
Proceedings of DiscoNLP 2016, pages 47–57,
San Diego, California, June 17, 2016. c©2016 Association for Computational Linguistics

Discontinuous parsing with continuous trees

Wolfgang Maier and Timm Lichte
Institute for Language and Information

University of Düsseldorf
Universitätsstr. 1, 40225 Düsseldorf, Germany
{maierwo,lichte}@phil.hhu.de

Abstract

We introduce a new method for incremen-
tal shift-reduce parsing of discontinuous con-
stituency trees, based on the fact that discon-
tinuous trees can be transformed into continu-
ous trees by changing the order of the terminal
nodes. It allows for a clean formulation of dif-
ferent oracles, leads to faster parsers and pro-
vides better results. Our best system achieves
an F1 of 80.02 on TIGER.

1 Introduction

Certain structures in natural language can be de-
scribed as discontinuous, in the sense that they con-
sist of two or more parts which are not adjacent.
In linguistics, such structures are typically consid-
ered the result of some kind of movement of an ele-
ment out of a “base” position. Discontinuous struc-
tures occur across many other languages (Huck and
Ojeda, 1987). Sentence (1) is a German example,
taken from the NeGra treebank.

(1) Darüber
Thereof

muss
must

nachgedacht
thought-about

werden
be

‘We have to think about that’

In this sentence, the adverb Darüber, modifier of the
participle nachgedacht, is moved to the front. Tree-
bank annotation generally accounts for such struc-
tures: Either, the base position of an element is
marked with a trace node which is coindexed with
the moved element, as it is done, e.g., in the Penn
Treebank; or, all parts of a discontinuous constituent
are grouped under a single node, as it is done in the

Darüber

PROAV

muß

VMFIN

nachgedacht

VVPP

werden

VAINF

.

$.

MO HD

VP

OC HD

VP

OCHD

S

Figure 1: Discontinuous annotation of (1)

German TIGER and NeGra treebanks. This can be
seen in Fig. 1, which shows the treebank annotation
of (1). The connection between Darüber and its ref-
erence participle nachgedacht is made by grouping
both words under a single VP node.

Parsing discontinuous constituents is a challenge,
since approaches that produce context-free deriva-
tions cannot be used. For treebanks in which dis-
continuities are represented by traces, various ap-
proaches have been presented, mostly based on the
extension of a CFG parser with a pre-, post- or
in-processing step. See, e.g., Johnson (2002), Di-
enes and Dubey (2003), Levy and Manning (2004),
Schmid (2006), and Cai et al. (2011). For the di-
rect parsing of discontinuous constituents, grammar-
based techniques have been used, mostly on the
basis of Linear Context-Free Rewriting System
(LCFRS) (Vijay-Shanker et al., 1987). LCFRS is an
extension of Context-Free Grammar in which a sin-
gle non-terminal can span k ≥ 1 continuous parts
of the input string; i.e., CFG is a special case of
LCFRS in which k = 1. See, e.g., Kallmeyer and
Maier (2013), van Cranenburgh (2012), Angelov
and Ljunglöf (2014), Nederhof and Vogler (2014),

47

or Cohen and Gildea (2015). Even with advanced
approaches such as the latter, the high parsing com-
plexity with such approaches is a major bottleneck
which tends to lead to low parsing speeds.

Another approach consists of creating a reversible
conversion of discontinuous constituents to depen-
dencies, and to parse those with an appropriate de-
pendency parser. This very successful approach
is taken by Hall and Nivre (2008) and Fernández-
González and Martins (2015).

Recently, Versley (2014) and Maier (2015) have
exploited a strategy known from non-projective de-
pendency parsing (Nivre, 2009; Nivre et al., 2009):
One can convert every non-projective dependency
tree into a projective one by reordering its words.
Non-projective dependency parsing can therefore be
cast as projective dependency parsing with an ad-
ditional online reordering operation which allows
for the input to be processed out-of-order (“swap”).
The same holds for the parsing of discontinuous
constituency trees. While Versley (2014) adapts
the “easy-first” strategy of Goldberg and Elhadad
(2010) to work with a swap operation, Maier (2015)
extends the shift-reduce approach of Zhu et al.
(2013) correspondingly. Note that the idea of pro-
cessing linear precedence and immediate dominance
for discontinuous parsing separately has also been
explored in a grammar-based context by Nederhof
and Vogler (2014).

In this paper, we build on the work of Maier
(2015) and make two contributions. Firstly, we in-
troduce a new parser transition SKIPSHIFT-i which
in comparison to the swap operation reduces the
amount of decisions required to be taken in order
to produce a discontinuous constituent and therefore
leads to fewer errors. Secondly, we address the prob-
lem that when processing the input terminals out-
of-order, the same tree can be mapped to different
parser transition sequences. We introduce an algo-
rithm which reorders the terminals of a tree off-line
such that the resulting tree is continuous. The re-
ordered terminals are used as a basis for obtaining
an oracle that maps the tree to a canonical transi-
tion sequence. All new techniques are implemented
within uparse, the publicly available parser of Maier
(2015).1 An experimental evaluation shows that

1https://github.com/wmaier/uparse.

choosing the appropriate terminal order is crucial to
parsing success: We obtain state-of-the-art results
for discontinuous shift-reduce constituency parsing,
namely 80.02 on the TIGER data set of Hall and
Nivre (2008).

