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Abstract

Active learning has been shown to be effec-
tive for reducing human labeling effort in su-
pervised learning tasks, and in this work we
explore its suitability for automatic short an-
swer assessment on the ASAP corpus. We
systematically investigate a wide range of AL
settings, varying not only the item selection
method but also size and selection of seed set
items and batch size. Comparing to a random
baseline and a recently-proposed diversity-
based baseline which uses cluster centroids as
training data, we find that uncertainty-based
sampling methods can be beneficial, espe-
cially for data sets with particular properties.
The performance of AL, however, varies con-
siderably across individual prompts.

1 Introduction

Methods for automatically scoring short, written,
free-text student responses have the potential to
greatly reduce the workload of teachers. This task of
automatically assessing such student responses (as
opposed to, e.g., gap-filling questions) is widely re-
ferred to as short answer scoring (SAS), and auto-
matic methods have been developed for tasks rang-
ing from science assessments to reading comprehen-
sion, and for such varied domains as foreign lan-
guage learning, citizenship exams, and more tradi-
tional classrooms.

Most existing automatic SAS systems rely on su-
pervised machine learning techniques that require
large amounts of manually labeled training data to
achieve reasonable performance, and recent work
(Zesch et al., 2015; Heilman and Madnani, 2015;

Horbach et al., 2014; Basu et al., 2013, among oth-
ers) has begun to investigate the influence of the
quantity and quality of training data for SAS. In this
paper we take the next logical step and investigate
the applicability of active learning for teacher work-
load reduction in automatic SAS.

As for most supervised learning scenarios, au-
tomatic SAS systems perform more accurate scor-
ing as the amount of data available for learning
increases. Particularly in the educational context,
though, simply labeling more data is an unsatisfying
and often impractical recommendation. New ques-
tions or prompts with new sets of responses are gen-
erated on a regular basis, and there’s a need for au-
tomatic scoring approaches that can do accurate as-
sessment with much smaller amounts of labeled data
(‘labeling’ here generally means human grading).

One solution to this problem is to develop generic
scoring models which do not require re-training in
order to do assessment for a new data set (i.e. a
new question/prompt plus responses). Meurers et al.
(2011) apply such a model for scoring short reading
comprehension responses written by learners of Ger-
man. This system crucially relies on features which
directly compare learner responses to target answers
provided as part of the data set, and the responses
are mostly one sentence or phrase. In this work we
are concerned with longer responses generated from
a wide range of prompt types, from questions ask-
ing for list-like responses to those seeking coherent
multi-sentence texts (details in Section 3). For such
questions, there is generally no single best response,
and thus the system cannot rely on comparisons to
a single target answer per question. Rather systems
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need features which capture lexical properties of re-
sponses to the prompt at hand. In other words, a new
scoring model is built for each individual prompt.

A second solution involves focused selection of
items to be labeled, with the aim of comparable per-
formance with less labeled data. Zesch et al. (2015)
investigate whether carefully selected training data
are beneficial in an SAS task. For each prompt, they
first cluster the entire set of responses and then train
a classifier on the labeled instances that are closest
to the centroids of the clusters produced. The in-
tuition – that a training data set constructed in this
way captures the lexical diversity of the responses
– is supported by results on a data set with shorter
responses, but on the ASAP data set, the approach
fails to improve over random selection.

The natural next step is to use active learning (AL,
Settles (2012)) for informed selection of training in-
stances. In AL, training corpora are built up in-
crementally by successive selection of instances ac-
cording to the current state of the classifier (a de-
tailed description appears in Section 4). In other
words, the machine learner is queried to determine
regions of uncertainty, instances in that region are
sampled and labeled, these are added to the training
data, the classifier is retrained, and the cycle repeats.

Our approach differs from that of Zesch et al.
(2015) in two important ways. First, rather than se-
lecting instances according to the lexical diversity
of the training data, we select them according to the
output of the classifier. Second, we select instances
and retrain the classifier in an incremental, cyclical
fashion, such that each new labeled instance con-
tributes to the knowledge state which leads to selec-
tion of the next instance.

