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Abstract

I investigate Russian second language read-
ability assessment using a machine-learning
approach with a range of lexical, morpholog-
ical, syntactic, and discourse features. Test-
ing the model with a new collection of Russian
L2 readability corpora achieves an F-score of
0.671 and adjacent accuracy 0.919 on a 6-level
classification task. Information gain and fea-
ture subset evaluation shows that morpholog-
ical features are collectively the most infor-
mative. Learning curves for binary classifiers
reveal that fewer training data are needed to
distinguish between beginning reading levels
than are needed to distinguish between inter-
mediate reading levels.

1 Introduction

Reading is one of the core skills in both first and
second language learning, and it is arguably the
most important means of accessing information in
the modern world. Modern second language peda-
gogy typically includes reading as a major compo-
nent of foreign language instruction. There has been
debate regarding the use of authentic materials ver-
sus contrived materials, where authentic materials
are defined as “A stretch of real language, produced
by a real speaker or writer for a real audience and de-
signed to convey a real message of some sort” (Mor-
row, 1977, p. 13).1 Many empirical studies have
demonstrated advantages to using authentic materi-
als, including increased linguistic, pragmatic, and

1The definition of authenticity is itself a matter of disagree-
ment (Gilmore, 2007, §2), but Morrow’s definition is both well-
accepted and objective.

discourse competence (Gilmore, 2007, citations in
§3). However, Gilmore (2007) notes that “Finding
appropriate authentic texts and designing tasks for
them can, in itself, be an extremely time-consuming
process.” An appropriate text should arguably be
interesting, linguistically relevant, authentic, recent,
and at the appropriate reading level.

Tools to automatically identify a given text’s com-
plexity would help remove one of the most time-
consuming steps of text selection, allowing teach-
ers to focus on pedagogical aspects of text selection.
Furthermore, these tools would also make it possible
for learners to find appropriate texts for themselves.

A thorough conceptual and historical overview of
readability research can be found in Vajjala (2015,
§2.2). The last decade has seen a rise in research on
readability classification, primarily focused on En-
glish, but also including French, German, Italian,
Portuguese, and Swedish (Roll et al., 2007; Vor der
Brück et al., 2008; Aluisio et al., 2010; Francois
and Watrin, 2011; Dell’Orletta et al., 2011; Hancke
et al., 2012; Pilán et al., 2015). Broadly speaking,
these languages have limited morphology in com-
parison with Russian, which has relatively rich mor-
phology among major world languages. It is there-
fore not surprising that morphology has received lit-
tle attention in studies of automatic readability clas-
sification. One important exception is Hancke et al.
(2012) which examines lexical, syntactic and mor-
phological features with a two-level corpus of Ger-
man magazine articles. In their study, morphologi-
cal features are collectively the most predictive cat-
egory of features. Furthermore, when combining
feature categories in groups of two or three, the
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highest performing combinations included the mor-
phology category. If morphological features figure
so prominently in German readability classification,
then there is good reason to expect that they will be
similarly informative for Russian second-language
readability classification.

This article explores to what extent textual fea-
tures based on morphological analysis can lead to
successful readability classification of Russian texts
for language learning. In Section 2, I give an
overview of previous research on readability, includ-
ing some work on Russian. The corpora collected
for use in this study are described in Section 3. The
features extracted for machine learning are outlined
in Section 4. Results are discussed in Sections 5 and
6, and conclusions and outlook for future research
are presented in Section 7.

2 Background

The history of empirical readability assessment be-
gan as early as 1880 (DuBay, 2006), with methods as
simple as counting sentence length by hand. Today,
research on readability is dominated by machine-
learning approaches that automatically extract com-
plex features based on surface wordforms, part-of-
speech analysis, syntactic parses, and models of lex-
ical difficulty. In this section, I give an abbreviated
history of the various approaches to readability as-
sessment, including the kinds of textual features that
have received attention. Although some proprietary
solutions are relevant here, I focus primarily on work
that has resulted in publically available knowledge
and resources.

