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Abstract

Dementia is an increasing problem for an ag-
ing population, with a lack of available treat-
ment options, as well as expensive patient
care. Early detection is critical to eventu-
ally postpone symptoms and to prepare health
care providers and families for managing a
patient’s needs. Identification of diagnostic
markers may be possible with patients’ clini-
cal records. Text portions of clinical records
are integrated into predictive models of de-
mentia development in order to gain insights
towards automated identification of patients
who may benefit from providers’ early assess-
ment. Results support the potential power
of linguistic records for predicting demen-
tia status, both in the absence of, and in
complement to, corresponding structured non-
linguistic data.

1 Introduction

Dementia is a problem for the aging population,
and it is the 6th leading cause of death in the US
(Alzheimer’s Association, 2014). Around 35 mil-
lion people worldwide suffer from some form of de-
mentia, and this number is expected to double by
2030 (Prince et al., 2013). The most common form
of dementia is Alzheimer’s Disease, which has no
known cure and limited treatment options. The clin-
ical care for dementia focuses on prolonged symp-
tom management, resulting in high personal and fi-
nancial costs for patients and their families, straining
the healthcare system in the process. Early detection
is critical for potential postponement of symptoms,
and for allowing families to adjust and adequately

plan for the future. Despite this importance, cur-
rent detection methods are costly, invasive, or unre-
liable, with most patients not being diagnosed until
their symptoms have already progressed. Dementia
diagnosis is a life-changing event not only for the
patient but for the caretakers that have to adjust to
the ensuing life changes. Improved understanding
and recognition of early warning signs of demen-
tia would greatly benefit the management of the dis-
ease, and enable long-term planning and logistics for
healthcare providers, health systems, and caregivers.

With the advent of electronic clinical records
comes the potential for large-scale analysis of pa-
tients’ clinical data to understand or discover warn-
ing signs of dementia progression. The ability to fol-
low the evolution of the disease based on patients’
records would be key to develop intelligent support
systems to assist medical decision-making and the
provision of care. Current research using records
mainly focuses on structured data, i.e. numerical or
categorical data, such as test results or patient de-
mographics (Himes et al., 2009). However, unstruc-
tured data, such as text notes taken during interac-
tions between patients and doctors, presents a po-
tentially rich source of information that may be both
more straightforwardly interpretable for humans, as
well as helpful for early dementia detection. Struc-
tured data from innovative diagnostic tests are of-
ten absent due to their cost and accessibility, text
notes are generated for nearly every visit of a pa-
tient. Moreover, text notes in medical records are
a source of natural language, and potentially more
flexibly encode the diagnostic expertise and reason-
ing of the clinical professionals who write them.
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Processing and computationally analyzing natu-
ral language remains a formidable task, but insights
gleaned from it may translate particularly well into
actual clinical practice, given its interpretable and
accessible nature. Therefore, the ability to pre-
dict dementia development based on both structured
and unstructured data would be useful for intelligent
support systems which could automatically flag in-
dividuals who will benefit for further evaluation, re-
ducing the impact of late diagnosis.

1.1 Related Work

Structured clinical data has been useful for identi-
fying known disease markers (Himes et al., 2009).
Procedural and diagnostic codes (e.g., ICD-9) can
provide high specificity for identifying a disease,
but may not provide sufficient sensitivity (Birman-
Deych et al., 2005; Kern et al., 2006). A pa-
tient’s history, however, is typically summarized by
a clinician in text form, and can provide informative
expressiveness and granularity not adequately cap-
tured by ICD-9 codes (Li et al., 2008). Interestingly,

Prior work has shown that natural language data
can help synthesize details and discover trends in
medical records. Natural language processing and
text mining have been applied to the identification
of various known medical conditions. One method
maps specific conditions to relevant terms from on-
tologies (curated knowledge bases). For exam-
ple, SNOMED-CT predicted post-operative patient
complications (Murff et al., 2011), and MedLEE
(Friedman et al., 1995) identified colorectal can-
cer cases (Xu et al., 2011), suspicious mammogram
findings (Jain and Friedman, 1997), and adverse
events related to central venous catheters (Penz et
al., 2007). Similarly, the language analysis-based
resource SymText (Haug et al., 1995) has been used
for detecting bacterial pneumonia cases from de-
scriptions of chest X-ray (Fiszman et al., 2000).

While such studies with medical knowledge bases
are useful for disease identification, they mostly
involve conditions with well known markers and
known relationships between words and clinical
concepts typically available once the patient is
symptomatic. However, many cognitive conditions,
such as dementia, as well as other illnesses of inter-
est, are not well understood and their onsets grad-
ually evolve over long periods of time. Further-

more, diagnosing such conditions is often primar-
ily a function of experts’ analysis, transcribed into
notes. Thus, discovering lexical associations with
the progression of these conditions could be tremen-
dously beneficial, and could also help to validate and
enhance the use of resources such as the Alzheimer’s
Disease Ontology (Malhotra et al., 2013).

Topic models have produced interesting results
across domains (Chan et al., 2013; Resnik et al.,
2013; McCallum et al., 2007; Paul and Dredze,
2011). Latent Semantic Indexing (LSI) has been
used in medicine to discover statistical relationships
between lexical items in a corpus. LSI has been used
to supplement the development of a clinical vocab-
ulary associated with post-traumatic stress disorder
(Luther et al., 2011), and for forecasting ambulatory
falls in elderly patients (McCart et al., 2013). How-
ever, LSI often requires around 300–500 concepts
or dimensions to produce stable results (Bradford,
2008). This limitation can be overcome by using
LDA, whose identified groups of related terms are
also more intuitive for human interpretation than LSI
results. Additionally, representing documents by
their LDA topic distribution reduces the dimension-
ality of the feature space. Furthermore, a study with
microtext data demonstrated that document length
influences topic models, and that aggregating short
documents by author can be beneficial (Hong and
Davison, 2010). This finding is relevant for this
study due to the short nature of clinical texts.