The remainder of the article is organized as fol-
lows. In Sec. 2, we present the basic architecture for
shift-reduce parsing with discontinuous constituents
of Maier (2015), on which we build our work. Sec. 3
presents our methodology. In Sec. 4, we present
our experiments and discuss the results, and Sec. 5
closes the article.

2 Discontinuous Shift-Reduce Parsing

2.1 Basic parser architecture

We base our work on the shift-reduce parser archi-
tecture of Maier (2015), which in turn is based on
the architecture of Zhu et al. (2013).

As usual in shift-reduce parsing, a parser state
represents a (partial) derivation. It is a tuple con-
sisting of a queue of incoming pairs of input tokens
and POS tags2 which have not yet been processed,
and a stack which holds completed constituents. The
initial parser state has an empty stack and a queue
which holds the input string to be parsed. From a
given state, other states can be reached via the fol-
lowing state transitions.

• SHIFT shifts a single element from the queue
onto the stack.

• BINL-X, resp. BINR-X build a new X con-
stituent with the first two stack elements as
its children and its head coming from its left,
resp. right child. The new constituent replaces
the first two stack elements.

• UNARY-X builds a new X constituent with the
first stack element as its child. The new con-
stituent replaces the first stack element.

• SWAP-i handles discontinuous constituents. It
allows for a block of i elements from the stack

2POS tagging and constituency shift-reduce parsing can be
done jointly, as demonstrated, e.g., by Mi and Huang (2015).
However, note that throughout, we assume POS tagging to be
done outside of the parser as in earlier work (Zhu et al., 2013;
Maier, 2015).

48

to be swapped back on the queue, starting with
the second stack element.3

• FINISH pops the last remaining element from
the stack, given that it is labeled with the root
label and the queue is empty.

• IDLE can be applied any number of times after
FINISH. This compensates for different lengths
of analyses (Zhu et al., 2013).

A parser state to which FINISH has been applied
is a final state. Transitions can only be applied on
states which fulfill certain conditions. For instance,
SHIFT can only be applied if there are elements left
on the queue. The full set of the corresponding con-
ditions is listed in the appendix of Zhang and Clark
(2009), and in Maier (2015) (for SWAP).

2.2 Oracles

An oracle is used to obtain canonical transition se-
quences from gold treebank trees. These sequences
can then be learned by the parser.

Since we only use transitions that handle unary
and binary nodes, incoming trees must be binarized.
As in previous work, we use head-outward binariza-
tion with binary top and bottom productions, and a
single binarization label @X for all X constituents.
For details on the binarization, see Maier (2015) and
references therein.

For continuous parsing, i.e., when no discontin-
uous trees have to be handled such as in Zhu et al.
(2013), one can use a simple oracle which traverses
the tree top-down in postorder. Before the traver-
sal starts, a single IDLE followed by a single FIN-
ISH transition are generated. Then, at each binary X
node, a corresponding BINL-X / BINR-X is gener-
ated; each unary X node leads to a UNARY-X tran-
sition. For a terminal, SHIFT is generated. In a last
step the transition sequence is reversed.

Discontinuous trees can be handled with the
SWAP-i transition, which allows for the input to be
processed out-of-order (Maier, 2015). The corre-
sponding oracle traverses a treebank tree bottom up
left-to-right. Mirroring the parser, it maintains an
incoming list of token/POS-pairs to be processed

3This operation is called COMPOUNDSWAPi in Maier
(2015); we do not use single SWAP here.

(initially filled with the sequence of terminals/pre-
terminals of the tree), a stack structure holding sub-
trees of the treebank tree to be processed (initially
empty), and a list holding the result.

While the incoming list is not empty, repeat the
following two steps.

1. If the stack is not empty, repeat:

• If the root of the first subtree on the stack
is the only child of its parent node p (la-
beled X), pop the subtree from the stack
and push the subtree the root of which is
p, then add an UNARY-X transition to the
result.
• If the first two subtrees on the stack share

the same parent node p (labeled X), pop
both subtrees from the stack and push the
subtree the root of which is p, then add a
BINR-X / BINL-X transition, depending
on the head side of p.

If no transitions have been added, go to the next
step.

2. If the incoming list is not empty, process the
next terminal as follows. Determine the left-
most terminal dominated by the right child of
the parent of the top element on the stack. If
there is no gap, then this is the first element in
our incoming list. We can add a single SHIFT,
remove the first element from the incoming list
and add it to the stack. If there is a gap, then
there are i ≥ 1 terminals between the head of
the list and the terminal to be shifted. We there-
fore add i+1 SHIFT and one SWAP-i transition;
then we remove the i+1st element from the in-
coming list and add it to the stack.