2.1 History of evaluating text complexity

The earliest approaches to readability analysis con-
sisted of developing readability formulas, which
combined a small number of easily countable fea-
tures, such as average sentence length, and aver-
age word length (Kincaid et al., 1975; Coleman
and Liau, 1975). Although formulas for comput-
ing readability have been criticized for being overly
simplistic, they were quickly adopted and remain
in widespread use today.2 An early extension of

2The Flesch Reading Ease test and the Flesch-Kincaid
Grade Level test are implemented in the proofing tools of many
major word processors.

these simple ‘counting’ formulas was to addition-
ally rely on lists of words deemed “easy”, based on
either their frequency or polling of young learners
(Dale and Chall, 1948; Chall and Dale, 1995; Sten-
ner, 1996). A higher proportion of words belonging
to these lists resulted in lower readability measures,
and vice versa.

With the recent growth of natural language pro-
cessing techniques, it has become possible to ex-
tract information about the lexical and/or syntac-
tic structure of a text, and automatically train read-
ability models using machine-learning techniques.
Some of the earliest attempts at this built unigram
language models based on American textbooks, and
estimated a text’s reading level by testing how well
it was described by each unigram model (Si and
Callan, 2001; Collins-Thompson and Callan, 2004).
This approach was extended in the REAP project3

to include a number of grammatical features as well
(Heilman et al., 2007; Heilman et al., 2008a; Heil-
man et al., 2008b).

Over time, readability researchers have increas-
ingly taken inspiration from various subfields of lin-
guistics to identify features for modeling readability,
including syntax (Schwarm and Ostendorf, 2005;
Petersen and Ostendorf, 2009), discourse (Feng,
2010; Feng et al., 2010), textual coherence (Graesser
et al., 2004; Crossley et al., 2007a; Crossley et
al., 2007b; Crossley et al., 2008), and second lan-
guage acquisition (Vajjala and Meurers, 2012). The
present study expands this enterprise by examining
second language readability for Russian.

2.2 Automatic readability assessment of
Russian texts

The history of readability assessment of Russian
texts takes a very similar trajectory to the work re-
lated above. Early work was based on developing
formulas based on simple countable features (Mikk,
1974; Oborneva, 2005; Oborneva, 2006a; Oborneva,
2006b; Mizernov and Graščenko, 2015).

Some researchers have tried to be more objective
about defining readability, by obtaining data from
expert raters, or from other experimental means,
and then performing statistical analysis—such as
linear regression, or correlation—to identify impor-

3http://reap.cs.cmu.edu
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tant factors of text complexity (Sharoff et al., 2008;
Petrova and Okladnikova, 2009; Okladnikova, 2010;
Špakovskij, 2003; Špakovskij, 2008; Ivanov, 2013;
Kotlyarov, 2015), such as lexical properties, mor-
phological categories, typographic layout, and syn-
tactic complexity.

To my knowledge, only one study has previ-
ously examined readability in the context of Rus-
sian second-language pedagogical texts. Karpov et
al. (2014) performed a series of experiments using
several different kinds of machine-learning models
to automatically classify Russian text complexity, as
well as single-sentence complexity. They collected
a small corpus of texts (described in Section 3 be-
low), with texts at 4 of the CEFR levels:4 A1, A2,
B1, and C2. They extracted 25 features from these
texts, including document length, sentence length,
word length, lexicon difficulty, and presence of each
part of speech. No morphological features were in-
cluded, despite the fact that morphology is the most
challenging feature of Russian grammar for most
language learners. Using Classification Tree, SVM,
and Logistic Regression models for binary classi-
fication (A1-C2, A2-C2, and B1-C2), they report
achieving accuracy close to 100%. It should be
noted that no results were reported with more cus-
tomary stepwise binary combinations, such as A1-
A2, A2-B1, and B1-C2, which are more difficult—
and more useful—distinctions. In a four-way classi-
cation task, they state that their results were lower,
but they only provide precision, recall, and accuracy
metrics for the B1 readability level during four-way
classification, which were as high as 99%. Irregular-
ities in reporting make it difficult to draw firm con-
clusions from their work, especially because their
corpora covered only four out of six CEFR levels
with no more than 60 data points per level.