Sample selection via AL involves setting a num-
ber of parameters, and there is no single best-for-all-
tasks AL setting. Thus we explore a wide range of
AL scenarios, implementing a number of established
methods for selecting candidates. We consider three
families of methods. The first are uncertainty-based
methods, which target items about which the classi-
fier is least confident. Next, diversity-based methods
aim to cover the feature space as broadly as possi-
ble; the cluster-centroid selection method described
above is most similar to this type of sample selec-
tion. Finally, representativeness-based methods se-
lect items that are prototypical for the data set at

hand. Our results show a clear win for uncertainty-
based methods, with the caveat that performance
varies greatly across prompts.

To date, there are no clear guidelines for match-
ing AL parameter settings to particular classification
tasks or data sets. To better understand the varying
performance of different sample selection methods,
we present an initial investigation of two properties
of the various data sets. Perhaps unsurprisingly, we
see that uncertainty-based sampling brings stronger
gains for data sets with skewed class distributions, as
well as for those with more cleanly separable classes
according to language model perplexity.

In sum, active learning can be used to reduce
the amount of training data required for automatic
SAS on longer written responses without representa-
tive target answers, but the methods and parameters
need to be chosen carefully. Further investigation is
needed to formulate recommendations for matching
AL settings to individual data sets.

2 Related work

This study contributes to a recent line of work ad-
dressing the question of how to reduce workloads
for human graders in educational contexts, in both
supervised and unsupervised scoring settings.

The work most closely related to ours is Zesch et
al. (2015), which includes experiments with a form
of sample selection based on the output of cluster-
ing methods. More precisely, the set of responses
for a given prompt (using both the ASAP and Pow-
ergrading corpora) are clustered automatically, with
the number of clusters set to the number of training
instances desired. For each cluster, the item clos-
est to its centroid is labeled and added to the train-
ing data. This approach aims at building a training
set with high coverage of the lexical variation found
in the data set. The motivation for this approach is
that items with similar lexical material are expressed
by similar features, often convey the same mean-
ing and in such cases often deserve the same score.
By training on lexically-diverse instances, the clas-
sifier should learn more than if trained on very sim-
ilar instances. Of course, a potential danger is that
one cluster may (and often does) contain lexically-
similar instances that differ in small but important
details, such as the presence or absence of negation.
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For the ASAP corpus (which is also the fo-
cus of our experiments), the cluster-centroid sam-
pling method shows no improvement over a clas-
sifier trained on randomly-sampled data. An inter-
esting outcome of the experiments by Zesch et al.
(2015) is the highly-variable performance of classi-
fiers trained on a fixed number of randomly-sampled
instances; out of 1000 random trials, the difference
between the best and worst runs is considerable.
The highly-variable performance of systems trained
on randomly-selected data underscores the need for
more informed ways of selecting training data.

A related approach to human effort reduction is
the use of clustering in a computer-assisted scoring
setting (Brooks et al., 2014; Horbach et al., 2014;
Basu et al., 2013). In these studies, answers are clus-
tered through automatic means, and teachers then la-
bel clusters of similar answers instead of individual
student responses. The approaches vary in whether
human grading is actual or simulated, and also with
respect to how many items in each cluster graders in-
spect. The value of clustering in these works has no
connection with supervised classification, but rather
lies in the ability it gives teachers both to reduce
their grading effort and to discover subgroups of re-
sponses that may correspond to new correct solu-
tions or to common student misconceptions.

In the domain of educational applications, AL has
recently been used in two different settings where
reduction of human annotation cost is desirable. Ni-
raula and Rus (2015) use AL to judge the quality
of automatically generated gap-filling questions, and
Dronen et al. (2014) explore AL for essay scoring
using sampling methods for linear regression.

To the best of our knowledge, AL has not pre-
viously been applied to automatic SAS. Our task
is most closely related to studies such as Figueroa
et al. (2012), where summaries of clinical texts are
classified using AL, or Tong and Koller (2002) and
McCallum and Nigam (1998), both of which label
newspaper texts with topics. Unlike most other pre-
vious AL studies, text classification tasks need AL
methods that are suitable for data that is represented
by a large number of mostly lexical features.