Note that in the continuous case, both oracles
yield the same result. As an example, consider
Fig. 1. At the start, no reduce transitions can be
added because the stack is empty. We pass to step
2, add a SHIFT transition to the result and remove
the first token (Darüber) from the list. Then, we
must jump over the gap, i.e., we determine the left-
most terminal dominated by the right child of the
parent of the topmost stack element. The parent
of the topmost stack element is VP, and its right-
most child nachgedacht, resp. VVPP. We therefore

49

add two SHIFTs and one SWAP-1. This then al-
lows for the addition of a BINR-VP. In the follow-
ing, we have to jump over muß again. The parent of
the topmost stack element is (the upper) VP and its
rightmost child is werden. Therefore, we add again
two SHIFTs and one SWAP-1 followed by BINR-VP.
Last, we SHIFT the remaining muss and add BINR-
S.

2.3 Structured prediction
For structured prediction, each parser state is as-
signed a score. The score of the start state is 0, and
the score of the i + 1th state is the sum of the score
of the ith state and the dot product of a local feature
vector obtained through a feature function φ and a
global weight vector θ. We train θ with the averaged
Perceptron using max violation (Huang et al., 2012).
Decoding is done with beam search. The beam of
size n is initialized with the start state. Then repeat-
edly, a candidate list is filled with all states which
can be built using transitions on states on the beam.
The highest scoring n of them are put back on the
beam. Parsing is finished if the highest scoring state
on the beam is a final state.

2.4 Features
The feature function φ works by applying templates
to parser states. The templates describe particular
configurations of stack and queue. As does Maier
(2015), we use the feature template set from Zhang
and Clark (2009) as a baseline, and furthermore ex-
periment with the extended features of Zhu et al.
(2013). We also use the features for discontinuities
from Maier (2015). For the full template list, consult
Appendix A.

3 Methodology

We now present the main contributions of this pa-
per, namely, the tree reordering algorithm, the new
parser transition, and the new oracles.

3.1 Discontinuous Trees
First, we define the structures which are manipu-
lated by the tree reordering algorithm. A discontin-
uous tree is a directed acyclic graph T = (V,E, r)
where V is a set of nodes with r ∈ V the root node,
and E : V × V a set of edges with E∗ the reflex-
ive transitive closure of E. For all v ∈ V \ {r},

there is exactly one (u, v) ∈ E with u ∈ V ; u is
thereby called the parent of v and v a child of u.
Nodes with no children are called terminals. We
let VT = {v ∈ V | v is a terminal}; all vt ∈ VT
are uniquely numbered from 1 to |VT | by a function
ind (Maier and Lichte, 2011). The yield of a node
v ∈ V is the set of all terminals it dominates, i.e.,
for all v ∈ V , yield(v) = {u ∈ VT | (v, u) ∈ E∗}.
V is equipped with an order ≺, which orders the
nodes according to the lowest index of the termi-
nals they dominate. I.e., u ≺ v iff min({ind(u′) |
u′ ∈ yield(u)}) < min({ind(v′) | v′ ∈ yield(v)})
where u, v ∈ V . We write c(v) for the ordered list
of the children of a given node v; for the ith child of
v, we write c(v)[i].

Any node v ∈ V is discontinuous (as opposed
to continuous) if there are v1, v2 ∈ yield(v) such
that ind(v1) + 1 < ind(v2) and ind(v1) + 1 /∈
{ind(v′) | v′ ∈ yield(v)}. If {i | v1 < i <
v2} ∩ ind(v) = ∅, then the tuple (v1, v2) is called
a gap of size ind(v2) − ind(v1) − 1; v1 and v2 are
called its left and right border. T is discontinuous if
V contains discontinuous nodes. A continuous node
which has discontinuous children is called a gap cre-
ator.

3.2 Continuous Tree Reordering

As already observed in previous literature (Nivre,
2009; Versley, 2014; Maier, 2015), a discontinuous
tree can be made continuous by changing the order
of the terminals. The new terminal order must be
such that all gaps in yields are eliminated, i.e., it
must ensure that discontinuous parts are joined.

In other words, given a tree (V,E, r) we want
to produce a function indσ to replace ind . indσ
must be such that all v ∈ V are continuous. In
general, more than one such function will exists for
a tree. As an example, consider again the tree in
Fig. 1. Two possible permutations of the terminals
which eliminate the VP gap would be: Darüber
nachgedacht werden muß (i.e., indσ(Darüber) =
1, indσ(nachgedacht) = 2, indσ(werden) = 3,
indσ(muß) = 4) and muß Darüber nachgedacht
werden (i.e., indσ(muß) = 1, indσ(Darüber) = 2,
indσ(nachgedacht) = 3, indσ(werden) = 4). Note
that the first order is the complementizer-free order
of embedded sentences. The second order is also an
acceptable German sentence, namely, the question

50

form of the original sentence.
Given a binarized tree T = (V,E, r), we can ob-

tain different variants of indσ systematically with a
recursive top-down procedure reorder , to be called
on r. reorder yields a bijection σ of the set
{ind(vt) | vt ∈ yield(r)} to itself, and we define
indσ such that for all vt ∈ yield(r), indσ(vt) =
σ(ind(vt)). Note that we use tuple notation with
angled brackets for the output of the bijection; ⊕
denotes tuple concatenation

When called on a node v ∈ V , reorder
distinguishes three cases. (1) If v is a ter-
minal, reorder(v) simply yields [ind(v)].
(2) If v is an unary node, reorder(v) yields
reorder(c(v)[0]). (3) If v is a binary node, then
there are two different possibilities. reorder can
yield reorder(c(v)[0]) ⊕ reorder(c(v)[1]) or
reorder(c(v)[1])⊕ reorder(c(v)[0]). The former is
called left reordering, since all terminals of the left
child are placed in front of all terminals of the right
child. Correspondingly, the latter is called the right
reordering. Not all nodes have to be reordered in
the same way; we therefore explore the following
reordering selections.