3 Corpora

The corpora5 in this study all use the same scale for
rating L2 readability, the Common European Frame-
work of Reference for Languages (CEFR). The six

4CEFR levels are introduced in Section 3.
5Some of the corpora used in this study are proprietary, so

they cannot be published online. However, they can be shared
privately for research purposes. With the exception of the two
corpora from Karpov et al. (2014), all of the corpora were cre-
ated and used for the first time in this study.

common reference levels of CEFR can be divided
into three levels—Basic user (A), Independent user
(B), and Proficient user (C)—each of which is sub-
divided into two levels. This yields the following
six levels in ascending order: A1, A2, B1, B2, C1,
and C2.6 For all corpora, reading levels were as-
signed by the original author or publisher, so there
is no guarantee that the reading levels between cor-
pora align well.

Two subcorpora were used by Karpov et al.
(2014). The CIE corpus includes texts created by
teachers for learners of Russian. These texts are
taken from a collection of materials kept in an open
repository at http://texts.cie.ru. The sec-
ond subcorpus used by Karpov et al. (2014) consists
of 50 original news articles for native readers, rated
at level C2.

The LingQ corpus (LQ) is a corpus of texts
from http://www.lingq.com, a commercial
language-learning website that includes lessons up-
loaded by member enthusiasts, with 3481 texts.
Reading levels were determined by the member who
uploaded each lesson.

The Red Kalinka (RK) corpus is a collection
of 99 texts taken from 13 books in the “Russian
books with audio” series available at http://
www.redkalinka.com. These books include
stories, dialogues, texts about Russian culture, and
business dialogues.

The TORFL corpus comes from the Test of Rus-
sian as a Foreign Language, a set of standardized
tests administered by the Russian Ministry of Educa-
tion and Science. It is a collection of 168 texts that I
extracted from official practice tests for the TORFL.

The Zlatoust corpus (Zlat) comes from a series
of readers for language learners at the lower CEFR
levels, with 746 documents.

The Combined corpus is a combination of the cor-
pora described above. The distribution of documents
per level is given in Table 1. Note that some corpora
do not have texts at every reading level.

Table 2 shows the median document length (in
words) per level in each of the corpora. The over-
all median document size is 268 words. Within
each corpus, median document length tends to in-

6There is no consensus on how the CEFR levels align with
other language evaluation scales, such as the ACTFL and ILR
used in the United States.
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All A1 A2 B1 B2 C1 C2
CIE 145 28 57 60 – – –
news 50 – – – – – 50
LQ 3481 323 653 716 832 609 348
RK 99 40 18 17 18 6 –
TORFL 168 31 36 36 26 28 11
Zlat. 746 – 66 553 127 – –
Comb. 4689 422 830 1382 1003 643 409
Table 1: Distribution of documents per level for each corpus

crease with each level, with some exceptions. Tests
were conducted with a modified corpus in which
longer documents were truncated to approximately
300 words; classifier performance was slightly lower
with this modified corpus.

All A1 A2 B1 B2 C1 C2
CIE 314 116 340 354 – – –
news 174 – – – – – 174
LQ 246 65 47 225 522 3247 436
RK 286 68 296 418 278 292 –
TORFL 158 55 160 196 238 146 284
Zlat. 344 – 122 345 414 – –
Comb. 268 67 68 275 474 2621 313

Table 2: Median words per document for each level of each

corpus

The overall distribution of document length is
shown in Figure 1, where the x-axis is all docu-
ments ranked by document length and the y-axis is
document length. The shortest document contains 7
words, and the longest document contains over 9000
words.

Figure 1: Distribution of document length in words

4 Features

In the following sections, I give an overview of the
features used in this study, both the rationale for

their inclusion, as well as details regarding their op-
erationalization and implementation. I combine fea-
tures used in previous research with some novel fea-
tures based on morphological analysis. I divide fea-
tures into the following categories: lexical, morpho-
logical, syntactic, and semantic.

4.1 Lexical features (LEX)

The lexical features (LEX) are divided into three
subcategories: lexical variability (LEXV), lexical
complexity (LEXC), and lexical familiarity (LEXF).

LEXV The lexical variability category contains
features that are intended to measure the variety of
lexemes found in a document. One of the most ba-
sic measures of lexical variability is the type-token
ratio, which is the number of unique wordforms
divided by the number of tokens in a text. Be-
cause the type-token ratio is dependent on document
length, I included a few more robust metrics that
have been proposed: Root TTR (T/

√
N ), Corrected

TTR (T/
√

2N ), Bilogarithmic TTR (log T/ log N ),
and the Uber Index (log2 T/ log(N/T )). For all of
these metrics, a higher score signifies higher con-
centrations of unique tokens, which indicates more
difficult readability levels.

