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Abstract 

We describe the ongoing development of a lex-

ically-informed, upper-level event ontology 

and explore use cases of the ontology.  This on-

tology draws its lexical sense distinctions from 

VerbNet, FrameNet and the Rich Entities, Re-

lations and Events Project.  As a result, the on-

tology facilitates interoperability and the com-

bination of annotations done for each inde-

pendent resource.  While this ontology is in-

tended to be practical for a variety of applica-

tions, here we take the initial steps in determin-

ing whether or not the event ontology could be 

utilized in multimodal applications, specifi-

cally to recognize and reason about events in 

both text and video.  We find that the ontology 

facilitates the generalization of potentially 

noisy or sparse individual realizations of 

events into larger categories of events and ena-

bles reasoning about event relations and partic-

ipants, both of which are useful in event recog-

nition and interpretation regardless of modal-

ity.     

1 Introduction & Background 

The valuable computational lexical resources, 

VerbNet (Kipper et al., 2008), FrameNet (Fillmore 

et al., 2002), and the Rich Entities, Relations and 

Events (ERE) annotation project (Song et al., 2015), 

each provide somewhat distinct information about 

which eventualities are related syntactically, seman-

tically, or both, and which types of participants are 

involved in classes of eventualities.  VerbNet and 

FrameNet also involve long-standing and compre-

hensive annotation efforts, using the class and par-

ticipant type labels set out in each resource.  The re-

sulting annotated corpora have proved to be useful 

sources of training data for a variety of Natural Lan-

guage Processing (NLP) systems, including auto-

matic semantic role labeling, word sense disambig-

uation, and question-answering systems. 

Recently, we have also seen an expansion of ef-

forts in both the construction of ontologies as part 

of the Semantic Web (Berners-Lee, 1998), and re-

search in computer vision (e.g., Fei-Fei & Perona, 

2005).  These previously disparate threads of re-

search have begun to come together with NLP re-

search in fruitful ways.  First, there have been ef-

forts to integrate computational lexical resources 

into the Semantic Web (e.g., Eckle-Kohler et al., 

2014).  Progress in this area, however, has been 

somewhat slow and difficult, given that conversion 

of resources like FrameNet, which includes quite 

nuanced and complex ontological relations, into the 

minimalist Resource Descriptive Framework (RDF) 

schema used in the Semantic Web is not necessarily 

a trivial conversion and may involve some loss of 

information (e.g., Nuzzolese et al., 2011; Scheff-

czyk et al., 2006). Second, data-driven methods for 

extracting events from text are increasingly being 

combined with knowledge-driven methods, such as 

those based on ontologies, in order to benefit from 

the strengths of both (Hogenboom et al., 2011). 

Third, there have been efforts to use both text and 

visual data jointly to interpret complex scenes (e.g., 
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Karpathy et al., 2014).  Furthermore, we have seen 

the promise of integrating ontological information 

into computer vision research evidenced in the suc-

cess of ImageNet (Deng et al., 2009), a large-scale 

ontology of images built upon the structure of 

WordNet  (Fellbaum, 1998).  

To further exploit and encourage synergy in all of 

these research areas, both language processing, vi-

sion processing, and the marriage of the two, our 

goal is to create an upper-level event ontology that 

provides conceptual coverage for the aforemen-

tioned lexical resources, and uses them as the sense 

inventories that house the linguistic realizations of 

those concepts in English.  This ontology is being 

developed with multi-modal applications in mind, 

and in this research we explore the utility of the on-

tology in a text-processing application as well as a 

video-processing application.  The primary motiva-

tions for developing this ontology are two-fold: 

first, as with most ontologies, the event ontology 

should allow for reasoning about events and their 

participants, with a special focus on temporal and 

causal relations between events. Second, the event 

ontology should allow for the generalization of spe-

cific events, allowing for the detection of similar 

events in text and facilitating the recognition of the 

same action being performed by different people 

under different circumstances in video.  The latter 

aim is especially challenging given that we cannot 

assume that the level of generalization appropriate 

for text applications would be the same for video 

applications.   

    In this paper, we describe the current structure 

of the ontology, which is still under development, 

including a brief description of the resources we are 

drawing upon for sense distinctions and for tem-

poral and causal relations.  The ontology will be 

openly released to the research community, but is 

not yet available given that it is still undergoing 

changes and expansions.  Next, we describe prelim-

inary efforts to explore both text and video use cases 

of the ontology.  Pertaining to text, we focus on con-

necting two different descriptions of the same event 

via lexical similarity, such as seize and capture.  