• LEFT: always select left reordering.

• RIGHT: always select right reordering. This
also reorders continuous nodes.

• RIGHTD: select right reordering if node is a
gap creator, otherwise do not reorder.

• DISTi: select right reordering if node is a gap
creator and the left or right child have a gap of
size ≥ i, otherwise do not reorder.

• LABEL: specify a reordering direction for par-
ticular labels, and a default reordering for all
others.

As an example, let us look at the result of
RIGHTD when applied on the tree in Fig. 1. The
original set of indices of the root node is {1, 2, 3, 4}.
Since S is binary and a gap creator (S is continu-
ous, but its VP child is discontinuous), we select the
right reordering, i.e., reorder(S) is reorder(muß)⊕
reorder(VP). reorder(muß) is [2]. The VP is
not a gap creator, i.e., we apply the left reorder-
ing and obtain reorder(VP) ⊕ reorder(werden).

reorder(werden) is [4]. The lower VP is also
no gap creator, therefore we apply again the
left reordering and obtain reorder(Darüber) ⊕
reorder(nachgedacht). reorder(Darüber) is [1],
and reorder(nachgedacht) is [3], i.e., the result for
the lower VP is [1, 3]. The result for the upper
VP is [1, 3, 4], and the result for S is [2, 1, 3, 4].
In other words, we obtain indσ(Darüber) = 2,
indσ(muss) = 1, indσ(nachgedacht) = 3, and
indσ(werden) = 4, the above mentioned question
ordering of the sentence.

3.3 From Swap to Skip-Shift

We introduce a new transition SKIPSHIFT-i, which
shifts the ith element from the queue (counting from
0). In other words, it allows the parser to di-
rectly skip elements on the queue while shifting.
SKIPSHIFT-i underlies the same restrictions as the
”regular” SHIFT transition (Zhang and Clark, 2009):
The queue must not be empty and the state must not
be a final state. Furthermore, if last transition was of
type BINR- and led to an intermediate constituent,
SKIPSHIFT-i is disallowed.

The new transition reduces the amount of tran-
sitions needed to parse a discontinuity. As an
example, consider the transition sequence which
would be extracted from the tree in Fig. 1 with
SHIFT and SWAP, namely SHIFT, SHIFT, SHIFT,
SWAP, BINR-VP, SHIFT, SHIFT, SWAP, BINR-
VP, SHIFT, BINR-S. Note that the word muss is
shifted two times and swapped back on the queue
before it is finally used in a reduce transition the
third time it is shifted. With SKIPSHIFT-i, only 7
instead of 11 decisions are required: SKIPSHIFT-0,
SKIPSHIFT-1, BINL-VP, SKIPSHIFT-1, BINL-VP,
SKIPSHIFT-0, BINR-S.

3.4 From reordering to oracles

In the case of discontinuities, the bottom-up ora-
cle from Maier (2015) determines the next termi-
nal to be shifted by skipping over the discontinuity
through a traversal of the relevant part of the input
tree, namely, the path from the left to right border of
a gap.

We modify the old oracle such that the order of
operations is determined by the terminal reordering
obtained with the reorder procedure described in
Sec. 3.2. If the incoming terminal list is ordered by

51

indσ, the gap borders in the original ordering are
joined together. Therefore, no tree walk is necessary
to determine the next terminal to be shifted (i.e., the
right border of the gap). It is always the first one
in the reordered list. We must, however, determine
how many terminals have to be shifted and swapped,
resp. skipped, relative to the original order, i.e., the
size i of the gap that is skipped. For this, we deter-
mine the index of the first terminal in the list of ter-
minals to be processed, and then count the number
of terminals in the list that have a lower index; i is set
to this number minus one. Once determined, i can
be used with either SHIFT and SWAP, or with SKIP-
SHIFT. With the former, we generate i + 1 SHIFT

followed by one SWAP-i transition. With the latter,
we just generate a single SKIPSHIFT-i transition.

3.5 More features

The new SKIPSHIFT-i operation can access any el-
ement in the input queue, not just the first one. In
order to make the corresponding information avail-
able to the parser, we introduce a new feature set
which consist of all token/POS pairs remaining on
the queue (”full queue features”).

Furthermore, we adapt swap importance weight-
ing from Maier (2015). During training, all updates
that concern a swap transition are counted twice. We
do the same for SKIPSHIFT-i.