LEXC Lexical complexity includes multiple con-
cepts. One is the degree to which individual words
can be parsed into component morphemes. This is a
reflection of the derivational or agglutinative struc-
ture of words. Another measure of lexical complex-
ity is word length, which reflects the difficulty of
chunking and storing words in short-term memory.
Depending on the particulars of a given language
or the development level of a given learner, lexi-
cal complexity can either inhibit or enhance compre-
hension. For example, the word neftepererabatyva-
juščij (zavod) ‘oil-refining (factory)’ is overwhelm-
ing for a beginning learner, but an advanced learner
who has never seen this word can easily deduce its
meaning by recognizing its component morphemes:
nefte-pere-rabat-yvaj-uščij ‘oil-re-work-IPFV-ing’.

Word length features were computed on the ba-
sis of characters, syllables, and morphemes. For
each of these three, both an average and a maximum
were computed. In addition, all six of these features
were computed for both all words, and for content
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words only.7 The features for word length in mor-
phemes were computed on the basis of Tixonov’s
Morpho-orthographic dictionary (Tixonov, 2002),
which contains parses for about 100 000 words. All
words that are not found in the dictionary were ig-
nored. In addition to average and maximum word
lengths, I also followed Karpov et al. (2014) in cal-
culating word length bands, such as the proportion
of words with five or more characters. These bands
are calculated for 5–13 characters (9 features) and
3–6 syllables (4 features). All 13 of these features
were calculated both for all words and for content
words only.

LEXF Lexical familiarity features were computed
to attempt to capture the degree to which the words
of a text are familiar to readers of various levels.
These features model the development of learners’
vocabulary from level to level. Unlike the features
for lexical variability and lexical complexity, which
are primarily based on surface structure, the features
for lexical familiarity rely on a predefined frequency
lists or lexicons.

The first set of lexical familiarity features are de-
rived from the official “Lexical Minimum” lists for
the TORFL examinations. The lexical minimum
lists are compiled for the four lowest levels (A1, A2,
B1, and B2), where each list contains the words that
should be mastered for the tests at each level. These
lists can be seen as prescriptive vocabulary for lan-
guage learners. Following Karpov et al. (2014), I
computed features for the proportion of words above
a given reading level.

The second set of lexical familiarity features are
taken from the Kelly Project (Kilgarriff et al., 2014),
which is a “corpus-based vocabulary list” for lan-
guage learners. These lists are based primarily on
word frequency, with manual adjustments made by
professional teachers. Just like the features based on
the Lexical Minimum, I computed the proportion of
words over each of the six CEFR levels.

The third set of lexical familiarity features are
based on raw frequency and frequency rank for both
lemma frequency and token frequency.8 For each of

7The following parts of speech were considered content
words: adjectives, adverbs, nouns and verbs.

8Lemma frequency data were taken from Ljaševskaja
and Šarov (2009) (available digitally at http://dict.

the four kinds of frequency data, I computed aver-
age, median, minimum, and standard deviation.

4.2 Morphological features (MORPH)

Morphological features are primarily based on mor-
phosyntactic values, as output by an automatic mor-
phological analyzer. The first three sets of features
reflect simple counts of whether a morphosyntac-
tic tag is present or what proportion of tokens re-
ceive each morphosyntactic tag. The first set of
features expresses whether a given morphosyntac-
tic tag is present in the document. A second set
of features, expresses the ratio of tokens with each
morphosyntactic tag, normalized by token count. A
third set of features, the value-feature ratio (VFR),
was calculated as the number of tokens that express
a morphosyntactic value (e.g. past), normalized by
the number of tokens that express the corresponding
morphosyntactic feature (e.g. tense).

In the early stages of learning Russian, learners
do not have a knowledge of all six cases, so I hy-
pothesized that texts intended for the lowest reading
level might be distinguished by a limited number of
attested cases. Similarly, two subcases in Russian,
partitive genitive and second locative, are generally
rare, but are overrepresented in texts written for be-
ginners who are being introduced to these subcases.
Two features were computed to capture these intu-
itions: the number of cases and the number of sub-
cases attested in the document.