Next, we examine the feasibility of using ontologi-

cal relations to improve human activity recognition 

in videos, focusing on the detection of pick up and 

throw activities, which often occur sequentially.   

2 Event Ontology Design  

To facilitate compatibility with the Semantic Web, 

our ontology is being developed using the open-

source ontology editor, Protégé (Noy et al., 2000), 

in OWL format.  An early design decision we faced 

was how to incorporate the lexicons of interest into 

an ontology.  The approach we have chosen is to de-

velop and maintain VerbNet and FrameNet, and the 

ERE event types as distinct, stand-alone ontologies 

that are imported into the upper-level event ontol-

ogy.  The individual lexicons and the ontology are 

linked through the “has_Sense” relation: conceptual 

nodes in the ontology have senses and associated 

lexical items spelled out in the lexicons.   

2.1 Sense Inventories 

Currently, we have successfully implemented both 

VerbNet and ERE in OWL, since these lexicons 

have only very shallow hierarchical class structures.  

However, we are still developing the OWL-imple-

mentation of FrameNet, since, as mentioned previ-

ously, the ontological structure and inheritance 

types in FrameNet are quite complex.  To this point, 

we have been developing the FrameNet lexical on-

tology on an as-needed basis, and including only 

basic inheritance links within the FrameNet ontol-

ogy.  However, we are exploring the feasibility of 

adopting an existing OWL-implementation of 

FrameNet (e.g., Scheffczyk et al., 2006), and im-

porting this directly into the upper-level ontology. 

Brief descriptions of each of the lexical resources 

included in the ontology are given below, with ex-

planations of how the sense distinctions vary across 

each resource. 

VerbNet, based on the work of Levin (1993), 

groups verbs into “classes” based on compatibility 

with certain “diathesis alternations” or syntactic al-

ternations (e.g., She loaded the wagon with hay vs. 

She loaded hay into the wagon).  Although the 

groupings are primarily syntactic, the classes do 

share semantic features as well, since, as Levin pos-

ited, the syntactic behavior of a verb is largely de-

termined by its meaning.   

VerbNet includes a semantic representation for 

each usage example demonstrating a characteristic 

diathesis alternation of a class.  For example, in the 

Throw class, the following alternate is listed with its 
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semantic representation, based on individual se-

mantic predicates (e.g., motion, cause, ex-

ert_force):  

 

Example: "Steve tossed the ball to the garden." 

Roles:        Agent Verb  Theme  Destination 

Semantic Predicates 

EXERT_FORCE(during(E0), Agent, Theme)  

CONTACT(during(E0), Agent, Theme)  

MOTION(during(E1), Theme) 

not(CONTACT(during(E1), Agent, Theme))  

not(LOCATION(start(E1), Theme, Destination)) 

LOCATION(end(E1), Theme, Destination)  

CAUSE(Agent, E1)  

meets(E0, E1) 

 

This representation is intended to break the event 

down into smaller semantic elements, given as the 

predicates.  The predicates are organized with re-

spect to the time of the event (designated as ‘E’); 

thus they can apply during, at the start or at the end 

of an event.  Although somewhat complex for this 

event, the above representation is meant to capture 

the fact that Steve (Agent) is in contact with and ex-

erts force on a ball (Theme); he then releases (is not 

in contact with) the ball and the ball is in motion; 

the ball’s location at the end of the motion event is 

at the garden (Destination), where it was not located 

at the start of the event; Steve causes this event as 

the Agent having thrown the ball.  Notice that alt-

hough this semantic interpretation captures many of 

the salient semantic components of a throwing 

event, it may not capture the salient visual aspects 

of a throwing event, which may stem more from the 

sequential motions of the body and body parts.  

   Within the ontology, VerbNet will serve as a lex-

icon imported into the ontology, and it will therefore 

provide one set of sense distinctions for the English 

lexical items that denote concepts within the ontol-

ogy.  Because class membership in VerbNet is in 

part based on syntactic information, VerbNet cap-

tures the level of sense distinctions that are clearly 

evidenced by differences in syntactic behaviors. 