4 Experiments

We implement the tree transformations with the cor-
responding oracles, as well as the SKIPSHIFT-i op-
eration within uparse, the publicly available im-
plementation of the parser of Maier (2015).4

4.1 Data and Setup

In order to facilitate a comparison, we use the same
data as Maier (2015), we use the TIGER treebank re-
lease 2.2 with the splits of Farkas and Schmid (2012)
and Hall and Nivre (2008). In the former, the first
half of the last 10,000 sentences are used for devel-
opment and the second half for testing, and the rest
is left for training. In the latter, the treebank is split
into ten parts, such that sentence i is put into part
imod 10. The first of those parts is used for testing,
the concatenation of the rest for training. As usual,

4https://github.com/wmaier/uparse.

we attach the material which is not included in the
annotation (mainly punctuation) to the tree itself.

We run the training for 20 iterations using beam
size 4. Other parameters are indicated later. The
results are reported as labeled bracket scores, as ob-
tained with the evaluation module of discodop.5

We use the proper.prm file of the discodop
distribution, i.e., root nodes are not included, but
punctuation is included in the evaluation.

4.2 Results

All experimental results are listed in Tab. 1 (evalua-
tion on all constituents) and Tab. 2 (evaluation only
on discontinuous constituents).

As a baseline, we run a single experiment with the
SWAP-i transition. Then, with different settings, we
run experiments with the SKIPSHIFT-i transition,
using the LEFT, RIGHTD, RIGHT, LABEL, and the
DISTi reorderings, choosing 2, 4, and 8 as distance
for the latter. For the label-based reordering, we em-
ploy the left reordering for all NP and PP nodes, and
RIGHTD for all other nodes. NPs and PPs are very
similar in the TIGER annotation; the only difference
between both is the presence of a preposition in PPs,
resp. the absence of it in NPs (Maier et al., 2014).
Both are often deeply embedded; we therefore pre-
sume that recognizing the entire phrase before rec-
ognizing the material in the gap is more promising.

The results for SWAP-i confirm the results from
Maier (2015). With the SKIPSHIFT-i operation, the
parser performs consistently better than with SWAP-
i. The best result is obtained with DIST2, an F1

gain of 2.2 over the swap baseline. Unsurprisingly,
RIGHT does not perform well due to the fact that it
also aggressively reorders nodes which are continu-
ous; it will not be included in the remaining experi-
ments. When evaluating discontinuous constituents
only, DIST8 is the most successful setting. This
can be explained by the fact that preferring the right
reordering in nodes with children that have large
gaps means that the i in SKIPSHIFT-i transitions can
be maintained lower than with the left reordering.
Since SKIPSHIFT-i with a lower i are seen more fre-
quently in training, results improve. LABEL is not
that successful, achieving only a slightly higher pre-
cision on discontinuous constituents.

5https://github.com/andreasvc/discodop.

52

Rec. Prec. F1 Exact
SWAP-i 72.80 74.67 73.72 36.27

Baseline
LEFT 73.94 75.54 74.73 37.37

RIGHTD 75.15 76.77 75.95 37.19
RIGHT 25.61 22.53 23.97 10.68
LABEL 75.14 76.71 75.92 37.28
DIST2 75.13 76.81 75.96 37.19
DIST4 74.98 76.55 75.76 37.19
DIST8 75.18 76.64 75.88 37.56

+ extended features
LEFT 74.43 75.87 75.14 37.80

RIGHTD 75.58 77.07 76.32 37.86
LABEL 75.24 76.61 75.92 37.41
DIST2 75.70 77.25 76.46 37.82
DIST4 75.60 77.07 76.33 37.84
DIST8 75.18 76.61 75.89 37.83

+ extended and disco features
LEFT 74.77 76.10 75.43 37.84

RIGHTD 75.73 77.14 76.43 37.13
LABEL 75.65 77.07 76.35 37.38
DIST2 75.57 76.95 76.25 37.69
DIST4 75.63 77.08 76.35 37.52
DIST8 75.39 76.77 76.08 37.72

+ extended and full queue features
LEFT 74.44 75.96 75.19 38.54

RIGHTD 75.42 76.96 76.18 38.20
LABEL 75.30 76.91 76.10 37.90
DIST2 75.65 77.17 76.40 38.01
DIST4 75.43 76.83 76.12 38.22
DIST8 75.20 76.54 75.87 37.95

+ extended features and imp. weighting
LEFT 74.45 75.82 75.13 37.53

RIGHTD 75.44 76.77 76.10 37.48
LABEL 75.42 76.84 76.12 37.70
DIST2 75.51 76.89 76.19 37.37
DIST4 75.18 76.55 75.86 37.68
DIST8 75.00 76.36 75.67 37.12

+ extended, disco and full queue feature
+ importance weighting

LEFT 74.87 76.23 75.54 37.61
RIGHTD 75.28 76.63 75.95 37.03

LABEL 75.30 76.76 76.02 36.94
DIST2 75.43 76.95 76.19 37.54
DIST4 75.33 76.65 75.98 37.05
DIST8 75.16 76.64 75.89 37.28

Table 1: Results (all constituents)

Rec. Prec. F1 Exact
SWAP-i 10.29 23.64 14.34 8.03

Baseline
LEFT 14.31 18.64 16.19 12.33

RIGHTD 10.90 25.27 15.24 8.74
RIGHT 1.73 0.18 0.33 0.51
LABEL 10.58 25.88 15.02 8.75
DIST2 11.82 28.15 16.64 9.73
DIST4 11.63 25.40 15.96 10.10
DIST8 13.53 27.11 18.05 11.29

