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Abstract

Relation extraction is one of the core chal-
lenges in automated knowledge base construc-
tion. One line of approach for relation ex-
traction is to perform multi-hop reasoning on
the paths connecting an entity pair to infer
new relations. While these methods have been
successfully applied for knowledge base com-
pletion, they do not utilize the entity or the
entity type information to make predictions.
In this work, we incorporate selectional pref-
erences, i.e., relations enforce constraints on
the allowed entity types for the candidate en-
tities, to multi-hop relation extraction by in-
cluding entity type information. We achieve a
17.67% (relative) improvement in MAP score
in a relation extraction task when compared to
a method that does not use entity type infor-
mation.

1 Introduction

Knowledge Bases (KB’s) are structured knowledge
sources widely used in applications like question an-
swering (Kwiatkowski et al., 2013; Berant et al.,
2013; Bordes et al., 2014) and search engines like
Google Search and Microsoft Bing. This has led
to the creation of large KB’s like Freebase (Bol-
lacker et al., 2008), YAGO (Suchanek et al., 2007)
and NELL (Carlson et al., 2010). KB’s contains
millions of facts usually in the form of triples
(entity1, relation, entity2). However, KB’s are
woefully incomplete (Min et al., 2013), missing im-
portant facts, and hence limiting their usefulness in
downstream tasks.

Figure 1: The two paths above consist of
the same relations (locatedIn→ locatedIn)
and, hence, the model of Neelakantan (2015) will
assign them the same score for the relation Airport-
ServesPlace without considering the fact that Yankee
Stadium is not an airport.

To overcome this difficulty, Knowledge Base
Completion (KBC) methods aim to complete the
KB using existing facts. For example, we can
infer nationality of a person from their place of
birth. A common approach in many KBC meth-
ods for relation extraction is reasoning on individ-
ual relations (single-hop reasoning) to predict new
relations (Mintz et al., 2009; Bordes et al., 2013;
Riedel et al., 2013; Socher et al., 2013). For ex-
ample, predicting Nationality(X, Y) from BornIn(X,
Y). The performance of relation extraction methods
have been greatly improved by incorporating selec-
tional preferences, i.e., relations enforce constraints
on the allowed entity types for the candidate entities,
both in sentence level (Roth and Yih, 2007; Singh et
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al., 2013) and KB relation extraction (Chang et al.,
2014), and in learning entailment rules (Berant et al.,
2011).

Another line of work in relation extraction
performs reasoning on the paths (multi-hop rea-
soning on paths of length ≥ 1) connecting
an entity pair (Lao et al., 2011; Lao et al.,
2012; Gardner et al., 2013; Gardner et al.,
2014; Neelakantan et al., 2015; Guu et al.,
2015). For example, these models can infer the
relation PlaysInLeague(Tom Brady, NFL)
from the facts PlaysForTeam(Tom Brady,
New England Patriots) and PartOf(New
England Patriots, NFL). All these methods
utilize only the relations in the path and do not in-
clude any information about the entities.

In this work, we extend the method of Neelakan-
tan (2015) by incorporating entity type informa-
tion. Their method can generalize to paths unseen
in training by composing embeddings of relations
in the path non-linearly using a Recurrent Neural
Network (RNN) (Werbos, 1990). While entity type
information has been successfully incorporated into
relation extraction methods that perform single hop
reasoning, here, we include them for multi-hop re-
lation extraction. For example, Figure 1 illustrates
an example where reasoning without type informa-
tion would score both the paths equally although
the latter path should receive a lesser score since
there is an entity type mismatch for the first en-
tity. Our approach constructs vector representation
of paths in the KB graph from representations of re-
lations and entity types occurring in the path. We
achieve a 17.67% improvement in Mean Average
Precision (MAP) scores in a relation extraction task
when compared to a method that does not use entity
type information. Lastly, the SHERLOCK system
(Schoenmackers et al., 2010) also discovers multi-
hop clauses using typed predicates from web text,
but, unlike our RNN approach it employs a Induc-
tive Logic Programming method.