FrameNet, based on Fillmore’s frame semantics 

(Fillmore, 1976; Fillmore & Baker, 2001), groups 

verbs, nouns and adjectives into “frames” based on 

words or “frame elements” that evoke the same se-

mantic frame: a description of a type of event, rela-

tion, or entity and the participants in it.  For exam-

ple, the Apply_heat frame includes the frame ele-

ments Cook, Food, Heating_instrument, Tempera-

ture_setting, etc.  The “net” of frames makes up a 

rather complex ontological network, including sim-

ple “is_A” inheritance relations as well as more 

complex relations such as Precedes and Perspec-

tive_on.  FrameNet will serve as another lexicon 

within the ontology, providing a different set of 

sense distinctions for the lexical items denoting con-

cepts.  Since the classification of FrameNet is purely 

semantic and based on shared frame elements, the 

sense distinctions and distinctions between partici-

pant types made in FrameNet are often more fine-

grained than VerbNet.  For example, given the sen-

tence Sally fried an egg, VerbNet would label Sally 

with the traditional semantic role label Agent, while 

FrameNet would label Sally with the more semanti-

cally specified label of Cook. 

The Rich Entities, Relations, and Events (ERE) 

project is based on the Automatic Content Extrac-

tion (ACE) project’s semantic role annotation 

schema (Doddington et al., 2004).  The goal of the 

ERE project is to mark up the events (and other 

types of relations; i.e. “eventualities”) and the enti-

ties involved in them, and to mark coreference be-

tween these.  This provides a somewhat shallow 

representation of the meaning of the text.  The ERE 

schema will also serve as a sort of lexicon imported 

into the ontology, with its event type and subtype 

designations serving as links to the lexical items 

marked up with that designation. ERE annotated 

eventualities are limited to certain types and sub-

types of special interest within the defense commu-

nity, with top-level types referred to as Life, Move-

ment, Transaction, Business, Conflict, Manufac-

ture, Contact, Personnel and Justice events.  Thus, 

the sense distinctions made by this resource are 

grounded in practical considerations of what event 

types are deemed to be of interest, and therefore of-

fer very different insights and information into re-

lated events when compared with either FrameNet 

or VerbNet. 

2.2 Ontology Structure & Relations 

There are many critical decisions to be made when 

determining what concepts and relations to repre-

sent in an ontology; thus, we draw upon the deci-

sions made in the established ontologies WordNet 
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(Fellbaum, 1998), the Suggested Upper Merged On-

tology, SUMO (Pease, 2002), the Descriptive On-

tology for Linguistic and Cognitive Engineering, 

DOLCE (Masolo et al., 2003), and The Basic For-

mal Ontology, BFO (Smith & Grenon, 2002).  Sim-

ilar to the structures of each of these existing ontol-

ogies, we have selected a top level concept, Entity, 

with an initial distinction between Endurant and 

Perdurant entities.  Borrowing heavily from 

DOLCE, we have developed the following defini-

tions.  We define “Entity” as a unique object or set 

of objects in the world – for instance a specific per-

son, place or organization – that typically functions 

as a participant.  We define “Endurants” as those 

entities that can be observed/perceived as a com-

plete concept, no matter which given snapshot of 

time – were we to freeze time, we would still be able 

to perceive the entire endurant.  We define “Per-

durants” as those entities for which only a part exists 

if we look at them at any given snapshot in time.  

Variously called events, processes phenomena, or 

activities and states, perdurants have temporal 

parts or spatial parts and participants.   

We also need to capture richer information about 

the temporal and causal relations between events 

than any of the lexical resources described thus far 

are currently capturing independently. To ensure 

that the ontology captures temporal and causal rela-

tions of utility within NLP, we use relations from 

the established Richer Event Description (RED) 

project (Ikuta et al., 2014).  Like ERE, the RED pro-

ject also aims to markup text with mentions of even-

tualities and entities, but the primary focus of RED 

is to represent the temporal and causal relationships 

between those eventualities.  The final goal is to 

produce annotations rich enough that a computer, 

using complex inferencing, co-reference, and do-

main-specific algorithms, would be able to con-

struct an accurate timeline of when the events in a 

given document occur relative to any fixed dates 

present and relative to one another (e.g., automati-

cally constructed timelines of medical histories). 

RED builds on THYME (Styler et al., 2014), a tem-

poral relationship annotation of clinical data that is 

based on TimeML (Pustejovsky et al., 2010).  The 

temporal relations are quite fine-grained, including 

Before, Before+overlap, Overlap, and CONTAIN. 