+ extended features
LEFT 13.54 21.38 16.58 12.20

RIGHTD 10.25 31.00 15.41 9.04
LABEL 10.19 27.92 14.94 8.99
DIST2 11.02 31.32 16.31 9.99
DIST4 11.22 29.16 16.20 10.25
DIST8 11.78 26.00 16.21 10.56

+ extended and disco features
LEFT 14.90 29.53 19.80 14.17

RIGHTD 8.43 42.13 14.05 8.14
LABEL 8.87 45.91 14.86 8.57
DIST2 9.03 41.49 14.83 9.43
DIST4 10.14 42.86 16.40 9.62
DIST8 11.42 37.96 17.55 11.06

+ extended and full queue features
LEFT 14.30 24.86 18.16 12.98

RIGHTD 10.96 30.69 16.15 9.79
LABEL 11.12 29.02 16.08 9.57
DIST2 11.58 31.93 17.00 9.91
DIST4 11.03 27.74 15.78 9.81
DIST8 12.06 27.60 16.79 10.42

+ extended features and imp. weighting
LEFT 13.39 24.24 17.25 12.36

RIGHTD 9.15 31.98 14.23 7.79
LABEL 9.47 33.83 14.80 8.32
DIST2 10.00 33.59 15.41 9.12
DIST4 9.70 32.50 14.94 9.41
DIST8 10.54 29.14 15.48 9.78

+ extended, disco and full queue feature
+ importance weighting

LEFT 14.31 35.27 20.36 13.80
RIGHTD 8.91 45.93 14.92 8.37

LABEL 8.39 43.10 14.04 8.44
DIST2 8.45 42.62 14.11 8.67
DIST4 8.91 41.11 14.65 8.72
DIST8 10.95 41.84 17.35 10.55

Table 2: Results (discontinuous constituents)

53

V M here vC H&N F&M
F1 74.23 79.52 80.02 79.00 79.93 85.53
E 37.32 44.32 45.11 41.33 37.78 51.21

Table 3: Results for sentence length ≤ 40 on H&N data

The fact that we need less operations in total in
order to build a tree (in comparison to SWAP-i) is
reflected in reduced parsing times. With SWAP-i,
we need 63 seconds to parse the entire test set (79.5
sent./sec.), with SKIPSHIFT-i and LEFT, we only
need 49 seconds (101.8 sent./sec.).

When adding the extended features from Zhu et
al. (2013), the trend seen in Maier (2015) is re-
peated: Looking deeper into the structures on the
stack leads to a higher performance when looking at
all constituents. On discontinuous constituents, we
obtain a improved precision, but a slightly worse re-
call. The features for discontinuities have also the
same effect as in Maier (2015), no improvement is
achieved on all constituents. The precision on dis-
continuous constituents is, however, much higher
while the corresponding recall drops sharply, indi-
cating data sparseness. Adding the full queue fea-
tures to the extended features only has a very small
effect.

Also, adding importance weighting alone is not
very successful. However, when we combine the ex-
tended, the discontinuous and the full queue features
with importance weighting, we achieve the best re-
sult on discontinuous constituents; surprisingly this
happens when using the LEFT reordering.

Last, for comparison, we run experiments on the
Hall and Nivre (2008) (H&N) data set. We run
our own parser (LEFT; extended, discontinuous, and
full queue features; importance weighting); and also
discodop (van Cranenburgh and Bod, 2013) (vC)
(default settings, using gold POS tags). Tab. 3
shows the corresponding results along with those
of Versley (2014) (V), Maier (2015) (M), H&N
and Fernández-González and Martins (2015) (F&M)
(taken from Maier (2015)). Note that we do improve
on M, but still lie much behind F&M.

4.3 Discussion

What about the big picture? In spite of an improve-
ment on Maier (2015), the scores on the discontinu-
ous constituents remain very low. A manual anal-
ysis of the parsing results leads us to the conclu-

sion that the strongest point of discontinuous shift-
reduce parsing, namely the locality of the search
which leads to its speed, is also its biggest weakness.
Certain structures can simply not be recognized al-
most “by definition”. For instance, in order to cor-
rectly recognize an NP with an extraposed modifier,
the reduction of the full NP must be delayed until
the complete modifier has been recognized. With
the current parsing model, in some situations, there
is just no way of knowing if a delay is necessary,
since the modifier can be still out of reach for the
feature function when the first part of the full NP
has already been recognized. Due to beam search,
once the NP is reduced, we cannot backtrack, i.e.,
the modifier cannot be attached later.