3 Experimental setup

This section describes the data set, features, and
classifier used in our experiments.

3.1 Data

All experiments are performed on the ASAP 2 cor-
pus, a publicly available resource from a previous
automatic scoring competition hosted by Kaggle.1.
This corpus contains answer sets for 10 individual
short answer questions/prompts (we use the terms
interchangeably) covering a wide range of topics,
from reading comprehension questions to science
and biology questions. Each answer is labeled with
a numeric score from 0.0-2.0/3.0 (in 1.0 steps; the
number of possible scores varies from question to
question), and answer length ranges from single
phrases to several sentences. Although scores are
numeric, we treat each score as one class and model
the problem as classification rather than regression.
This approach is in line with previous related work
as well as standard AL methods.

For each prompt, we split the data set randomly
into 90% training and 10% test data. We then aug-
ment the test set with all items from the ASAP “pub-
lic leaderboard” evaluation set. Table 1 shows the
number of responses and label distributions for each
prompt. Some data sets (i.e. answer set per prompt)
are clearly much more imbalanced than others.

3.2 Classifier and features

In line with previous work on the ASAP data, clas-
sification is done using the Weka (Hall et al., 2009)
implementation of the SMO algorithm.

For feature extraction, all answers are prepro-
cessed using the OpenNLP sentence splitter2 and the
Stanford CoreNLP tokenizer and lemmatizer (Man-
ning et al., 2014). As features, we use lemma 1- to 4-
grams to capture lexical content of answers, as well
as character 2- to 4-grams to account for spelling er-
rors and morphological variation. We lowercase all
textual material before extracting ngrams, and fea-
tures are only included if they occur in at least two
answers in the complete data set.

This is a very general feature set that: (a) has
not been tuned to the specific task, and (b) is sim-

1https://www.kaggle.com/c/asap-sas
2https://opennlp.apache.org/
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training test
prompt #answers 0.0 1.0 2.0 3.0 #answers 0.0 1.0 2.0 3.0

1 1505 331 389 474 311 724 152 208 225 139
2 1150 150 289 422 289 554 86 137 190 141
3 1625 385 913 327 - 589 145 322 122 -
4 1492 571 803 118 - 460 190 232 38 -
5 1615 1259 291 37 28 778 594 138 27 19
6 1617 1369 143 60 45 779 644 73 41 21
7 1619 837 405 377 - 779 390 195 194 -
8 1619 501 418 700 - 779 224 204 351 -
9 1618 390 661 567 - 779 195 312 272 -
10 1476 261 688 527 - 710 110 348 252 -

Table 1: Data set sizes and label distributions for training and test splits. ‘-’ indicates a score does not occur for that data set.

ilar to the core feature set for most other SAS work
on the ASAP data. In preliminary classification
experiments, we also tried out features based on
skip ngrams, content-word-only ngrams, and de-
pendency subtrees of various sizes. None of these
features resulted in consistently better performance
across all data sets, so they were rejected in favor of
the simpler, smaller feature set.

4 Parameters of Active Learning

The core algorithm we use for active learning is the
standard setting for pool-based sampling (Settles,
2010); pseudocode is shown in Figure 1.

The AL algorithm

split data set into training and test
select seeds s0, s1, ..., sn ∈ training
request labels for s0, ...sn

labeled := {s0, s1, ..., sn}
unlabeled := training\{s0, s1, ..., sn}
while unlabeled 6= ∅:

select instances i0, i1, ..., im ∈ unlabeled *
unlabeled = unlabeled\{i0, i1, ..., im}
request labels for i0, i1, ..., im
labeled = labeled∪{i0, i1, ..., im}
build a classifier on labeled
run classifier on test and report performance
∗ according to some sample selection method

Figure 1: Pseudocode for general, pool-based active learning.