These labels are further distinguished with causal 

labels where appropriate: Before/Causes, Be-

fore/Preconditions.  To anchor the events into a 

timeline, RED links the event to a document time or 

section time where applicable, and marks up explicit 

references to time in the document. 

2.3 Snapshot of the Ontology 

The construction of the ontology is still underway, 

and has involved a combination of bottom-up and 

top-down approaches.  As ERE event types provide 

useful constraints on which events to focus on ini-

tially, our efforts generally begin with an examina-

tion of a particular ERE event type, a comparison of 

sense distinctions and associated lexical items made 

in VerbNet and FrameNet, followed by a prelimi-

nary fleshing-out of one area of the ontology. At this 

point, we have situated the top level ERE event 

types Life, Conflict, Contact, Justice and Personnel.  

Thus, we have also situated most of the subtypes 

within these event types, although our approach in-

volves some iterative refinement of the ontology’s 

class structure.   

A simple example portion of the ontology, with 

sense mappings to VerbNet only, is shown in Figure 

1.  Within each of the lexical classes, the individual 

lexical items denoting senses of a concept are listed 

within each resource.  For example, the VerbNet 

Birth class lists the lexical items bear, birth, deliver, 

father, mother, sire, spawn, etc. The parallel Frame-

Net Being_born frame includes just born and the 

phrase come into the world.  ERE realizations in-

clude any lexical item tagged as a trigger indicating 

this type of event during annotation, such as the verb 

born and the noun birth.   

Figure 1: Life_Event extract of event ontology. 

 

Events within the ontology are also related via tem-

poral and causal relations, such as “has_Result” and 

“has_Precondition.”  Here, for example, Birth life 

events are linked to the Life state, Alive (a daughter 

node to Stative_Perdurant), through the “has_Re-

sult” link: once something is born, it is alive.  While 
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some of these relations have been developed (and 

are still under development) specifically for the up-

per-level ontology, other relations stem directly 

from the RED project. 

3 Use Cases 

As mentioned above, the desire to robustly identify 

and corefer events, either in text or in video, is a pri-

mary motivating factor for our development of the 

ontology.  We also wish to be able to reason about 

the events detected, and draw plausible inferences.  

Both of these goals require a level of abstraction that 

can facilitate the detection of two different instances 

of the same event, whether they are textual or visual.  

For instance, textual event descriptions may use 

quite different language, such as Stock prices rose 

precipitously, and The Stock Market leapt ahead. 

Visual events might have different types of agents, 

performing the same action in different ways. There 

is preliminary evidence that VerbNet argument 

structure and semantic predicates can provide a use-

ful level of abstraction, that can serve both language 

processing and vision processing aims.  Prior work 

demonstrated VerbNet's effectiveness in providing 

the foundation for Parameterized Action Represen-

tations (PARs), a framework for translating verbal 

instructions into processing commands for a virtual 

agent (Badler et al., 1999; Badler et al, 2000).  The 

thematic roles indicate the participants in the action, 

and the semantic predicates help to define the plan-

ning goals the virtual agent needs to properly exe-

cute the desired action. The level of abstraction en-

coded in PARs generalized surprisingly well to dif-

ferent sizes and types of agents, simplifying the task 

of using motion capture to expand the coverage of 

actions the virual agents could perform (Bin-

diganavale et al., 2000).   The PAR application fo-

cuses on the generation of virtual action videos ra-

ther than analysis, but it provides encouraging evi-

dence that the same level of abstraction could bene-

fit analysis as well.  

In the sections to follow, we introduce the ways 

in which our ontology and its connections to estab-

lished lexical resources could be uniquely valuable 

for both a text and video processing application.   

 

3.1 Text Use Case 

For supervised machine learning systems, instances 

unseen in training data are problematic. Access to 

related terms found in lexical resources can allow 

them to generalize training data to additional in-

stances.   

   Liu et al. (2014) identify problems even with hu-

man annotation of events, noting that in the 

EventCorefBank corpus (Bejan and Harabajiu, 

2010), “seizing 12 Somali and 11 Yemeni nation-

als” and “capturing 23 of the raiders” had not been 

identified as the same event. Our ontology, in which 

the lexical items seize and capture are linked to the 

same class, could be helpful in automatically con-

necting these two mentions as the same event. In the 

discussion of their system of event  coreference, Liu 

et al. also noted that “[event coreference] can possi-

bly be improved by other types of event relations, 

such as subevent relations.” Such relations are an 

integral part of our event ontology, along with 

causal, precondition and postcondition relations. 