2 Model

This paper extends the Recurrent Neural Network
model of Neelakantan (2015) by jointly reasoning
over the relations and entity types occurring in the
paths between an entity pair. Paths are represented

[

US State dated-loc.

]
NY end_relation

RNN

[

airport transport-hub

]
JFK /location/contains
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[

city/town dated-loc.

]
NYC /location/contains

RNN

L = 2

Figure 2: The encoder network for a path be-
tween an entity pair. The inputs to the network
are embeddings of entities, entity types and rela-
tions. This architecture corresponds to equation 4
below. The network for other equations can be ob-
tained by setting the appropriate input embeddings
to zeros. Also note we have a dummy relation to-
ken end relation for the last entity of the path.
In the network above, at each time step, the entity
embedding is concatenated with the sum of its type
embeddings, followed by the embeddings of the re-
lation type and are fed as input to the recurrent net-
work

as dense vectors formed by composing embeddings
of relations and entities occurring at each step. Fig-
ure 2 illustrates the encoder architecture for a path
between an entity pair. The [·] in figure 2 denotes the
concatenate operation. As will be described later, we
also try representing the entity by its observed types.

The relation types considered in our
work are either fixed symbolic types de-
fined in the Freebase schema such as
/people/person/nationality or a free
text relation from Clueweb (Orr et al., 2013) such
as born in. In Freebase, an entity is associ-
ated with several types. For example, the entity
Barack Obama has types such as President,
Author and Award Winner. In our work,
we consider the top l types (sorted by corpus
frequency) for an entity and we obtain a combined
representation by summing the embeddings of
types.

Let vr(δ) ∈ Rd denote the vector representation
of relation type δ. Let ve (e) ∈ Rm denote the vec-
tor representation of an entity e and vet (e) ∈ Rn

denote the combined representation of the types of e
obtained by taking the sum of the representation of
its top l types. Let π be a path between the entity pair
(e1, e2) containing the relation types δ1, δ2, . . . , δN .

In the following section, we first briefly describe
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the model proposed by Neelakantan (2015) (RNN
model henceforth) followed by our extensions to it.

2.1 RNN Model

The RNN model only considers the representations
of relation type present in the path. More pre-
cisely, the vector representation ht ∈ Rp of path
δ1, δ2, . . . , δt (1 ≤ t ≤ N) is computed recursively
as

ht = f (Whhht−1 +Wrhvr (δt)) (1)

The vector representation of the entire path is hN

where N is the length of the path. Here Wh,h ∈
Rp×p and Wrh ∈ Rp×d are composition matrices
between the previous step in the path and the relation
vector at the current step respectively and f is a non-
linear activation function.

Extension with entity (and types)

The previous model can be extended to incorporate
the embeddings of entities along with relations oc-
curring at each step in the path. We consider learn-
ing a separate representation for every entity and
representing an entity using its entity types.

• RNN + Entity: In this model, we add the em-
bedding of the entity.

ht = f (Whhht−1 +Wrhvr (δt) +Wehve (et))
(2)

• RNN + Type: In this model, we add the em-
bedding of the entity obtained from its types at
each step.

ht = f (Whhht−1 +Wrhvr (δt) +Wthvet (et))
(3)

• RNN + Entity + Type: In this model, we use
both the representations of the entity.

ht = f(Whhht−1 +Wrhvr (δt)
+Wehve (et) +Wthvet (et)) (4)

Here et denotes the tth entity occurring in the path
between an entity pair and Weh ∈ Rp×m,Wth ∈
Rp×n are new composition matrices due to the entity
and its types respectively. In all of our experiments
f is the sigmoid activation function.

2.2 Model Training
We train a separate RNN model for each target re-
lation1. The parameters for each model are the em-
bedding of the relations, entities and types, and the
various composition matrices (as applicable) . They
are trained to maximize the likelihood of the training
data.The score of a path π w.r.t to the target relation
δ is

score(π, δ) = σ (v (π) · v (δ)) (5)

We then choose the path which has the highest score
similar to (Weston et al., 2013; Neelakantan et al.,
2014). Selecting just one path (out of typically hun-
dreds to thousands of paths) between entity pairs
might lead to our model ignoring informative paths,
especially during the initial stages of training. To
alleviate this issue we also experiment by selecting
the top k paths that have the highest score for a given
entity pair and relation with the resultant score being
the average of the top k scores.