The process begins with a pool of unlabeled train-
ing data and a small labeled seed set. At the start of
each AL round, the algorithm selects one or more

instances whose label(s) are then requested. In sim-
ulation studies, requesting the answer means reveal-
ing a pre-annotated label; in real life, a human anno-
tator (i.e. a teacher) would provide the label. After
newly-labeled data has been added to the training
data, a new classifier is trained, run on the remain-
ing unlabeled data, and the outcomes are stored. For
uncertainty sampling methods, these are used to se-
lect the instances to be labeled in the next round.
The classifier’s performance is evaluated on a fixed
test set. The efficacy of the item selection method
is evaluated by comparing the performance of this
classifier to that of a classifier trained on the same
number of randomly-selected training instances.

In the following, we discuss the main factors that
play a role in active learning: the item selection
methods that determine which item is labeled next,
the number of seed instances for the initial classi-
fier and how they are chosen, and the number of in-
stances labeled per AL cycle.

4.1 Item selection

The heart of the AL algorithm is (arguably) item
selection. Item selection defines how the next in-
stance(s) to be labeled are selected, with the goal of
choosing instances that are maximally informative
for the classifier. We explore a number of differ-
ent item selection strategies, based on either the un-
certainty of the classifier on certain items (entropy,
margin and boosted entropy), the lexical diversity of
the selected items, or their representativeness with
respect to the unlabeled data.
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Random Baseline. We use a standard random
sampling baseline. For each seed set, the random
baseline results are averaged over 10 individual ran-
dom runs, and evaluations then average over 10 seed
sets, corresponding to 100 random runs.

Entropy Sampling is our core uncertainty-based
selection method. Following Lewis and Gale (1994),
we model the classifier’s confidence regarding a par-
ticular instance using the predicted probability (for
an item x) of the different labels y, as below.

xselected = argmaxx

(
−
∑

i

P (yi|x)logP (yi|x)

)

Classifier confidence is computed for each item in
the unlabeled data, and the one with the highest en-
tropy (lowest confidence) is selected for labeling.

Boosted Entropy Sampling Especially for very
skewed data sets, it is often favourable to aim at a
good representation of the minority class(es) in the
training data selected for AL. Tomanek and Hahn
(2009) proposed several methods for selecting the
minority class with a higher frequency. We adopt
their method of boosted entropy sampling, where
per-label weights are incorporated into the entropy
computation, in order to favor items more likely
to belong to a minority class. Tomanek and Hahn
(2009) apply this technique to named entity recog-
nition, where it is possible to estimate the true la-
bel distribution. In our case, since we don’t know
the expected true distribution of scores, for each AL
round, we instead adapt label weights using the dis-
tribution of the current labeled training data set.

Margin Sampling is a variant of entropy sam-
pling with the one difference that only the two most
likely labels (instead of all three or four) are used
in the entropy comparison. As a result, this meth-
ods tends to select instances that lie on the decision
border between two classes, instead of items at the
intersection of all clasess.

Diversity Sampling aims to select instances that
cover as much of the feature space as possible, i.e.
that are as diverse as possible. We model this by se-
lecting the item with the lowest average cosine simi-
larity between the item’s feature vector and those of
the items in the current labeled training data set.

Representativeness Sampling uses a different
intuition: this method selects items that are highly
representative of the remainder of the unlabeled
data pool. We model representativeness of an
item by the average distance (again, measures as
cosine similarity between feature vectors) between
this item and all other items in the pool. This re-
sults in selection of items near the center of the pool.

Note that these selection methods are somewhat
complimentary. While entropy and margin sampling
generally select items from the decision boundaries,
they tend to select both outliers and items from the
center of the distribution.

Representativeness sampling never selects out-
liers but only items in the center of the feature space.
Diversity sampling selects items that are as far from
all other items as possible, and in doing so covers
as much of the feature space as possible, with a ten-
dency to select outliers.