The lexical resources themselves can also be lim-

ited in their coverage. For example, consider again 

the Life_Event portion of the ontology shown in 

Figure 1.  FrameNet lists two entries, born and come 

into the world in a frame that would be associated 

with Birth_LifeEvent.  This, too, can lead to data 

sparsity, but the ontology facilitates pinpointing 

other lexical items that are more generally related to 

the entries in FrameNet’s semantically fine-grained 

Being_born frame.  Thus, the ontology facilitates 

some interoperability between the individual lexical 

resources and makes explicit some of the previously 

unseen relations between them.   

 

3.2 Video Use Case 

Another potential application for an event ontology 

is for action recognition in video.  Human activity 

recognition has already been explored using images 

and video. Activity recognition techniques can be 

grouped into data-driven (Ye et al., 2012) and 

knowledge-driven (Chen et al., 2012a) approaches. 

Data-driven techniques use machine learning ap-

proaches to discern an activity from the training 

data. Space-time methods such as space-time vol-

umes, spatio-temporal features, and trajectories 

have been successful. For classification, generic ap-

proaches like support vector machines and hidden 

Markov models have performed well. 
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So far, most contestants at a recent Action Clas-

sification Challenge at the 2013 International Con-

ference on Computer Vision (ICCV) have utilized 

low-level features over higher-level class attributes 

and ontologies because they traditionally have been 

more effective.  Nonetheless, an action ontology can 

provide a description of the activity using well-

structured terminology with a number of properties 

that are measureable. A well-built ontology could be 

used, understood, and shared between humans and 

computers (Gu et al., 2004; Riboni et al., 2009; 

Chen et al., 2012b) and, as with text applications can 

facilitate the generalization of specific instances of 

actions to enable more consistent detection of the 

same activity, done by different people in different 

contexts. Furthermore, an action ontology can pro-

vide information about the temporal and causal re-

lationships between component actions involved in 

an activity, potentially improving recognition in 

ambiguous cases.    

In related work, an inventory of attributes of hu-

man activities (largely activities related to sports 

and playing musical instruments) has been devel-

oped with a focus on attributes that are visually sa-

lient (Jiang et al., 2013).  The attributes listed in this 

resource are quite simple, primarily organized 

around what body parts are used.  For a given action, 

common attributes of certain body parts or areas of 

the body are listed for each action (e.g., for throw-

ing, Body Part Articulation-Arm = One Arm Raised 

Head Level).   

To a limited extent, these attributes provide a 

break-down of some of the component parts of an 

action by detailing some of the ways in which indi-

vidual body parts move during an activity.  How-

ever, these attributes are not ordered with respect to 

time, and many attributes apply throughout an ac-

tivity instead of expressing finer-grained motions 

within an activity (e.g., Outdoor).  Thus, although 

this inventory captures many of the aspects of an ac-

tion that are visually salient, it fails to capture both 

temporal information and the event-semantics infor-

mation that is salient in text, which VerbNet’s se-

mantic predicates capture.   

Therefore, we see an opportunity to explore com-

bining some of these visually salient action attrib-

utes with the semantic components of events laid 

out in VerbNet, and integrating these at the lowest 

levels of the ontology so that they are clearly tem-

porally and causally related.  For example, throw 

events can be broken down into the following time-

ordered attributes based on VerbNet semantic pred-

icates (described in Section 2.1):  

 

• Time1: Agent physically grasps Theme – Con-

tact(Agent, Theme) 

• Time2: Exert force propelling Theme from 

Agent – Exert_Force(Agent, Theme) 

• Time3: Release theme – not(Contact(Agent, 

Theme)) 

• Time4: Theme is in motion – motion(Theme) 

 

Situated in the ontology, these attributes would be 

related via RED temporal/causal relations, making 

explicit the fact that Contact is in a Before+Over-

lapping/Preconditions relation with Exert_Force, 

and that Exert_Force is in a Before/Causes relation 

with Motion.  Admittedly, to break down all events 

into these smaller components would be a massive 

undertaking; thus, we would consider only a subset 

of sufficiently physical actions, and we begin here 

by simply exploring whether or not breaking down 

a single complex activity, pick up and throw, into its 

components seems to aid in recognition.  

