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Abstract

We present a matrix factorization model for
learning cross-lingual representations. Using
sentence-aligned corpora, the proposed model
learns distributed representations by factoring
the given data into language-dependent factors
and one shared factor. Moreover, the model
can quickly learn shared representations for
more than two languages without undermin-
ing the quality of the monolingual compo-
nents. The model achieves an accuracy of
88% on English to German cross-lingual doc-
ument classification, and 0.8 Pearson correla-
tion on Spanish-English cross-lingual seman-
tic textual similarity. While the results do
not beat state-of-the-art performance in these
tasks, we show that the crosslingual models
are at least as good as their monolingual coun-
terparts.

1 Introduction

A large body of NLP research in recent years has
focused on representing natural language words
and phrases in high-dimensional continuous vec-
tor spaces. Such representations can be integrated
with various NLP applications as they can be easily
learned, processed, and compared, often in an un-
supervised or semi-supervised manner. Distributed
representations of words, or word embeddings, can
be learned using global word co-occurrence statis-
tics as in matrix factorization models (Guo and Diab,
2012; Pennington et al., 2014), or using local con-
text as in neural probabilistic language models (Ben-
gio et al., 2003; Collobert and Weston, 2008; Socher

et al., 2013). Compared to word embeddings, rep-
resenting variable-length sequences using a vector
space model is more challenging since these vec-
tors need to encode complex semantic structures and
relationships. Several models have been proposed
for learning phrase and sentence embeddings, either
by combining word embeddings (Klementiev et al.,
2012) or directly learning the sentence representa-
tions (Le and Mikolov, 2014).

In our global world of information, many NLP
problems exist in multilingual and cross-lingual set-
tings. It is often desirable to generalize sentence
representations to several languages such that sen-
tences conveying the same meaning in any language
are clustered together and potentially mapped to one
another in the semantic space. Such cross-lingual
representations can then be used directly in NLP
applications such as machine translation and cross-
lingual question answering. They can also be used to
learn classifiers that generalize to languages beyond
the ones used in training.

A number of models have recently been proposed
for learning cross-lingual compositional representa-
tions (Klementiev et al., 2012; Shi et al., 2015; Pen-
nington et al., 2014; Cavallanti et al., 2010; Mikolov
et al., 2013; Coulmance et al., 2015; Pham et al.,
2015). We propose a relatively simple and nuanced
model inspired by the monolingual weighted matrix
factorization (WMF) model proposed in (Guo and
Diab, 2012), which we extend to the cross-lingual
setting.

The WMF model learns word representations by
decomposing a sparse tf-idf matrix into two low-
rank factor matrices representing words and sen-
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tences. The weights are adjusted to reflect the con-
fidence levels in reconstructing observed vs. miss-
ing words in the original matrix. Representations
for variable-length sequences can be calculated by
minimizing the reconstruction error as described in
Section 2.1. In this paper, we propose to extend
this model to the cross-lingual setting by model-
ing two languages in parallel to obtain shared se-
mantic representations. The proposed model has a
simple loss function and only uses sentence-aligned
data for learning the shared representations. Further-
more, the model can be readily extended to multiple
languages without loss of quality. We describe the
model in two variations in Section 2.2.

We evaluate the quality of these representations
using the cross-lingual document classification task,
where a multi-class perceptron is trained to clas-
sify documents into four categories. Using German
and English labeled short documents, the classifier is
trained on one language and tested on the other. Us-
ing the compositional representations generated by
our model, we achieve an accuracy of 88% in the
English—German classification task. We also eval-
uate on the Semeval cross-lingual semantic textual
similarity (STS) task, where we assign a similarity
score to pairs of English and Spanish sentences. Our
model yields a performance of 0.8 Pearson correla-
tion in this task.

2 Proposed Approach

Word co-occurrence statistics and matrix factoriza-
tion can be exploited to learn latent semantic rep-
resentations for words, sentences, and documents
(Pennington et al., 2014; Guo and Diab, 2012). We
focus on one such model, the weighted matrix fac-
torization model proposed in (Guo and Diab, 2012),
as a basis for our crosslingual representations, which
is described in the following section. Similar exten-
sions can be implemented for other matrix factor-
izaiton mehtods.

2.1 Background: Weighted Matrix
Factorization (WMF)

In the WMF model proposed in (Guo and Diab,
2012), a large corpus is represented as an m X n
matrix X, where each X;; cell is the tf-idf weight
of word ¢ in sentence j. This sparse matrix is then

factorized into a k£ X m matrix P and a k£ X n matrix
Q, such that X = PT'Q. The factorization results
in k-dimensional representations for words and sen-
tences: the columns in P are latent k-dimensional
representations for words, and the columns in () are
latent k-dimensional representations for the training
sentences.