One way of addressing this problem could be the
use of exact search, such as in Thang et al. (2015).
However, there is another perspective. An impor-
tant finding of the experiments is that recognizing
material in gaps before the discontinuous constituent
itself (RIGHTD) leads to high precision and low re-
call on discontinuous constituents, while recogniz-
ing the discontinuous constituent first (LEFT) leads
to more errors, but also catches more cases (lower
precision, higher recall). The reason for this is that
in the former case, one decides too late and in the
latter case too early if a partially recognized con-
stituent is part of a discontinuous structure. We con-
jecture that what makes the parsers of Fernández-
González and Martins (2015) and van Cranenburgh
and Bod (2013) successful are their mechanisms of
handling this issue: The former joins the recogni-
tion of a terminal with the decision of what part of
a (potentially discontinuous) constituent it belongs
to. The latter gets structure-global context by build-
ing the final tree as a combination of discontinu-
ous base structures. This makes it particularly more
successful on discontinuous structures, achieving
Prec./Rec./F1 of 33.77/50.29/40.41 on them (com-
pared to our result of 19.36/39.71/26.03) (unfor-
tunately, Fernández-González and Martins (2015)
have not reported results on discontinuous con-
stituents alone). In future work, we will explore pos-
sibilities of integrating such a mechanism in a shift-
reduce approach.

We have seen that choosing the transition order
well, i.e., picking the right oracle, is crucial for pars-
ing success. We therefore want to explore how the

54

order of transitions affects parsing results in the con-
tinuous case. A particular transition order could
be forced via a tree transformation such as right-
corner transform (Schuler et al., 2010). Concretely,
right-corner transform would give preference to eas-
ier transition orders in which we reduce as soon as
possible, i.e., long sequences of SHIFTs would be
avoided.

Last, it should be noted that the applica-
tion of SKIPSHIFT-i is not limited to discontin-
uous constituency parsing. We want to apply
our method to non-projective dependency parsing,
where SKIPSHIFT-i could be used instead of swap-
eager/lazy transitions (Nivre et al., 2009) in a pars-
ing framework such as the one of Zhang and Nivre
(2011). This would also allow for an ”intersec-
tion” between our work and then one of Fernández-
González and Martins (2015).

5 Conclusion

We have presented a new tree reordering method
which makes discontinuous constituency trees con-
tinuous. The reordering method can be used to
obtain oracles for discontinuous shift-reduce pars-
ing. In conjunction with a new parser transition, we
have achieved state-of-the-art results for discontinu-
ous shift-reduce constituency parsing.

Appendix A. Feature Templates

Our parser uses feature templates from previous
work. For the sake of completeness, we list them
here. si and qi stand for the ith item on stack and
queue, w is the head word, t the head tag and c the
constituent label (w, t and c are identical on preter-
minal level). l and r (ll and rr) are the left and right
children (grand-children) of the corresponding ele-
ment on the stack; u deals with unary constituents.

The following baseline features have been pre-
sented by Zhang and Clark (2009).

unigrams
s0tc, s0wc, s1tc, s1wc, s2tc, s2wc, s3tc, s3wc,
q0wt, q1wt, q2wt, q3wt,
s0lwc, s0rwc, s0uwc, s1lwc, s1rwc, s1uwc

bigrams
s0ws1w, s0ws1c, s0cs1w, s0cs1c, s0wq0w, s0wq0t,
s0cq0w, s0cq0t, s1wq0w, s1wq0t, s1cq0w, s1cq0t,
q0wq1w, q0wq1t, q0tq1w, q0tq1t

trigrams
s0cs1cs2w, s0cs1cs2c, s0cs1cq0w, s0cs1cq0t,
s0cs1wq0w, s0cs1wq0t, s0ws1cs2c, s0ws1cq0t

The extended features have been introduced by
Zhu et al. (2013).

extended
s0llwc, s0lrwc, s0luwc, s0rlwc, s0rrwc,
s0ruwc, s0ulwc, s0urwc, s0uuwc, s1llwc,
s1lrwc, s1luwc, s1rlwc, s1rrwc, s1ruwc

The following disco features stem from Maier
(2015). As explained there, in the following tem-
plates, x denotes the gap type of a stack element.
It can be “none” (tree on stack is fully continuous),
“pass” (there is a gap at the root), and “gap” (the root
of this tree fills a gap, i.e., its children have gaps, but
the root does not). y stands for the sum of all gap
lengths.

unigrams
s0xwc, s1xwc, s2xwc, s3xwc,
s0xtc, s1xwc, s2xtc, s3xwc,
s0xy, s1xy, s2xy, s3xy
bigrams
s0xs1c, s0xs1w, s0xs1x, s0ws1x, s0cs1x,
s0xs2c, s0xs2w, s0xs2x, s0ws2x, s0cs2x,
s0ys1y, s0ys2y, s0xq0t, s0xq0w

Acknowledgments

We would like to thank Omri Abend for discus-
sions. Thanks also to the three anonymous review-
ers for valuable comments and suggestions. This
work was partially funded by Deutsche Forschungs-
gemeinschaft (DFG).

References
Krasimir Angelov and Peter Ljunglöf. 2014. Fast statis-

tical parsing with parallel multiple context-free gram-
mars. In Proceedings of the 14th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics, pages 368–376, Gothenburg, Sweden.

Shu Cai, David Chiang, and Yoav Goldberg. 2011.
Language-independent parsing with empty elements.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 212–216, Portland, OR.

Shay B. Cohen and Daniel Gildea. 2015. Parsing linear-
context free rewriting systems with fast matrix multi-
plication. CoRR, abs/1504.08342.