Following Nikin et al. (2007; Krioni et al. (2008;
Filippova (2010), I calculated a feature to measure
the proportion of abstract words. This was done by
using a regular expression to test lemmas for the
presence of a number of abstract derivational suf-
fixes. This feature is normalized to the number of
tokens in the document.

4.2.1 Sentence length-based features (SENT)
The SENT category consists of features that in-

clude in their computation some form of sentence
length, including words per sentence, syllables per
sentence, letters per sentence, coordinating con-
junctions per sentence, and subordinating conjunc-

ruslang.ru/freq.php), which is based on data from the
Russian National Corpus. The token frequency data were taken
directly from the Russian National Corpus webpage at http:
//ruscorpora.ru/corpora-freq.html.
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tions per sentence. In addition, I also compute the
type frequency of morphosyntactic readings per sen-
tence. This category also includes the traditional
readability formulas: Russian Flesch Reading Ease
(Oborneva, 2006a), Flesch Reading Ease, Flesch-
Kincaid Grade Level, and the Coleman-Liau Index.

4.3 Syntactic features (SYNT)

Syntactic features for this study were primarily
based on the output of the hunpos9 trigram part-of-
speech tagger and maltparser10 syntactic depen-
dency parser, both trained on the SynTagRus11 tree-
bank. Using maltoptimizer,12 I found that the
best-performing algorithm was Nivre Eager, which
achieved a labeled attachment score of 81.29% with
cross-validation of SynTagRus.

Researchers of automatic readability classifica-
tion and closely related tasks have used a number of
syntactic dependency features which I also imple-
ment here (Yannakoudakis et al., 2011; Dell’Orletta
et al., 2011; Vor der Brück and Hartrumpf, 2007;
Vor der Brück et al., 2008). These include features
based on dependency lengths (the number of tokens
intervening between a dependent and its head), as
well as the number of dependents belonging to par-
ticular parts of speech, in particular nouns and verbs.
In addition, I also include features based on de-
pendency tree depth (the path length from root to
leaves).

4.4 Discourse/content features (DISC)

The discourse/content features (DISC) are intended
to capture the broader difficulty of understanding the
text as a whole, rather than the difficulty of pro-
cessing the linguistic structure of particular words
or sentences. One set of features are based on defi-
nitions (Krioni et al., 2008), which are a set of words
and phrases that are used to introduce or define new
terms in a text. Using regular expressions, I cal-
culate definitions per token and definitions per sen-
tence.

Another set of features is adapted from the work

9https://code.google.com/p/hunpos/
10http://www.maltparser.org/
11http://ruscorpora.ru/

instruction-syntax.html
12http://nil.fdi.ucm.es/maltoptimizer/

index.html

of Brown et al. (2007; 2008), who show that logi-
cal propositional density—a fundamental measure-
ment in the study of discourse comprehension—can
be accurately measured purely on the basis of part-
of-speech counts.

One other feature is based on the intuition that
reading dialogic texts is generally easier than read-
ing prose. This feature is computed as the number
of dialog symbols13 per token.

4.5 Summary of features

As outlined in the preceding sections, this study
makes use of 179 features. Many of the features are
inspired by previous research of readability, both for
Russian and for other languages. The distribution of
these features across categories is shown in Table 3.

Category Number of features
DISC 6
LEXC 42
LEXF 38
LEXV 7
MORPH 60
SENT 10
SYNT 16
Total 179

Table 3: Distribution of features across categories

5 Results

The machine-learning and evaluation for this study
were performed using the weka data mining soft-
ware (Hall et al., 2009). Based on preliminary tests,
the Random Forest model was selected as the clas-
sifier algorithm for the study.14 All results reported
below are achieved using the Random Forest algo-
rithm with default parameters. Unless otherwise
specified, evaluation was performed using ten-fold
cross validation.

Results are given in Table 4. Precision is a mea-
sure of how many of the documents predicted to be
at a given readability level are actually at that level
(true positives divided by true and false positives).