4.2 Cluster Centroid Baseline

Another interesting baseline for comparison are
classifiers trained on cluster centroids, as proposed
by Zesch et al. (2015). Following their approach, we
use Weka’s k-means clustering to cluster the data,
with k equal to the desired number of training in-
stances. From each cluster, we extract the item clos-
est to the centroid, build a training set from the ex-
tracted items, and learn a classifier from the training
data. This process is repeated with varying numbers
of training items: the first iteration has 20 labeled
items, and we add in steps of 20 until reaching 200
labeled items. We then add data in steps of 50 until
we reach 500 labeled items, and in steps of 100 un-
til all data has been labeled. Note that this approach
does not directly fit into the general AL framework.
In AL, the set of labeled data is increased incremen-
tally, while with this approach a larger training set is
not necessarily a proper superset of a smaller train-
ing set but may contain different items.

4.3 Seed selection

The seed set in AL is the initial set of labeled data
used to train the first classifier and thus to initialize
the item selection process. The quality of the seeds
has been shown to play an important role for the per-
formance of AL (Dligach and Palmer, 2011). Here
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we consider two ways of selecting seed set items.
First is the baseline of (a) random seed selec-

tion. Random selection can be suboptimal when it
produces unbalanced seed sets, especially if one or
more classes are not contained in the seed data at all
or – in the worst case – the seed set contains only
items of one class. Some of the ASAP data sets are
very skewed (e.g. questions 5 and 6, see Table 1)
and carry a high risk of producing such suboptimal
seeds via random selection.

The second condition is (b) equal seed selection,
in which seed items are selected such that all classes
are equally represented. We do this in an oracle-
like condition, but presumably teachers could pro-
duce a balanced seed set without too much difficulty
by scanning through a number of student responses.
Of course, this procedure would require more effort
than simply labeling randomly-selected responses.

The number of items in the seed set is another im-
portant AL parameter. While a larger seed set pro-
vides a more stable basis for learning, a smaller seed
set shows benefits from AL at an earlier stage and
requires less initial labeling effort. In the small seed
set condition, and for both random and equal selec-
tion methods, 10 individual seed sets per prompt are
chosen, each with either 3 or 4 seeds (corresponding
to the number of classes per prompt). We repeat this
process for the large seed set condition, this time se-
lecting 20 items per seed set.

4.4 Batch size
Batch size determines how many instances are la-
beled in each AL round. This parameter is especially
relevant with the real-world application of SAS in
mind. In real life, it may be inconvenient to have
a teacher label just one instance per step, waiting in
between labeling steps for retraining of the classifier.

On the other hand, sampling methods benefit from
smaller batch sizes, as larger batches tend to contain
a number of similar, potentially redundant instances.
To combine the benefits of the two settings, we use
varying batch sizes. To benefit from fine-grained
sample selection, we start with a batch size of one
and keep this until one hundred instances have been
labeled. We then switch to a batch size of 5 until 300
instances have been labeled, and from then on label
20 instances per batch.

For comparison, we also run experiments where

20 instances are labeled in every AL step before a
new classification model is learned, in order to in-
vestigate whether the potentially inconvenient pro-
cess of training a new model after each individual
human annotation step is really necessary.

5 Results

We now investigate to what extent active learning,
using various settings, can reduce the amount of
training data needed for SAS.

5.1 Evaluation of Active Learning
We evaluate all of our SAS systems using Cohen’s
linearly weighted kappa (Cohen, 1968). Each result
reported for a given combination of item selection
and seed selection methods is the average over 10
runs, each with a different seed set. The seed sets
remain fixed across conditions.

In order to evaluate the overall performance of an
AL method, we need to measure the performance
gain over a baseline. Rather than computing this
at one fixed point in the learning curve, we follow
Melville and Mooney (2004) in looking at averaged
performance over a set of points early in the learning
curve. This is where AL produces the biggest gains;
once many more items have been labeled, the dif-
ferences between the systems reduces. We slightly
adapt Melville and Mooney’s method and compute
the average percent error reduction (that is, error re-
duction on kappa values) over the first 300 labeled
instances (18-26% of all items, depending on the
size of the data set).

5.2 Experiment 1: Comparison of different
item selection methods

The first experiment compares the different item se-
lection methods outlined in Section 4.1, using small
seedsets and varying batch sizes.