The values of P and () can be calculated by min-
imizing the following weighted loss function:

C'=> Wi(PEQ.; = Xi)* + AP+ Q1) (1)
]
where X is a regularization parameter to avoid
overfitting, and W is an m x n weight matrix. The
weights reflect the confidence levels associated with
the reconstruction errors of the corresponding items
in X. A small weight is assigned to all missing
words, (X;; = 0), to reflect an appropriate level of
uncertainty:

1,
W@j = {
W,

where w,, << 1 is a fixed weight that is deter-
mined empirically; In other words, we assign min-
imal confidence that each word in the vocabulary
could legitimately correlate with any given sentence,
while the confidence level is highest for observed
words. Using this weighted scheme is explained
in more details and experimentally justified in (Guo
and Diab, 2012).

By fixing P, the cost function becomes quadratic
in Q and the global minimum is achieved using the
matrix @, that satisfies C’(Qmin) = 0. The j*
column in @, is calculated as follows:

if X;; # 0
if X; ;=0

Q.; = (PWPT +AD)'PWIX.,; (2

where W/ is a diagonal matrix with coefficients
Wi;; in row/column j (the jth column of ).

Similarly, the vectors in F,,;, are calculated by
fixing () and minimizing the cost function P(Q):

P;=@QWQT + \D)7'QWiX,.  (3)

where W' is a diagonal matrix with coefficients
Wi;; in row/column i (the sth row of W).

Thus, alternating least squares is used to minimize
C (P, Q) by iteratively fixing P to calculate @, then



fixing @) to calculate P using equations (2) and (3).
Note that these calculations can be done in paral-
lel and the sparsity of the original matrix can be ex-
ploited for a more efficient computation of vectors.'

To generate vector representations for additional
sentences after training, P is fixed and () is calcu-
lated for the new sentences using equation (2). In
other words, we calculate the representations that
minimize the loss function (1), which is quadratic
when P is fixed.

2.2 Cross-lingual Extensions to WMF

Here we describe our proposed extension of the
WMF model for learning bilingual semantic repre-
sentations. Given a parallel corpus of n sentence
pairs, we generate an m x n tf-idf matrix X for
the first language, and an [ x n tf-idf matrix Y for
the second language, where m and [ are the number
of words in the vocabulary of each language. The
learning objective of the bilingual WMF model is to
factorize both X and Y into two language-specific
factors and one shared factor. More precisely, the
desired factorization would result in a £ X m ma-
trix P, a k x [ matrix A, and a k X n matrix Q,
such that X = PTQ and Y = ATQ. To achieve
these bilingual objectives, we define two methods
for calculating the loss function for both languages
as detailed below: A global bilingual loss function
(BMF), and a monolingual loss function with an ex-
plicit crosslingual factor (CMF).

2.2.1 BMEF: Bilingual Matrix Factorization

We define a global loss function for both lan-
guages as follows:

C=Y Wi;(P5Q.;—Xi)*+ Y U4(AL,Q. ;~Ya)’
i d.j

AAPIPHIQIP+1AI%) - @)

where U is the weight matrix for Y, defined sim-
ilarly to .

This objective function is convex if we fix two of
the factor matrices and minimize with respect to the
remaining factor. Alternating least squares can be
used to estimate the factors iteratively using the fol-
lowing three equations:

'Details on similar calculations and speedup recommenda-
tions are found in (Hu et al., 2008).
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To generate vector representations for additional
sentences in either language, the language-specific
factors P and A are fixed, and the semantic vectors
Q. ; are calculated using equation (2) for language 1
and equation (6) for language 2.

Q.; = (AUAT + X)L AUTY. (6)

In other words, the two models are independent
once the training is complete, but the resultant rep-
resentations are expected to reflect shared semantic
components.

2.2.2 CMF: Crosslingual Matrix Factorization

Alternatively, we can define two loss functions
with a shared crosslingual factor:

Cr = 3 Wy (Pl — Xy)* + A(IPIP + @l

Z’]
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Minimizing C7 and C; separately is equivalent
to training two separate monolingual models. To
achieve the bilingual objective, we train only C] as
a monolingual model, then use the learned factors
P to find A. If we assume that the compositional
representations generated by P are optimal, then
we can use it to fix ) in C, and the loss function
becomes quadratic in A; all we have to do is find
the values of A that minimize Cs.

