-
get class is not rec.motorcycles, it is pos-
itively highlighted (even though not heavily) by
SA. This suggests that SA does not clearly dis-
criminate between words speaking for or against
a specific classifier decision, while LRP is more
discerning in this respect.

3.5 Document Visualization

Word2vec embeddings are known to exhibit lin-
ear regularities representing semantic relation-

ships between words (Mikolov et al., 2013). We
explore if these regularities can be transferred to
a document representation, when using as a docu-
ment vector a linear combination of word2vec em-
beddings. As a weighting scheme we employ LRP
or SA scores, with the classifier’s predicted class
as the target class for the relevance estimation. For
comparison we perform uniform weighting, where
we simply sum up the word embeddings of the
document words (SUM).

For SA we use either the [o-norm or squared [o-
norm for pooling word gradient values along the
word2vec dimensions, i.e. in addition to the stan-
dard SA word relevance defined in Eq. 4, we use
as an alternative Rgp (1,)(wi) = ||V, f(d)||2 and
denote this relevance model by SA(l).

For both LRP and SA, we employ different
variations of the weighting scheme. More pre-
cisely, given an input document d composed of
the sequence (wq,wsy, ..., wy) of D-dimensional
word2vec embeddings, we build new document
representations d’ and d’, , 8 by either using word-
level relevances R(w;) (as in Eq. 3), or through
element-wise multiplication of word embeddings
with single input variable relevances (R; )ie[1,p)
(we recall that R;; is the relevance of the input
variable corresponding to the i*" dimension of the
" word in the input document d). More formally
we use:

M) =

d/ = R(wt) s Wt
t=1
or

N Ry,

Roy
dow, = Y | . |Ow

t=1 :

Rpy

where ® is an element-wise multiplication. Fi-
nally we normalize the document vectors d’ resp.
d., ., to unit [y-norm and perform a PCA projec-
tion. In Fig. 3 we label the resulting 2D-projected
test documents using five top-level document cat-
egories.

For word-based models d’, we observe that
while standard SA and LRP both provide simi-
lar visualization quality, the SA variant with sim-
ple ls-norm yields partly overlapping and dense
clusters, still all schemes are better than uniform?

8The subscript e.w. stands for element-wise.

"We also performed a TFIDF weighting of word embed-
dings, the resulting 2D-visualization was very similar to uni-
form weighting (SUM).
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Figure 2: Heatmaps for the test document sci . space 61393 (correctly classified), using either layer-
wise relevance propagation (LRP) or sensitivity analysis (SA) for highlighting words. Positive relevance
is mapped to red, negative to blue. The target class for the LRP/SA explanation is indicated on the left.
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Figure 3: PCA projection of the 20Newsgroups test documents formed by linearly combining word2vec
embeddings. The weighting scheme is based on word-level relevances, or on single input variable rel-
evances (e.w.), or uniform (SUM). The target class for relevance estimation is the predicted document
class. SA(l3) corresponds to a variant of SA with simple /3-norm pooling of word gradient values. All
visualizations are provided on the same equal axis scale.



weighting. In case of SA note that, even though
the power to which word gradient norms are raised
(I5 or l%) affects the present visualization experi-
ment, it has no influence on the earlier described
“word deletion” analysis.

For element-wise models d.,,, we observe
slightly better separated clusters for SA, and a

clear-cut cluster structure for LRP.

4 Conclusion

Through word deleting we quantitatively evalu-
ated and compared two classifier explanation mod-
els, and pinpointed LRP to be more effective than
SA. We investigated the application of word-level
relevance information for document highlighting
and visualization. We derive from our empirical
analysis that the superiority of LRP stems from the
fact that it reliably not only links to determinant
words that support a specific classification deci-
sion, but further distinguishes, within the preemi-
nent words, those that are opposed to that decision.

Future work would include applying LRP to
other neural network architectures (e.g. character-
based or recurrent models) on further NLP tasks,
as well as exploring how relevance information
could be taken into account to improve the clas-
sifier’s training procedure or prediction perfor-
mance.
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