3 Experiments & Results

In all of our experiments, we set the dimension of
the relations, entity and their type embeddings to be
50. For a fair comparison with our model, which
has more number of parameters due to the entity
and/or type embeddings, we experiment by varying
the dimension of the relation embeddings between
50, 100 and 150 for the baseline model. We use
Adam (Kingma and Ba, 2014) for optimization with
the default hyperparameter settings. The models are
trained for 15 epochs beyond which we observed
overfitting on a held-out development set. We set
l = 7 and k = 5 in our experiments. We experiment
with 12 target relations.

3.1 Data
We run our experiments on the dataset released
by Neelakantan el al. (2015) which is a subset of
Freebase enriched with information from ClueWeb.
The dataset comprises of entity pairs with a set
of paths connecting them in the knowledge graph.
The negative examples comprise of entity pairs for
which the given query relation does not hold. How-
ever the paths had the entity information missing

1We are working on having a single model which can predict
all relations as that would be more ideal than having a single
specialized RNN for each relation
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Stats Full dataset Current experiments
# test relations 46 12
# entity pairs 3.22M 839K
# entity pairs (train) 605K 161K
# entity pairs (test) 2M 533K
Avg. paths /relation 3.77M 3.43 M

Table 1: Statistics of the dataset

from them and only contained the relation types
occurring in them. For example, consider the
path SatyaNadella ceoAt−−−→ Microsoft

locatedIn−−−−−−→
Seattle

cityIn−−−−→ Washington. The original dataset
had the entities in-between such as Microsoft and
Seattle missing from it.

We augment the dataset with the entities present
in them. To gather the entities, we do a depth first
traversal starting from the first entity of the entity
pair and following the relation types until we reach
the last entity of the pair. In cases of one-to-many
relations we choose the next entity to be traversed
at random. Due to the combinatorial search space
we limit the total number of edges traversed beyond
which we ignore the path. Therefore the number of
paths between an entity pair would be less than in
the original dataset. However, we are continuously
augmenting the dataset and the latest version of the
dataset can be downloaded from http://iesl.
cs.umass.edu/downloads/akbc16/. Table
1 displays some statistics of the dataset gathered till
now and also the subset that was used for running
the current experiments.

3.2 Link Prediction

We compare our models with the baseline model on
predicting whether an entity pair participates in a tar-
get relation. We rank the entity pairs in the test set
based on their scores and calculate the Mean Aver-
age Precision (MAP) score for the ranking following
previous work (Riedel et al., 2013; Neelakantan et
al., 2015). Table 2 lists the MAP scores of both the
models averaged over 12 freebase relation types.

Incorporating selectional preferences by adding
entity types gives a significant boost in scores (17.67
% over the baseline model.). However, we see a
drop in performance on adding just entities. This
is primarily because during test time we encounter
a lot of previously unseen entities and hence we do

Model MAP

Max

RNN (50) 0.5991
RNN (100) 0.6020
RNN (150) 0.6272
RNN + Entity 0.5593
RNN + Entity + Type 0.5995
RNN + Types 0.7084

Top-K

RNN (50) 0.6241
RNN (100) 0.6184
RNN (150) 0.6312
RNN + Entity 0.5968
RNN + Entity + Type 0.6322
RNN + Types 0.7014

Table 2: Mean Average Precision scores averaged
over 12 relations. The number in the parentheses
denotes the dimension of the embedding of the rela-
tions type in the baseline model.

.

not have learned embeddings for them. We over-
come this problem by representing the entity using
its observed types in Freebase. In future work, we
would consider using pre-trained entity embeddings
and also by representing the entity additionally using
context words (Yaghoobzadeh and Schütze, 2015).

Although considering top-k paths improves the
performance of the baseline model, we observe that
they provide almost similar scores with entity types.
We run our experiments with k = 5 and we hope that
the results would get better if we tune for k.

