
Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, pages 223–228,
San Diego, California, June 16, 2016. c©2016 Association for Computational Linguistics

Combined Tree Kernel-based classifiers for Assessing Quality of Scientific
Text ∗

Liliana Mamani Sanchez
Trinity College Dublin
mamanisl@tcd.ie

Hector Franco-Penya
Dublin Institute of Technology
hector.franco@dit.ie

Abstract

This document describes Tree Kernel-SVM
based methods for identifying sentences that
could be improved in scientific text. This has
the goal of contributing to the body of knowl-
edge that attempt to build assistive tools to aid
scientist improve the quality of their writings.
Our methods consist of a combination of the
output from multiple support vector machines
which use Tree Kernel computations. There-
fore, features for individual sentences are trees
that reflect their grammatical structure. For
the AESW 2016 Shared Task we built systems
that provide probabilistic and binary outputs
by using these models for trees comparisons.

1 Introduction

The system described in this article was submitted
to the Automated Evaluation of Scientific Writing
(AESW) Shared Task (Daudaravicius et al., 2016).

English is the most common language used for
scientific writing across the world. Other things be-
ing equal, many scientific writers are non-native En-
glish speakers, what leads to a demand for assisting
tools that employ “grammar error correction tech-
nologies” to compose scientific articles (Daudaravi-
cius, 2015).

Several competitions similar to the one this article
addresses have been organized, namely: the Help-
ing Our Own (HOO) Shared Task (Dale and Kil-
garriff, 2011; Dale et al., 2012), The CoNLL-2014
shared task on Grammatical Error Correction (Ng et

∗ Both authors contributed equally to the contents and ex-
periments described in this paper.

al., 2014). Those evaluations make use of human
annotated examples of correct and incorrect gram-
mar (Dahlmeier et al., 2013; Yannakoudakis et al.,
2011).

Particularly, Leacock et al. (2010) provide a com-
prehensive overview of various aspects related to
grammar error detection research.

This paper is organized as follows: Section 2
briefly describes the goals of the task our models
attempt to address, Section 3 describes our experi-
ments including the proposed Tree Kernel models,
whose results are reported in Section 4. Section 5
further comments on the results, and Section 6 con-
cludes with some summarizing remarks.

2 The task

The task consists in identifying sentences that need
improvement or correction. This is done by classi-
fying sentences into ones that do need amendments
and those that do not. The training dataset pro-
vided by the organizers comprises sentences pairs
(So, Se), where So is a sentence presented as writ-
ten by a non-native individual, these sentences con-
tain at least one grammatical or lexical mishap that
can be corrected. The corresponding Se has been
edited as to make So to look as a sentence with good
academic style. For instance, example (2), shows a
sentence that is an improved version of the one in
example (1).

(1) This is called as sub-additivity property of
von-Neumann entropy.

(2) This is called a sub-additivity property of
von Neumann entropy.

223



The intuition behind this task is that systems that
automatically identify sentence candidates for im-
provement may be built. The core solution would be
provided by keeping track of common pitfalls com-
mitted by non-native individuals in their writing as
in (1). Subsequently, such a system would learn how
these pitfalls have been addressed as to emulate text
produced by native writers.

The training dataset also comprises a set of sen-
tences written by native English academics; they
constitute a body of text that is representative of
good academic writing style.

3 Experiments

For our experiments we used constituent trees corre-
sponding to the examples from the training dataset.
This dataset provided by the shared task organizers
comprises parse tree structures which were gener-
ated by using the Stanford parser (Klein and Man-
ning, 2003).

3.1 Tree Kernels

The tree structures were used to train Support Vec-
tor Machines using the SVM-light implementation
by Joachims (1999) and SubSet Tree kernel (SST)
computation tool (Collins and Duffy, 2002a; Mos-
chitti, 2004; Moschitti, 2006) built on top of the for-
mer.

In essence, a Tree Kernel classifier computes a
kernel function between two trees by comparing
subtrees extracted from them. Since the number of
possible comparisons between subtrees is exponen-
tial, we restricted the choice of subtrees to SubSet
Trees (SSTs) (Collins and Duffy, 2002b). A SST is
a tree where the leaves may comprise non-terminal
symbols and the rules that these trees reflect should
be well formed according to the rules of the target
language grammar, in this case English.