The training procedure is carried out as follows:

1. Independently train a monolingual WMF
model for a pivot language.

2. Using a parallel corpus and the trained word
representations P for the pivot language, gener-
ate sentence representations () using equation

2



3. Using the same parallel corpus, and fixing () as
calculated in step 2, calculate word representa-
tions A for the second language using equation

(5).

This method can be readily extended to more
than two languages. Using one trained monolingual
model, we can quickly learn representations for any
number of languages using sentence-aligned data.

3 Related Work

The weighted matrix factorization model we extend
was first proposed in (Guo and Diab, 2012) to learn
distributed vector representations for words in the
monolingual setting. These vectors are then used
to generate distributed representations for variable-
length sequences by minimizing the reconstruction
error. The GloVe algorithm proposed (Pennington
et al., 2014) is also a weighted matrix factorization
method, but it includes additional word-specific bias
terms and uses a different weighting scheme.

As mentioned above, we extend the WMF model
proposed in (Guo and Diab, 2012) to bilingual and
multilingual settings by forcing the two monolingual
components to use a shared factor. (Shi et al., 2015)
proposes a similar approach for learning bilingual
embeddings. They extend GloVe (Pennington et al.,
2014) to the bilingual case using a matrix of bilin-
gual co-occurrence counts with word alignments in
addition to the monolingual components. They also
propose an alternative method of minimizing the Eu-
clidean distance between words that may be transla-
tions of one another. This model is similar in spirit
to our model, but it has a different objective function
that incorporates cross-lingual co-occurrence statis-
tics or word alignments. Extending that model to
more than two languages has not been studied.

In general, several models have been proposed
recently to learn cross-lingual semantic representa-
tions. Most proposed models learn cross-lingual
word embeddings and use them to compose repre-
sentations for variable-length sequences. For ex-
ample, (Klementiev et al., 2012) uses a multi-task
learning objective (Cavallanti et al., 2010) to align
word embeddings for multiple languages. Sen-
tence representations are then composed using idf-
weighted sum of word representations. In (Mikolov
et al., 2013), word embeddings are first learned sep-

arately for each language, and then a linear mapping
is learned between the source and target languages.

The Trans—-gram model introduced in (Coul-
mance et al., 2015) learns shared representations of
several languages efficiently using English as a pivot
language. This is comparable to our model in speed
and flexibility in learning several language represen-
tations. However, the Trans—gram model only
learns word embeddings, and sentence representa-
tions are calculated using idf-weighted average of
word embeddings. On the other hand, the WMF
model generates sentence representations by mini-
mizing the data reconstruction error in addition to
the word embeddings that can be used to calculate
an idf-weighted average.

In (Pham et al., 2015), distributed representations
for bilingual phrases and sentences are learned using
an extended version of the paragraph vector model
described in (Le and Mikolov, 2014) by forcing par-
allel sentences to share one vector. This model
learns shared sentence representations directly and
achieves state-of-the-art performance in the docu-
ment classification task.

4 Empirical Evaluation

We evaluate our crosslingual models in two empiri-
cal evaluation settings: Crosslingual Semantic Tex-
tual Similarity (STS), and Cross-lingual Document
Classification (CLDC).

4.1 Data

Monolingual Data: For the monolingual English
model, the training set consists of 700K sentences
derived from various resources. We extract and
combine the following sets: a random set of 150K
sentences from LDC’s English Gigaword fifth edi-
tion (Parker et al., 2011), a random set of 150K
sentences from the English Wikipedia?, the Brown
Corpus (Francis, 1964), Wordnet (Miller, 1995) and
Wiktionary? definitions appended with examples.

Bilingual Data: We extract training data for the
bilingual models from WMT13 (Machacek and Bo-
jar, 2013) sentence-aligned parallel corpora, specif-
ically version 7 of the EuroParl parallel corpus
(Koehn, 2005), the multiUN parallel corpus (Eisele

*http://en.wikipedia.org
3http://www.wiktionary.org



and Chen, 2010), and news commentary data for
two language pairs: English-Spanish (en-es) and
English-German (en-de). We train each bilingual
model using a sample of 1M sentence pairs from
these datasets.