3.3 Predictive Paths

Table 3 shows maximum scoring paths for four en-
tity pair and freebase relation triples chosen by the
baseline and our model. We often find that the
paths chosen by the baseline model have noisier
textual relation, (like ‘London’2 ,‘and at the’)
and have entities belonging to very different types
than expected by the query relation. For example,
in table 3, the path chosen by the baseline model
for ‘/aviation/airport/serves’ goes to
a music education school, and a water body and
for ‘/education/campus/institution’,
it goes to a country in which the institution is sit-
uated followed by a notable person in the country
(unrelated to the query relation). It is quite clear that

2The freetext relation is different from the entity ‘London’
also occurring in the path

21



Relation : /aviation/airport/serves (Does the airport serve the location?)

Baseline Path: (0.5174)

Sandy Lake Airport (/location/contains)−1
−−−−−−−−−−−−−−−−−→Ontario and at the−−−−−−−−→Toronto Royal Conservatory Of Music

(including the)−1
−−−−−−−−−−−−−→Canada

(geography/lake/basin countries)−1
−−−−−−−−−−−−−−−−−−−−−−−−−−→Big Trout Lake and to−−−−−→Sandy Lake First Nation.

Our Model Path: (0.9502)

Sandy Lake Airport (/location/contains)−1
−−−−−−−−−−−−−−−−−→Ontario (in northwestern)−1

−−−−−−−−−−−−−−−→Sandy Lake First Nation.

Relation : /aviation/airport/serves

Baseline Score: (0.4348), Our Model Score: (0.9731) (Same path chosen by both models)

St. Mary’s Airport (/location/contains)
−1

−−−−−−−−−−−−−−−−−→Wade Hampton Census Area
/location/us county/hud county place−−−−−−−−−−−−−−−−−−−−−−−−−−→St. Mary’s

Relation : /education/campus/institution (Is the educational institution located in this campus?)

Baseline Path: (0.4869)

Gray’s Inn London−−−−−→England
(/people/person/nationality)−1
−−−−−−−−−−−−−−−−−−−−−−−→Roger Fry

/people/deceased person/place of death−−−−−−−−−−−−−−−−−−−−−−−−−−−−→London
/location/contains−−−−−−−−−−−−−−→City Law School

Our Model Path: (0.9676)

Gray’s Inn (/location/contains)−1
−−−−−−−−−−−−−−−−−→London Borough of Camden /location/contains−−−−−−−−−−−−−−→City Law School

Relation : /geography/river/mouth (Does the river (tributary) flow into the other river?)

Baseline Path: (0.4578)

Gard River
/geography/river/basin countries−−−−−−−−−−−−−−−−−−−−−−−−→Romania

(/geography/river/basin countries)−1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Jijia River

Our Model Path: (0.9231)

Gard River (/location/contains)−1
−−−−−−−−−−−−−−−−−→Botosani County /location/contains−−−−−−−−−−−−−−→Jijia River

Table 3: Predictive paths chosen by the baseline and our model for four entity pair and relation triples. The
relations are edge labels and the entities occur in between them and at the ends. The freebase relations
starts with ‘/’, (/location/contains, for e.g.). Inverse relations are denoted by −1 i.e. r(x, y) =⇒
r−1(y, x),∀(x, y) ∈ r. The scores are given in parentheses (higher is better). Sometimes, both models find
the same path (second example in /aviation/airport/serves), but we often find that our model
correctly scores it higher.

.

adding entity types helps us incorporate selectional
preference and hence eliminate lot of noisy paths.
We also find that sometimes both models finds the
same max scoring path but our model assigns more
confidence (higher scores) to them leading to better
MAP scores.3

4 Conclusion

In this work, we incorporate selectional preferences
to a multi-hop relation extraction method. We have
released the dataset we collected for this project.
We achieve a 17.67% relative improvement in MAP
score in a relation extraction task when compared to
a method that does not use entity type information.

3The reader can browse more examples at http://
people.cs.umass.edu/˜rajarshi/paths.html.
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