55

Péter Dienes and Amit Dubey. 2003. Antecedent re-
covery: Experiments with a trace tagger. In Proceed-
ings of the 2003 Conference on Empirical Methods in
Natural Language Processing, pages 33–40, Sapporo,
Japan.

Richard Farkas and Helmut Schmid. 2012. Forest
reranking through subtree ranking. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1038–1047, Jeju
Island, Korea, July. Association for Computational
Linguistics.

Daniel Fernández-González and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and Teh 7th International Joint Conference
on Natural Language Processing of the Asian Federa-
tion of Natural Language Processing, Beijing, China.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 742–750, Los Angeles, CA.

Johan Hall and Joakim Nivre. 2008. Parsing discon-
tinuous phrase structure with grammatical functions.
In Bengt Nordström and Aarne Ranta, editors, Ad-
vances in Natural Language Processing, volume 5221
of Lecture Notes in Computer Science, pages 169–180.
Springer, Gothenburg, Sweden.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Pro-
ceedings of the 2012 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 142–
151, Montréal, Canada, June. Association for Compu-
tational Linguistics.

Geoffrey Huck and Almerindo Ojeda, editors. 1987.
Discontinuous constituency. Academic Press, New
York.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
pages 136–143, Philadelphia, PA.

Laura Kallmeyer and Wolfgang Maier. 2013. Data-
driven parsing using probabilistic linear context-
free rewriting systems. Computational Linguistics,
39(1):87–119.

Roger Levy and Christopher Manning. 2004. Deep de-
pendencies from context-free statistical parsers: Cor-
recting the surface dependency approximation. In Pro-
ceedings of the 42nd Meeting of the Association for

Computational Linguistics (ACL’04), Main Volume,
pages 327–334, Barcelona, Spain.

Wolfgang Maier and Timm Lichte. 2011. Characteriz-
ing discontinuity in constituent treebanks. In Formal
Grammar. 14th International Conference, FG 2009.
Bordeaux, France, July 25-26, 2009. Revised Selected
Papers, volume 5591 of LNCS/LNAI, pages 167–182,
Berlin, Heidelberg, New York. Springer-Verlag.

Wolfgang Maier, Miriam Kaeshammer, Peter Baumann,
and Sandra Kübler. 2014. Discosuite - A parser
test suite for German discontinuous structures. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland. European Language Resources
Association (ELRA).

Wolfgang Maier. 2015. Discontinuous incremental shift-
reduce parsing. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 1202–1212, Beijing, China, July. Association
for Computational Linguistics.

Haitao Mi and Liang Huang. 2015. Shift-reduce con-
stituency parsing with dynamic programming and pos
tag lattice. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1030–1035, Denver, Colorado, May–
June. Association for Computational Linguistics.

Mark-Jan Nederhof and Heiko Vogler. 2014. Hybrid
grammars for discontinuous parsing. In Proceedings
of COLING 2014, the 25th International Conference
on Computation Linguistics: Technical Papers, pages
1370–1381, Dublin, Ireland.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An improved oracle for dependency parsing with
online reordering. In Proceedings of the 11th
International Conference on Parsing Technologies
(IWPT’09), pages 73–76, Paris, France.

Joakim Nivre. 2009. Non-projective dependency parsing
in expected linear time. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 351–359,
Singapore.

Helmut Schmid. 2006. Trace prediction and recovery
with unlexicalized PCFGs and slash features. In Pro-
ceedings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pages
177–184, Sydney, Australia.

William Schuler, Samir AbdelRahman, Tim Miller, and
Lane Schwartz. 2010. Broad-coverage parsing using

56

human-like memory constraints. Computational Lin-
guistics, 36(1):1–30.

Le Quang Thang, Hiroshi Noji, and Yusuke Miyao.
2015. Optimal shift-reduce constituent parsing with
structured perceptron. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 1534–1544, Beijing, China, July. Associ-
ation for Computational Linguistics.

Andreas van Cranenburgh and Rens Bod. 2013. Dis-
continuous parsing with an efficient and accurate DOP
model. In Proceedings of The 13th International Con-
ference on Parsing Technologies, Nara, Japan.

Andreas van Cranenburgh. 2012. Efficient parsing with
linear context-free rewriting systems. In Proceedings
of the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
460–470, Avignon, France.

Yannick Versley. 2014. Experiments with easy-first non-
projective constituent parsing. In Proceedings of the
First Joint Workshop on Statistical Parsing of Mor-
phologically Rich Languages and Syntactic Analysis
of Non-Canonical Languages, pages 39–53, Dublin,
Ireland.

K. Vijay-Shanker, David Weir, and Aravind K. Joshi.
1987. Characterising structural descriptions used by
various formalisms. In Proceedings of the 25th Annual
Meeting of the Association for Computational Linguis-
tics, pages 104–111, Stanford, CA.

Yue Zhang and Stephen Clark. 2009. Transition-
based parsing of the Chinese treebank using a global
discriminative model. In Proceedings of the 11th
International Conference on Parsing Technologies
(IWPT’09), pages 162–171, Paris, France.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA, June. Association for Computational Lin-
guistics.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and
Jingbo Zhu. 2013. Fast and accurate shift-reduce con-
stituent parsing. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 434–443, Sofia,
Bulgaria.

57