Tree Kernel methods over Support Vector Ma-
chine have been successfully used on many other
natural language processing applications, such as
Semantic Role Labelling (Moschitti et al., 2008),
question answer classification (Moschitti et al.,
2007) or relational text categorization (Moschitti,
2008).

Figure 1b illustrates some SubSet trees1 extracted
1For reasons of brevity, the whole set of SubSet Trees that is

by the SST kernel from the full syntactic tree struc-
ture for (2), which is shown in Figure 1a. Such sub-
trees will be used as features for the Support Vector
Machine model.

Our intuition behind using parse trees compar-
isons to identify candidate text for correction is that
non-native writers will regularly use spurious lexical
grammatical structures across their writings. There-
fore, given a new sentence to classify, its underlying
grammatical structure will be compared to a collec-
tion of tree structures built out of a training dataset.

3.2 Models for sentence quality assessment

Our overall strategy was to build models that use tree
representations of sentences to be used in Support
Vector Machines-based systems for sentence qual-
ity assessment. SVMs work with training exam-
ples labelled as either positive (1) or negative (-1).
Therefore, sentences in need of edition are labelled
as positive examples while sentences which do not
need edition are labelled as negative examples. A
machine learning system trained on these examples
aims to predict a positive one.

Labelling examples as either positive or negative
was translated into labelling tree structures corre-
sponding to these examples with the respective la-
bel; for instance, the tree in Figure 1a is deemed a
positive example. Internally, the SST tree tool as-
signs these labels to the corresponding subtrees: fol-
lowing from this, features such as the subtrees in 1b,
are labelled as positive examples for the kernel com-
putation.

To prepare the datasets for the training stage, we
divided the dataset provided by the organizers in
tree groups: Do: sentences as written by non-native
speakers and need edition; De are sentences that
have a counterpart in Do which were edited to have
an improvement in good academic writing style; and
Dn: sentences written by native English academic
writers which do not have counterparts in Do and do
not need edition.

We wanted to experiment with different condi-
tions on how the identification of sentences in need
of improvement may occur. Therefore, considering
these three subdatasets Do, De and Dn, three mod-
els were built.

extracted from the full parse tree is not shown here.

224



S

VP

VP

PP

NP

PP

NP

JJ

entropy

NN

von-Neumann

IN

of

NP

NN

property

JJ

sub-additivity

IN

as

VBN

called

VBZ

is

NP

DT

This

(a) Constituent tree from the sentence in exam-
ple (1).

VP

PP

NPIN

as

VBN

called

NP

PP

NPIN

NP

NNJJ

NP

JJ

entropy

NN

von-Neumann

NN

von-Neumann

(b) SubSet Trees (SST) extracted from (a).

Figure 1: Example of how SubSet Trees (SST) extract sub trees as features from constituent tree structures.

225



• MO: uses uniquely sentences in Do as positive
examples, and sentences from De as negative
examples.

• ZM: uses sentences from Do as positive ex-
amples, and sentences from Dn as negative ex-
amples.

• ZMO: uses sentences from Do as positive
samples and sentences from both De and Dn

as negative samples.

MO depicts a scenario where the identification
would be better for sentence that keep close sim-
ilarity to the sentences in the training dataset and
high precision is paramount. ZM favours situa-
tions where sentences to be assessed do not keep
high similarity to the set of positive training exam-
ples but the model is able to generalize by contrast-
ing with sentences with good academic style. Ulti-
mately,ZMO should enclose advantages of the two
previous models.

The training dataset of parse trees provided by the
organizers contained 475,473 trees for Do, 476,142
trees for De and 725,374 for Dn. Due to their length
some sentences were unsuitable for processing by
the TK-SVMLight tool, therefore examples whose
length was above 1,400 characters were dropped out
from the training set. This meant dropping 1,489
examples from Do, 1,433 from De, and 283 from
Dn. Thus, 948,693 training examples were used for
MO, 1,199,075 examples for ZM, and 1,673,784
examples for ZMO.

Another reason why we chose Tree Kernels com-
putation as a basis for our systems is that we think
this sort of classification task should rely uniquely
on sentence-level features. Other non-linguistic can-
didate features could have been taken into account
such as the relative position of an individual sen-
tence within a paragraph or document. However,
a system built comprising such a feature might not
work properly on individual sentences that need
classification.