All sentences in our data are tokenized and
stemmed, and number sequences are replaced with
a special token as a normalization step. We use the
Stanford CoreNLP toolkit (Manning et al., 2014)
for English preprocessing, and Treetagger tools
(Schmid, 1995) for both Spanish and German data.
Words that appear less than 5 times in the training
set are discarded from the vocabulary. The final
vocabulary sizes for each model are shown below:

Monolingual English 55,881
English from the en-es set 25,057
English from the en-de set 21,879
Spanish 30,411
German 57,431

4.2 Parameter settings for empirical tasks

We train our bilingual BMF models strictly using the
bilingual parallel data. On the other hand, we train
the English pivot model used in CMF strictly using
the English monolingual data, while the parallel cor-
pora are only used for training the Spanish and Ger-
man components of the CMF models. For the BMF
models and the English monolingual model, we run
the alternating least squares (ALS) algorithm for 20
iterations. We use the following parameters for all
models: k=300, w,, = 0.01 and A = 20.*

4.3 Using English as a Pivot: Cross-lingual
STS Validation

One of the advantages of the CMF model is that it
can be readily used to learn representations for sev-
eral languages. We test this hypothesis by using En-
glish as a pivot language to learn cross-lingual corre-
spondences between German and Spanish. Hence in
this setting, we only use the English model to factor
both the Spanish and German models independently,
but we assume that any two learned models are di-
rectly comparable. Accordingly, WMT12 (Callison-
Burch et al., 2012) news test set is used as a vali-
dation set to verify that the models actually map the

“These parameters are tuned empirically and we found these
values to be robust across models.

Dataset | en-es | en-de | de-es
Parallel | 0.65 0.60 | 0.62
Random | 0.11 0.11 0.10

Table 1: Average semantic similarity between sentence pairs
using WMT12 test set

cross-lingual sentences into a shared semantic space.
Table 1 shows the average cosine similarity between
parallel pairs in the validation set, and the average
similarity between a random permutation of the set.

These results indicate that the models learn to dis-
tinguish between similar and dissimilar sentences
since the parallel sentences have much higher co-
sine similarity than random pairs. We also observe
an equivalent performance for the Spanish-German
sentences, even though we do not directly train a
model for this language pair.

4.4 Cross-lingual Semantic Textual Similarity

Semantic Textual Similarity (STS) is a measure of
the degree of similarity between two sentences. STS
scores range from O to 5, where higher values in-
dicate closer semantic content. Cross-lingual STS
measures the degree of similarity between sentences
from two different languages.

Using the BMF and CMF cross-lingual models,
we generate sentence vectors for the given pairs,
then we calculate the cosine similarity between each
pair. Since most of the output is positive, and nega-
tive values are generally very close to zero, we round
up negative similarity values to 0. We then convert
the values from the [0-1] range to the [0-5] range by
multiplying the scores by 5 7.

Table 2 shows the results on the test data of Se-
meval 2016 en-es cross-lingual STS shared task.
The evaluation metric is the Pearson Correlation
Coefficient. The CMF models perform better than
BMF in this task. We also show the results of the
official Semeval first rank system, UWB.

4.5 Monolingual Evaluation

We evaluate the performance of the monolingual
components learned using BMF or CMF models on
the Semeval monolingual Spanish semantic textual
similarity (STS) task, namely STS 2014 and STS

3Note that this scaling operation does not affect the evalua-
tion results, but we do it for consistency.



Model | News | Multi Source | Mean
BMF | 0.83 0.72 0.78
CMF | 0.87 0.73 0.80
UWB | 0091 0.82 0.86

Table 2: Cross-lingual STS EN-SP Test results using Pearson

Correlation Coefficient.

2015. The objective of this evaluation is to check
whether the quality is hurt by forcing the factors into
a shared semantic space. We train two monolingual
models:

Mono WMF: We train a monolingual Spanish
WMF model using the Spanish component of
the parallel training set, which consists of 1M
sentences. This is the same set used to train the
cross-lingual models, so the results are comparable.

WMF#*: We train another Spanish WMF model
with a more varied training set, similar in con-
struction to the English monolingual model. This
training set includes Wikipedia and newswire
articles, so it’s more similar to the test set. This set
consists of about 400K sentences extracted from the
second edition of Spanish Gigawords (Mendona et
al., 2009) and the Spanish Wikipedia Corpus (Reese
et al., 2010).

We use the same values for all the parameters, and
we run ALS for 20 iterations. Table 3 shows the re-
sults on Semeval Spanish STS 2014 dataset (Agirre
etal., 2014), which includes sentence pairs extracted
from Spanish Wikipedia and news articles. We also
show the results on the harder 2015 dataset (Agirre
et al., 2015), which intentionally includes sentence
pairs with higher degree of difficulty, such as sen-
tences with shared vocabulary but different compo-
sitional meaning. The first row depicts the results
obtained by the top system participating in the Se-
meval task, Semeval Best.