To give a global picture of differences between
the methods, Figure 2 shows the learning curves
for all sample selection methods, averaged over all
prompt and seed sets. Especially in early parts of
the learning curve until about 500 items are labeled,
uncertainty-based methods show improvement over
the random baseline. Both representativeness and
diversity-based sampling perform far worse than
random. On average, the systems trained on cluster
centroids perform at or below the random baseline,
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Figure 2: AL performance curves compared to two baselines: random item selection and cluster centroids. All results are averaged

over all prompts and seed sets.

confirm the findings of Zesch et al. (2015) (though
in a slightly different setting).

The picture changes a bit when we look at the
performance of AL methods per prompt and with
different seed selection methods. Table 2 shows
the percent error reduction (compared to the random
baseline) per prompt and seed selection method, av-
eraged over the first 300 labeled items. Most no-
ticeable is that we see a wide variety in the perfor-
mance of the sample selection methods for the vari-
ous prompts. For some - most pronouncedly prompt
2, 5, 6 and 10 - there is a consistent improvement for
uncertainty sampling methods, while other prompts
seem to be almost completely resistent to AL. When
looking at individual averaged AL curves, we can
see some improvement for prompts 7 to 9 that peaks
only after 300 items are labeled. For prompt 3, none
of the AL methods ever beats the baseline, at any
point in the learning process. We also observe vari-
ability in the performance across seed sets for one
prompt, as can be seen from the standard deviation.

The question of which AL method is most effec-
tive for this task can be answered at least partially:
if any method yields a substantial improvement, it is
an uncertainty-based method. On average, boosted
entropy gives the highest gains in both seed selection

settings. Comparing random to equal seed selection,
performance is rather consistently better when AL
starts with a seed set that covers all classes equally.

prompt entropy margin boosted diversity represen-
& seeds entropy tativeness

1 Equal -0.58 (5.8) -0.05 (4.5) -0.51 (4.0) -30.53 (1.3) -14.04 (2.8)
2 Equal 5.61 (5.1) 3.82 (7.4) 6.75 (6.5) -24.40 (0.5) 0.88 (1.7)
3 Equal -2.42 (3.0) -2.18 (5.1) -2.32 (3.2) -27.10 (0.9) -11.34 (2.7)
4 Equal -3.40 (7.5) 1.44 (2.3) -2.41 (6.6) -14.67 (1.8) -10.15 (5.8)
5 Equal 12.67 (2.5) 15.38 (2.8) 12.25 (6.6) -15.50 (2.7) -9.44 (11.9)
6 Equal 21.49 (5.9) 22.70 (3.3) 24.39 (2.6) -16.47 (4.9) -10.29 (3.5)
7 Equal -1.49 (6.8) -2.36 (6.4) -2.97 (5.5) -4.85 (1.4) 0.65 (1.2)
8 Equal -4.41 (8.6) 0.26 (4.5) -2.31 (5.3) -9.71 (1.5) -9.16 (4.3)
9 Equal -2.91 (5.4) -0.84 (9.1) 3.32 (5.3) -0.88 (5.5) -9.10 (5.6)
10 Equal 7.97 (6.6) 8.33 (6.7) 10.88 (6.3) 10.31 (3.7) -4.92 (5.0)

avg 3.25 (5.7) 4.65 (5.2) 4.71 (5.2) -13.38 (2.4) -7.69 (4.4)