3.3 Training and evaluation procedures
Unfortunately, the computation of kernels for all
SubSet Trees is highly demanding in terms of com-
putation time. Due to hardware limitations, for all
three models the training data set was split into 100

sub-datasets, and a Support Vector Machine model
was trained for each sub-dataset. Then, predic-
tions were computed by using each of those hun-
dred Support Vector Machine models over the un-
labelled test dataset provided by the task organiz-
ers. The overall numerical categorization value for a
system was calculated by averaging over these pre-
dictions. This categorization value was normalized
to generate the probability of a sentence needing
improvement OutputProb using formula(1), where
OutputSV Mmodeli ∈ [−1, 1].

OutputProb =
∑100

i=1 OutputSV Mmodeli
200

+ 0.5
(1)

Because the formula aims to estimate probabili-
ties, if OutputProb > 1 then it is floored down to
one, if OutputProb < 0, then it is rounded up to
zero.

Some issues related to the use Stanford parser
emerged during the evaluation stage. The parsing
procedure for examples from the testing set was ex-
pected to produce a parse tree per example, which
thereafter would be formatted properly for testing
our systems. However, the parser failed to iden-
tify the boundaries of some sentences, particularly
if there was an abbreviation with a period or a colon
symbol occurring in them. For instance, abbrevia-
tions such as “etc.” or “i e.” caused the parser pro-
duce two parse trees for a single sentence.

This issue was overcame by running a script that
matches the tree structure with the original sentence
if the tree structure contained at least 50% of the
words in the original sentence, for which no more
than 10 consecutive sentences or consecutive trees
can be unmatched.

This procedure left 188 sentences without a match
(which is negligible amount of the total testing set:
0.13%). For these sentences a probability of 0.5 or a
label ‘false’ was assigned.

4 Results

Table 1 shows the results for the systems submitted
to the task organizers.

The system was evaluated according to the pre-
dicted label (bin) and according to the predicted
probability (prob).

226



Table 1: Results in terms of Precision, Recall and F-
measure for systems that produce either a probabilis-
tic (prob) or binary (bin) prediction. The number in
parenthesis points to the relative ranking compared
to other systems.

System Precision Recall F1

ZM bin 0.4482 (4) 0.7279 (6) 0.5548 (3)
ZM prob 0.7062 (6) 0.8182 (2) 0.7581 (3)
MO bin 0.3960 (8) 0.6970 (7) 0.5051 (7)
MO prob 0.6576 (8) 0.8014 (3) 0.7224 (3)

ZMO results are not reported as the system did
not produce any positive prediction (F1 = 0).

For the competition of binary output systems, our
ZM system performs better than MO system for
F−score, resulting ranked in third place. This is
0.073 points behind the best system score (HU), but
0.1041 points better than the baseline system from
the task organizers.

Regarding the probabilistic output systems com-
petition, our MO-based system was ranked third.
Similarly, this system is 0.073 points behind the best
system (HITS) and 0.1073 points above the baseline.
Also, this system’s results seem to keep correlation
with the results from the systems provided by the
team NTNU-YZU.

5 Discussion

It is unfortunate the dataset size prompted us to split
the training set into a hundred sub-datasets to train
their corresponding Support Vector Machine mod-
els. This split was done according to the order in
which sentences appear on the training set, expect-
ing that indirectly each modified sentence will pro-
vide the negative and the positive examples (this is
the sentence before and after being edited, So and
Se respectively ) is likely to fall within same sub-set.
While this is a simplified strategy to split the train-
ing set, the effectiveness of other methods is an open
research question to explore. Clustering algorithms
could provide a better split.

The distribution of positive and negative examples
forMO was perfectly balanced as 50% of samples
were positive while the other 50% were negative.
TheZMmodel was fairly balanced, theZMO was
not balanced (475,473 positive examples in contrast
to 952,284 negative examples) and this lead to the

corresponding systems produce only negative pre-
dictions.

It seems that the F1 measure is proportional to
how well balanced each data set is, this could be due
to not using the development set to tune the thresh-
old for binary predictions, or to re-arrange probabil-
ities.