13In Russian, -, –, — and : are used to mark turns in a dialog.
14Other classifiers that consistently performed well were

NNge (nearest-neighbor with non-nested generalized exem-
plars), FT (Functional Trees), MultilayerPerceptron, and SMO
(sequential minimal optimization for support vector machine).
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Recall measures how many of the documents at a
given readability level are predicted correctly (true
positives divided by true positives and false nega-
tives). The two metrics are calculated for each read-
ing level and weighted averages are reported for the
classifier as a whole. The F-score is a harmonic
mean of precision and recall. Adjacent accuracy
is the same as weighted recall, except that it con-
siders predictions that are off by one category as
correct. For example, a B2 document is counted
as being correctly classified if the classifier predicts
B1, B2, or C1. The baseline performance achieved
by predicting the mode reading level (B1)—using
weka’s ZeroR classifier—is precision 0.097 and re-
call 0.312 (F-score 0.149). The OneR classifier,
which is based on only the most informative fea-
ture (corrected type-token ratio), achieves precision
0.487 and recall 0.497 (F-score 0.471). The Ran-
dom Forest classifier, trained on the full Combined
corpus with all 179 features, achieves precision 0.69
and recall 0.677 (F-score 0.671), with adjacent ac-
curacy 0.919.

Classifier Precis. Recall F-score
ZeroR 0.097 0.312 0.149
OneR 0.487 0.497 0.471
RandomForest 0.690 0.677 0.671

Table 4: Baseline and RandomForest results with Combined

corpus

A confusion matrix is given in Table 5, which
shows the predictions of the RandomForest classi-
fier. The rows represent the actual reading level as
specified in the gold standard, whereas the columns
represent the reading level predicted by the classi-
fier. Correct classifications appear along the diago-
nal. Table 5 shows that the majority of misclassifi-
cations are only off by one level, and indeed the ad-
jacent accuracy is 0.919, which means that less than
10% of the documents are more than one level away
from the gold standard.

5.1 Binary classifiers

Evaluation was performed with binary classifiers, in
which the datasets contain only two adjacent read-
ability levels. Since the Combined corpus has six
levels, there are five binary classifier pairs: A1-
A2, A2-B1, B1-B2, B2-C1, C1-C2. The results of

A1 A2 B1 B2 C1 C2
A1 234 120 48 0 0 0
A2 41 553 192 17 0 0
B1 16 76 1130 90 5 5
B2 1 57 311 478 83 4
C1 1 20 66 98 394 6
C2 0 3 40 58 9 78

Table 5: Confusion matrix for RandomForest, all features,

Combined corpus. Rows are actual and columns are predicted.

the cross-validation evalution of these classifiers is
given in Table 6. Red Kalinka and LQsupp (the
second largest subcorpus of LingQ)—which were
judged to be the most reliable subcorpora—were
also examined individually.

A1-A2 A2-B1 B1-B2 B2-C1 C1-C2
Comb. prec. 0.821 0.857 0.817 0.833 0.894

recall 0.821 0.857 0.811 0.831 0.897
F-score 0.812 0.855 0.806 0.826 0.892

RK prec. 0.967 0.943 0.832 0.837 –
recall 0.966 0.943 0.829 0.792 –
F-score 0.965 0.943 0.828 0.730 –

LQsupp prec. 0.911 0.806 0.955 0.914 0.926
recall 0.903 0.806 0.956 0.915 0.924
F-score 0.901 0.806 0.954 0.912 0.924

Table 6: Evalution metrics for binary classifiers: RandomFor-

est, all features

As expected, because the binary classifiers’ are
more specialized, with less data noise and fewer lev-
els to choose between, their accuracy is much higher.

One potentially interesting difference between bi-
nary classifiers at different levels is their learning
curves, or in other words, the amount of training
data needed to approach optimal results. I hypothe-
sized that the binary classifiers at lower levels would
need less data, because texts for beginners have lim-
ited possibilities for how they can vary without in-
creasing complexity. Texts at higher reading lev-
els, however, can vary in many different ways. To
adapt Tolstoy’s famous opening line to Anna Karen-
ina, “All [simple texts] are similar to each other, but
each [complex text] is [complex] in its own way.” If
this is true, then binary classifiers at higher reading
levels should require more data to reach the upper
limit of their classifying accuracy. This prediction
was tested by controlling the number of documents
used in the training data for each binary classifier,
while tracking the F-score on cross-validation. Re-
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sults of this experiment are given in Figure 2.