While none of our models outperforms the official
Semeval top ranking system, Semeval Best, we show
that the Spanish models trained using the BMF and
CMF models actually outperform the monolingual
Spanish model (mono-WMF) when we use the same
dataset for training. The advantage of a monolingual
model, however, is that it can be trained using more

Model WK14 | NW14 | WK15 | NW15
Semeval Best 0.78 0.82 0.71 0.68
WMF* 0.77 0.83 0.64 0.55
mono WMF 0.67 0.80 0.46 0.55
BMF 0.69 0.80 0.50 0.51
CMF 0.70 0.83 0.53 0.52

Table 3: Performance on STS 2014 (WK14, NW14) and STS
2015 (WK15, NW15) test sets for monolingual Spanish STS
task

Model Vector size | en—de | de—en
Maj-Class 40 46.8 46.8
Multi-task 40 77.6 71.1

CLSim 40 92.7 80.2
Trans-gram 100 87.8 78.7
Trans-gram 300 91.1 78.4

BMF 300 88.6 68.9
CMF 300 88.2 70.7
para-doc 500 92.7 91.5

Table 4: Cross-lingual document classification accuracy

varied training data, as evident by the higher per-
formance of WMF , outperforming our cross-lingual
derived models.

4.6 Cross-lingual Document Classification
(CLDO)

The cross-lingual document classification (CLDC)
task introduced in (Klementiev et al., 2012) is a
supervised task used to evaluate cross-lingual rep-
resentations in short document classification. The
training and test sets are news stories extracted from
the English and German sections of the Reuters
multilingual corpus (Lewis et al., 2004). The doc-
uments are classified into four categories/topics: C
(Corporate/Industrial), E (Economics), G (Govern-
ment/Social), and M (Markets). For each language,
a set of 1K documents is used to train a multi-class
Perceptron classifier, and a set of 5K documents
is used to test the classifier. For the purpose of
evaluating the cross-lingual representations, the
classifier is trained on one language and tested on

toen | tode
fromen | 88.5 | 88.2
fromde | 93.7 | 70.7

Table 5: Document classification accuracy for CMF model



the other. Thus, we evaluate our models in the
English to German direction (en—de), where the
model is trained to classify English documents and
tested by classifying German documents, and vice
versa (de—en).

We generate document representations directly by
concatenating all the sentences in each document
and using the BMF and CMF models to generate
300-dimensional vectors for each document. The re-
sults are shown in Table 4. We show the results of
the original Majority-class and Multitask
baselines as listed in (Klementiev et al., 2012).
Furthermore, we show the results of several com-
petitive systems on the CLDC task, namely: the
Trans—gram model (Coulmance et al., 2015), the
cross-lingual matrix co-factorization CLSim model
proposed in (Shi et al., 2015), and the state-of-the art
performance by para-doc as described in (Pham
etal., 2015). We also report the size of the document
vector representations for each model.

We note that the performance on the en—de sig-
nificantly outperforms the other direction of de—en.
This trend is apparent in all other models except
for para—doc. This asymmetry in performance is
likely a result of the bag-of-words approach which
doesn’t account for word ordering. The performance
in both directions is lower than that of the compet-
ing models, especially in the de—en direction. Also,
as shown in table 5, the performance in the crosslin-
gual en—de setting is at least as good as the per-
foramance in the monolingual en—en setting, while
the performance of the de—en crosslingual setting
is much lower than the monolingual de—de setting.
This indicates that some of the dimensions are not
transferred from the German to the English vectors,
possible due to unmatched vocabulary cause by the
multitude of compound words in German.

5 Discussion and Conclusions

We proposed a new approach for generating cross-
lingual semantic representations for variable-length
sequences using weighted matrix factorization mod-
els. These models generally achieved good results in
the cross-lingual document classification and cross-
lingual semantic similarity tasks. One limiting char-
acteristic of the proposed models is the need to use

sentence-aligned data, which could undermine the
performance in textual domains that lack parallel re-
sources. This can be remedied to some extent by
using more representative data in training the pivot
model.

A valuable feature of the proposed model is the
possibility to learn shared representations for an un-
limited number of languages as long as we have
sentence-aligned data with one of the learned lan-
guages. Training additional languages is trivial since
the additional factors are calculated deterministi-
cally and independently. In other words, we can
learn representations for each language separately
and without the need to retrain the available mod-
els. Moreover, the model is simple and robust as we
learned good representations using relatively small
parallel datasets and without parameter optimiza-
tion. In addition, the monolingual components of
the cross-lingual models are as good as, if not better
than, the monolingual models learned independently
using the same training data. These results direct
our attention to the monolingual models we started
with; the performance of the crosslingual models is
simply a reflection of the quality of the monolingual
models they are based on. We focus on improving
the monlingual weighted matrix factorization model
in future work.
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