Systems trained using the ZM perform better
than the ones using MO. We think a reason for
this is that in MO a positive example shares vari-
ous subtrees with its corresponding negative exam-
ple. Therefore, this may affect the classifier ability
to calculate predictions for some examples in the test
set. It would be ideal to make use of the test set gold
standard to have more conclusive insights in this re-
spect.

6 Conclusions

We described in this paper machine learning-based
systems for identifying sentences that need amend-
ments to improve their academic style. Our four sys-
tems have a Support Vector Machines computations
as a core, they were built having tree representations
of target sentences as features. The best systems of
these four are the ones that use a model where sen-
tences needing improvement are deemed as positive
examples, and as negative examples sentences that
were not edited and do not correspond to the positive
examples are taken into account. This may be due to
various reasons such as the distribution of positive
and negative examples, or entropy of the datasets.
We intend to address these and other issues in our
systems in future work.

We think these systems’ performance can be im-
proved by modifying: the combination of models,
and the software implementation, the representation
of features. So far, we have implemented an em-
pirical combination of sub-models output to have a
global prediction output.

Making changes in the implementation of tree
kernels computation may help to create models that
meet scalability requirements. The final prediction
would benefit of having less sub-models while keep-
ing computation time reasonable.

Finally, we expect these attempts and future work
to contribute to the state of the art of assistive writing
technologies.

227



References
Michael Collins and Nigel Duffy. 2002a. New rank-

ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of the 40th annual meeting on association for
computational linguistics, pages 263–270. Association
for Computational Linguistics.

Michael Collins and Nigel Duffy. 2002b. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of 40th Annual Meeting of the Association for
Computational Linguistics, pages 263–270, Philadel-
phia, Pennsylvania, USA, July. Association for Com-
putational Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner en-
glish: The nus corpus of learner english. In Proceed-
ings of the Eighth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 22–31.

Robert Dale and Adam Kilgarriff. 2011. Helping Our
Own: The HOO 2011 Pilot Shared Task. the Gener-
ation Challenges Session at the 13th European Work-
shop on Natural Language Generation,, pages 242–
249.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A report on the Preposition and
Determiner Error Correction Shared Task. the Seventh
Workshop on Building Educational Applications Us-
ing NLP, pages 54–62.

Vidas Daudaravicius, Rafael E. Banchs, Elena Volodina,
and Courtney Napoles. 2016. A report on the auto-
matic evaluation of scientific writing shared task. In
Proceedings of the Eleventh Workshop on Innovative
Use of NLP for Building Educational Applications,
San Diego, CA, USA, June. Association for Compu-
tational Linguistics.

Vidas Daudaravicius. 2015. Automated Evaluation of
Scientific Writing: AESW Shared Task Proposal. Sil-
ver Sponsor, pages 56–63.

Thorsten Joachims. 1999. Making large scale svm learn-
ing practical. Technical report, Universität Dortmund.

Dan Klein and Christopher D. Manning. 2003. Accurate
Unlexicalized Parsing. Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics
- ACL ’03, 1:423–430.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel Tetreault. 2010. Automated grammatical er-
ror detection for language learners. Synthesis lectures
on human language technologies, 3(1):1–134.

Alessandro Moschitti, Silvia Quarteroni, Roberto Basili,
and Suresh Manandhar. 2007. Exploiting syntactic
and shallow semantic kernels for question answer clas-
sification. In Annual meeting-association for compu-
tational linguistics, volume 45, page 776.

Alessandro Moschitti, Daniele Pighin, and Roberto
Basili. 2008. Tree kernels for semantic role labeling.
Computational Linguistics, 34(2):193–224.

Alessandro Moschitti. 2004. A study on convolution ker-
nels for shallow semantic eing. Proceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics - ACL ’04, pages 335–es.

Alessandro Moschitti. 2006. Making tree kernels prac-
tical for natural language learning. In EACL, volume
113, page 24.

Alessandro Moschitti. 2008. Kernel methods, syntax and
semantics for relational text categorization. In Pro-
ceedings of the 17th ACM conference on Information
and knowledge management, pages 253–262. ACM.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2014. Shared Task
on Grammatical Error Correction.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies-Volume 1, pages
180–189. Association for Computational Linguistics.

228