Figure 2: Learning curves of binary classifiers trained on LQ-

supp subcorpus

The results of this experiment support the hy-
pothesized difference between binary classifier lev-
els, albeit with some exceptions. The A1-A2 clas-
sifier rises quickly, and begins to level off after see-
ing about 40 documents. The A2-B1 classifier rises
more gradually, and levels off after seeing about 55
documents. The B1-B2 classifier rises even more
slowly, and does not level off within the scope of
this figure.

Up to this point, the data confirm my hypothesis
that lower levels require less training data. However,
the B2-C1 and C1-C2 classifiers buck this trend,
with learning curves that outperform the simplest
binary classifier with very little training data. One
possible explanation for this is that the increasing
complexity of CEFR levels is not linear, meaning
that the leap from A1 to A2 is much smaller than the
leap from C1 to C2. The increasing rate of change
is explicitly formalized in the official standards for
the TORFL tests. For example, the number of words
that a learner should know has the following pro-
gression: 750, 1300, 2300, 10 000, 12 000 (7 000
active), 20 000 (8 000 active). This means that dis-
tinguishing B2-C1 and C1-C2 should be easier be-
cause the distance between their respective levels is
an order of magnitude larger than the distance be-
tween the respective levels of A1-A2, A2-B1. Fur-
thermore, development of grammar should be more
or less complete by level B2, so that the the num-
ber of features that distinguish C1 from C2 should
be smaller than in lower levels, where grammar de-
velopment is a limiting factor.

6 Feature evaluation

As summarized in Section 4.5, this study makes use
of 179 features, divided into 7 categories: DISC,
LEXC, LEXF, LEXV, MORPH, SENT, and SYNT.
Many of the features used in this study are taken
from previous research of related topics, and some
features are proposed for the first time here. Pre-
vious researchers of Russian readability have not
included morphological features, so the results of
these features are of particular interest here.

In this section, I explore the extent to which the
selected corpora can support the relevance and im-
pact of these features in Russian second language
readability classification. One rough test for the
value of each category of features is to run cross-
validation with models trained on only one category
of features. In Table 7, I report the results of this
experiment using the Combined corpus.

Category # features precision recall F-score
DISC 6 0.482 0.482 0.477
LEXC 42 0.528 0.532 0.514
LEXF 38 0.581 0.573 0.567
LEXV 7 0.551 0.552 0.546
MORPH 60 0.642 0.627 0.618
SENT 10 0.478 0.479 0.474
SYNT 16 0.518 0.533 0.514
LEXC+LEXF+LEXV 87 0.652 0.645 0.639

Table 7: Precision, recall, and F-score for six-level Random

Forest models trained on the Combined corpus

The results in Table 7 show that MORPH, has the
highest F-score of any single category, with an F-
score just 0.053 below a model trained on all 179
features. True comparisons between categories are
problematic because the number of features per cat-
egory varies significantly.

In order to evaluate the usefulness of each feature
as a member of a feature set, I used the correlation-
based feature subset selection algorithm (CfsSub-
setEval) (Hall, 1999), which selects the most pre-
dictive subset of features by minimizing redundant
information, based on feature correlation.

Out of 179 features, the CfsSubsetEval algorithm
selected 32 features. Many of the features selected
for the optimal feature set are also among the top 30
most informative features according to information
gain. However, the morphological features—which
had only 7 features among the top 30 for information
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gain—now include 14 features, which indicates that
although these features are not as informative, the
information that they contribute is unique.

A classifier trained on only these 32 features with
the Combined corpus achieved precision 0.674 and
recall 0.665 (F-score 0.659), which is only 0.01
worse than the model trained on all 179 features.

7 Conclusions and Outlook

This article has presented new research in auto-
matic classification of Russian texts according to
second language readability. This technology is in-
tended to support learning activities that enhance
student engagement through online authentic mate-
rials (Erbaggio et al., 2010). I collected a new corpus
of Russian language-learning texts classified accord-
ing to CEFR proficiency levels. The corpus comes
from a broad spectrum of sources, which resulted in
a richer and more robust dataset, while also compli-
cating comparisons between subsets of the data.