3.2.1  Approach: Skeletonized Video 

As mentioned previously, human activity recogni-

tion has been explored using images and video, and 

one benchmark is the MSR-Action3D dataset (Jiang 

et al., 2013).  It includes 20 actions performed by 10 

subjects, and each subject performs an action 3 

times. An example is shown in Figure 2 for high 

wave where the motion of the arms, legs, head, and 

torso are shown with the depth dimension removed.   

 

 
Figure 2:   Example action of high wave from the 

 MSR-Action3D dataset. 

 

For this work, 20 joint positions are tracked using a 

skeleton tracker and compiled into a time series of 

joints i depicted as pi(t) = (xi(t); yi(t); zi(t)) at a 

frame t. The coordinates are then normalized to re-
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duce dependencies on height, initial body orienta-

tion and location. An example of a skeletonized mo-

tion is shown in Figure 3. 

3.2.2 Preliminary Exploration: Pick Up, Throw 

Preliminary work has shown the capability to rec-

ognize activities when they are isolated (Tahmoush, 

2015). This is similar to recognizing a single word 

on a piece of paper. However, in longer videos, it is 

often necessary to segment the video into pieces 

when there are multiple activities that occur. 

 

 
Figure 3:   Frames from a skeletonized motion for pick up and 

throw with the measured attribute Body Part Articulation-Arm 

= One Arm Raised Head Level. Note that the attribute seg-

ments out the time period for the throw portion. 

 

We look at the compound action of pick up and 

throw, which is part of the MSR-Action3D dataset, 

which also includes high throw and bend. When 

combined, the latter create an activity very similar 

to pick up and throw. In fact, a primary source of 

misclassifications on this dataset is pick up and 

throw being mistaken for bend, as shown in Figure 

4. 

 

 
Figure 4: Confusion matrix for activities without using an  

ontology. 

 

   Results of our initial research recognizing smaller 

activities in larger datasets has shown that motion 

attributes can perform the important segmentation 

of videos which can enable improved recognition.  

In the case of pick up and throw, the throw activity 

can be segmented from the pick up activity using 

just one attribute, the Body Part Articulation-Arm = 

One Arm Raised Head Level attribute that is listed 

for throw (within the previously described Jiang et 

al. (2013) inventory of attributes).  Thus, the use of 

fast, measurable attributes from an action ontology 

can effectively segment the video into smaller, more 

easily recognizable activities without running a 

costly suite of classifiers. This is illustrated in Fig-

ure 3 along with the skeletonized motion.  

   Our research shows that using the attribute Body 

Part Articulation-Arm = One Arm Raised Head 

Level effectively segments the data in 23 out of the 

27 pick up and throw cases.  Visual inspection on 

the 4 failing cases showed skeletonization failure – 

the skeletal joints could not be extracted from the 

video data, thus no skelotonization was produced.  

Additional visual inspection showed successful seg-

mentation on three cases of sidearm throwing and 

one case of an underhand toss, all aberrant cases for 

throw in this data collection.  Depending upon how 

narrowly you define a throw action, these could be 

viewed as false positives.  However, this implies 

both that the attributes allow for some generaliza-

tion in recognizing throwing of all types, and that 

the attributes may perform well in the case of large 

variability in the interpretation of the activity.     
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4 Conclusions & Future Work 

An event ontology that could be equally relevant to 

text processing and language processing would be 

especially useful for multi-modal processing, and 

would allow the same generalizations and infer-

ences to be drawn whether the input was textual or 

visual or both.  It is too soon to know if the event 

ontology described here will achieve that lofty goal, 

but the possibility is real. In general, we see the po-

tential for ontologies to improve human activity 

recognition by allowing for more complex actions 

to be broken down into more easily recognizable ac-

tivities, as well as easily identifiable, defining attrib-

utes of those activities.  Therefore, as we further de-

velop the ontology, we are exploring situating fine-

grained action attributes within the ontology.  Un-

like the existing action inventory referenced, this 

will provide more sophisticated ontological rela-

tions, include temporal and causal relations between 

attributes.  We will also continue to explore compat-

ibility with and/or integration of existing ontologies, 

including Cyc (Reed & Lenat, 2002) and the Emo-

tion Ontology (Hastings et al., 2011).  
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