1 Random -4.24 (6.3) -2.98 (8.0) -0.33 (2.6) -30.81 (2.2) -13.10 (3.7)
2 Random 4.28 (5.7) 2.98 (7.6) 6.14 (3.2) -21.37 (1.1) -0.82 (2.4)
3 Random -11.41 (7.3) -5.82 (7.3) -5.52 (9.5) -26.13 (2.6) -11.13 (2.5)
4 Random 0.18 (7.8) -5.09 (9.8) -1.73 (7.5) -11.13 (2.2) -11.11 (2.8)
5 Random 8.92 (5.0) 12.93 (3.9) 10.86 (4.8) -41.56 (16.0) -2.20 (5.3)
6 Random 19.66 (3.9) 21.13 (3.6) 19.29 (2.1) -42.53 (26.6) -11.41 (2.9)
7 Random -4.21 (7.8) 0.39 (5.4) -4.24 (7.6) -4.22 (1.8) 0.56 (2.3)
8 Random -1.63 (7.3) -0.52 (7.0) -0.54 (4.3) -10.19 (0.5) -6.18 (3.7)
9 Random -2.78 (6.9) -4.35 (7.1) -3.53 (6.3) -3.17 (5.4) -10.46 (6.1)
10 Random 4.89 (9.6) 7.74 (7.2) 10.95 (5.0) 10.94 (3.4) -3.01 (3.2)

avg 1.37 (6.7) 2.64 (6.7) 3.13 (5.3) -18.02 (6.2) -6.89 (3.5)

all 2.31 (6.2) 3.65 (5.9) 3.92 (5.2) -15.70 (4.3) -7.29 (4.0)

Table 2: Performance for each combination of prompt and seed

selection method, reporting mean percentage error reduction on

kappa values and SD compared to the random baseline.
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Seeds entropy margin boosted

Random – large seeds 1.45 2.72 2.57
Random – small seeds 1.36 2.63 3.12
Equal – small seeds 3.25 4.65 4.71

Table 3: Error reduction rates over random sampling for differ-

ent seed set sizes, averaging over all prompts.

5.3 Experiment 2: The influence of seeds

Experiment 1 shows a clear benefit for using equal
rather than random seeds. In a real life scenario,
however, balanced seed sets are harder to produce
than purely random ones. One might argue that us-
ing a larger randomly-selected seed set increases the
likelihood of covering all classes in the seed data and
provides a better initialization for AL, without the
additional overhead of creating balanced seed sets.

This motivates the next experiment, in which
learning begins with seed sets of 20 randomly-
selected labeled items, but otherwise follows the
same procedure. We compare the performance of
systems intialized with these larger seed sets to both
random and equal small seed sets, considering only
the more promising uncertainty-based item selection
methods, and again using varying batch sizes.

Table 3 shows the results. We can see, that the
performance for margin and entropy sampling is
slightly better than the small random seed set (cu-
riously not for boosted entropy), but it is still below
that of the small equal seed set. However, the trend
across items is not completely clear. We still take it
as an indicator that seeds of good quality cannot be
outweight by quantity.

5.4 Experiment 3: The influence of batch sizes

In experiment 1 we used varying batch sizes that
learn a new model after each individual labeled item
in the beginning and allow larger batches only later
in the AL process. In a real life application, larger
batch sizes might be in general preferrable. There-
fore we test an alternative setup where we sample
and label 20 items per batch before retraining.

Table 4 presents results for uncertainty-based
sampling methods, averaged over the first 300 la-
beled instances. Compared to the varying batch size
setup (numbers in parentheses), performance goes
down, indicating that fine-grained sampling really
does provide a benefit, especially early in the learn-

Seeds entropy margin boosted

Equal -1.11 (3.25) 3.78 (4.65) 2.12 (4.71)
Random 0.04 (1.36) 2.60 (2.63) 0.93 (3.12)
All -0.53 (2.30) 3.19 (3.64) 1.53 (3.92)

Table 4: Error reduction rates over random sampling for large

batch size and small seed sets, averaging over all prompts.

Scores from the varying batch size setup appear in parentheses.

ing process. Where larger batch sizes may lead to
selection of instances in the same region of uncer-
tainty, a smaller batch size allows the system to re-
solve a certain region of uncertainty with fewer la-
beled training instances.

6 Variability of results across datasets

On average, it is clear that uncertainty-based active
learning methods are able to provide an advantage in
classification performance over random or cluster-
centroid baselines. If we look at the result for the
different prompts, though, it is equally clear that AL
performance varies tremendously across data sets
for individual prompts.

In order to deploy AL effectively for SAS, we
need to better understand why AL works so much
better for some data sets than for others.