Classifier performance A six-level Random For-
est classifier achieves an F-score of 0.671, with ad-
jacent accuracy of 0.919. Binary classifiers with
only two adjacent reading levels achieve F-scores
between 0.806 and 0.892. This is the first large-scale
study of this task with Russian data, and although
these results are promising, there is still room for
improvement, both in corpus quality and modeling
features.

In Section 5.1, I showed that binary classifiers at
the lowest and highest reading levels required less
training data to approach their upper limit. Begin-
ning with the lowest levels, each successive binary
classifier learned more slowly than the last until the
B2-C1 level. I interpret this as evidence that simple
texts are all similar, but complex texts can be com-
plex in many different ways.

Features Among the most informative individual
features used in this study are type-token ratios,
as well as various measures of maximum syntac-
tic dependency lengths and maximum tree depth.
However, as a category, the morphological features
are most informative. When features with over-
lapping information are removed using correlation-
based feature selection, the resulting set includes 14
MORPH features, 8 SYNT features, 4 LEXV fea-

tures, 3 LEXF features, and 2 LEXC features, and 1
DISC feature. Models trained on only one category
of features also show the importance of morphology
in this task, with the MORPH category achieving a
higher F-score than other individual categories.

Although the feature set used in this study had
fairly broad coverage, there are still a number of
possible features that could likely improve classifier
performance further. Other researchers have seen
good results using features based on semantic am-
biguity, derived from word nets. Implementing such
features would be possible with the new and growing
resources from the Yet Another RussNet project.15

Another category of features that is absent in this
study is language modeling, including the possi-
bility of calculating information-theoretic metrics,
such as surprisal, based on those models.

The syntactic features used in this study could be
expanded to capture more nuanced features of the
dependency structure. For instance, currently im-
plemented syntactic features completely ignore the
kinds of syntactic relations between words. In ad-
dition, some theoretical work in dependency syntax,
such as catenae (Osborne et al., 2012) and depen-
dency/locality (Gibson, 2000) may serve as the basis
for other potential syntactic features.

Applications One of the most promising applica-
tions of the technology discussed in this article is a
grammar-aware search engine or similar information
retrieval framework that can assist both teachers and
students to identify texts at the appropriate reading
level. Such systems have been discussed in the lit-
erature (Ott, 2009), and similar tools can be created
for Russian language learning.
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u podrostkov [toward using linguistic profiles of text
complexity for research of oculomotor activity during
reading by teenagers]. Novye issledovanija [New stud-
ies], 34(1):42–50.

Nikolay Karpov, Julia Baranova, and Fedor Vitugin.
2014. Single-sentence readability prediction in Rus-
sian. In Proceedings of Analysis of Images, Social
Networks, and Texts conference (AIST).

Adam Kilgarriff, Frieda Charalabopoulou, Maria Gavrili-
dou, Janne Bondi Johannessen, Saussan Khalil,
Sofie Johansson Kokkinakis, Robert Lew, Serge
Sharoff, Ravikiran Vadlapudi, and Elena Volodina.
2014. Corpus-based vocabulary lists for language
learners for nine languages. Language resources and
evaluation, 48(1):121–163.

J. P. Kincaid, R. P. Jr. Fishburne, R. L. Rogers, and B. S
Chissom. 1975. Derivation of new readability for-
mulas (Automated Readability Index, Fog Count and
Flesch Reading Ease formula) for Navy enlisted per-
sonnel. Research Branch Report 8-75, Naval Techni-
cal Training Command, Millington, TN.

A. Kotlyarov. 2015. Measuring and analyzing compre-
hension difficulty of texts in contemporary Russian. In
Materials of the annual scientific and practical con-
ference of students and young scientists (with inter-
national participation), pages 63–65, Kostanay, Kaza-
khstan.
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slovar’ sovremennogo russkogo jazyka (na materialax

Nacional’nogo Korpusa Russkogo Jazyka) [Frequency
dictionary of Modern Russian (based on the Russian
National Corpus)]. Azbukovnik, Moscow.

Ja. A. Mikk. 1974. Metodika razrabotki formul čita-
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