In Table 2 we see that AL is especially effective
for prompts 5 and 6. Cross-referencing Table 1, it
becomes clear that these are the two ASAP prompts
with the highest degree of class imbalance. Figure
3 shows the changes in the distribution of the indi-
vidual classes among the labeled data for prompt 6
as AL (here with entropy item selection) proceeds.
We see clearly that uncertainty sampling at early
stages selects the different classes in a way that is
more balanced than the overall distribution for the
full data set and thus increases the classifier’s ac-
curacy in labeling minority class items. For com-
parison, a plot for random sampling would ideally
consist of four lines parallel to the x axis, and both
diversity and representativeness sampling tend to se-
lect items from the majority class, explaining their
bad performance.

Class imbalance explains some of the variable
performance of AL across prompts, but clearly there
is more to the story. Next, we use language model
(LM) perplexity (computed using the SRILM toolkit
(Stolcke, 2002)) as a measurement of how similar
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Figure 3: Distribution of individual classes among the labeled

data for prompt 6, using entropy sampling.

the classes within a prompt are to one another. We
measure this per class by training a LM on the items
from all other classes (for the same prompt) and then
compute the average perplexity of the target class
items under the “other-classes” LM. Higher average
perplexity means that the items in the class are more
readily separable from items in other classes.

prompt score 0.0 score 1.0 score 2.0 score 3.0

1 156 46 27 45
2 104 48 52 56
3 44 23 64 -
4 78 59 55 -
5 970 88 52 49
6 907 76 60 44
7 338 117 45 -
8 535 70 47 -
9 633 127 56 -
10 304 49 39 -

Table 5: Average perplexity per prompt and class under LMs

trained on all “other-class” items from the same prompt.

Table 5 shows the results. We see that for those
answers that work well under AL, again prominently
prompts 5 and 6, at least some classes separate very
well against the other classes. They show a high
average perplexity, indicating that the answer is not
well modeled by other answers with different scores.
In comparison, for some other data sets where the
uncertainty curves do not clearly beat random sam-
pling, especially 3 and 4, we see that the classes are
not well separated from each other. They are among
those with the lowest perplexity across scores.

This result, while preliminary and dependent on
knowing the true scores of the data, suggests that un-
certainty sampling profits from classes that are well
separated from one another, such that clear regions

of uncertainty can emerge. An intriguing future di-
rection is to seek out other approaches to character-
izing unlabeled data sets, in order to determine: (a)
whether AL is a suitable strategy for workload re-
duction, and (b) if so, which AL setting will give the
strongest performance gains for the data set at hand.

7 Conclusion

In this study, we have investigated the applicabil-
ity of AL methods to the task of SAS on the ASAP
corpus. Although the performance varies consider-
ably from prompt to prompt, on average we find that
uncertainty-based sample selection methods out-
perform both a random baseline and a cluster cen-
troid baseline, given the same number of labeled in-
stances. Other sample selection methods capturing
diversity and representativeness perform well below
the baselines.

In terms of seed selection, there is a clear benefit
from an equal seed set, one that covers all classes
equally. A small equal seed set is preferable even to
a larger but potentially unbalanced seedset. In ad-
dition, we see benefits from a variable batch size
setting over using a larger batch size. It is beneficial
to proceed in small steps at the beginning of learn-
ing, selecting one item per run, and only move to
larger batch sizes later on.

We see two interesting avenues for future work.
First, the influence of the quality of seed set items
with respect to the coverage of classes raises the
question of how best to select - or even generate
- equally distributed seed sets. One might argue
whether an automated approach is necessary: per-
haps an experienced teacher could easily browse
through the data in a time-efficient way to select
clear examples of low-, mid-, and high-scoring an-
swers as seeds.

The second question is the more challenging and
more important one. The variability of AL perfor-
mance across prompts clearly and strongly points to
the need for better understanding how attributes of
data sets affect the outcome of AL methods. A solu-
tion for predicting which AL settings are suitable for
a given data set is an open problem for AL in gen-
eral. Further steps in this direction need to be taken
before AL can be reliably and efficiently deployed
in real life assessment scenarios.
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