This study is concerned with the fusion of lin-
guistic data with structured non-linguistic data, as
well as the integration of distinct models suitable
for each. Approaches to the former case, have been
studied (Ruta and Gabrys, 2000). For the latter case,
integration of classifiers typically involves multiple
models of the same data, e.g. ensemble methods
such as random forests, and often utilizes voting
algorithms to produce the final combined output.
However, here we focus on the combination of two
distinct models: one based on linguistic data and one
on structured non-linguistic data. This setup compli-
cates the use of typical voting methods, and thus we
explore a less frequently studied solution that lever-
ages Bayesian probability to produce posterior dis-
tributions (Bailer-Jones and Smith, 2011).
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1.2 Our Contributions
(1) We compare performance of predictive modeling
with linguistic vs. non-linguistic features, studying
if linguistic features used alone as predictors yield
performance comparable to that of non-linguistic
record data – especially when the latter exclude cog-
nitive assessment scores from expert-administered
tests. Our results show the utility of linguistic data
for dementia prediction, e.g., when relevant struc-
tured data are unavailable in the records, as is often
the case. (2) We explore the use of Latent Dirich-
let Allocation (LDA) (Blei et al., 2003) as textually
interpretable dimensionality reduction of the lexi-
cal feature space into a topic space. We examine
if LDA can transform the sparse term space into
a reduced topic space that meaningfully character-
izes the texts, and we discuss its practical value for
classification. (3) We study the challenge of fus-
ing linguistic and non-linguistic data from records in
additional classification experiments. If fusion im-
proves performance, this would strengthen the util-
ity of records-based linguistic features for disease
prediction. We explore two integration methods:
combining feature vectors computed independently
from structured and text data, or leveraging proba-
bilistic outputs of their respective trained classifiers.

This paper is organized as follows. Section 2 de-
scribes the data for the dementia detection problem.
Section 3 presents our framework and integration.
Section 4 outlines experiments and results. We con-
clude with future directions in Section 5.

2 Dementia Detection Problem: Data

This study makes a secondary use of a data set
from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) (adni.loni.usc.edu). The ADNI
study contains mostly structured data, such as mea-
surements from brain imaging scans, blood, and
cerebrospinal fluid biomarkers. The dataset also
contains optional text fields in which examiners in-
clude notes or descriptions at their discretion.

Each ADNI subject1 is labeled upon entering the
study. ADNI’s original labeling scheme was mod-
ified in later phases of the study, resulting in some
subjects having updated labels, while others remain
unchanged. Therefore, only subjects who joined the

1The ADNI study refers to its participants as subjects.

Normal (NL)

28%

Alzheimer’s Disease (AD)

22%

Late MCI (LMCI )

24%

Early MCI (EMCI )

26%

Figure 1: Distribution of subject diagnostic labels (n =
679). MCI = Mild Cognitive Impairment.

study under the most recent phase, ADNI-2, are in-
cluded in this work. Subjects with a label of SMC
(Significant Memory Complaint; reflecting a self-
reported memory issue) are excluded as it is not a
real diagnostic category outside of ADNI. A sub-
ject’s record must have both unstructured text and
structured data to be included, resulting in 679 us-
able subjects; from here on we refer to their data.

The ADNI-2 phase of the ADNI collection
uses several labels to indicate the progression to
Alzheimer’s Disease: NL (Normal), EMCI (Early
Mild Cognitive Impairment), LMCI (Late MCI), and
AD (Alzheimer’s Disease). The label (class) dis-
tribution of the remaining 679 subjects is relatively
balanced (see Figure 1). Moderately-sized data sets
are common in clinical NLP contexts, where data is
understandably more challenging to collate and ac-
cess. For the text data, we considered text source
files with considerable quantities of information.2

All 679 subjects possess text notes in at least one of
these four files. Entries from these files are aggre-
gated by subject and concatenated to yield one text
document per subject.

There are 22 structured data fields in this ADNI
subset. The problem of missing values in the struc-
tured data was handled through multiple imputa-
tion (using the Amelia II package in R). This pro-
cess uses log-likelihoods to generate probable com-
plete datasets. Most structured data comes from ei-
ther cerebrospinal fluid samples or brain imaging
scans, while three fields correspond to scores on
cognitive exam evaluations: the Clinical Dementia
Rating (CDR), the Mini Mental State Examination
(MMSE), and the Alzheimer’s Disease Assessment
Scale (ADAS13). Importantly, a meaningful dis-
tinction can be made between structured data from
cognitive assessments versus those from biophys-

2See Table in the supplementary documentation.

14



ical tests/markers. A cognitive assessment is ad-
ministered by a clinical professional, and thus is
a reflection of that person’s opinion and expertise.
Essentially, cognitive assessment scores are outputs
of professional interpretation, whereas other struc-
tured data are inputs for future interpretation. Cogni-
tive assessments are also usually administered when
providers already suspect dementia, and thus can be
regarded as post-symptomatic. Patients, providers,
and families will benefit from early detection, and
such automated detection can also help prioritize the
scheduling of expert-based cognitive assessments in
resource-strained healthcare environments.

3 Modeling of Linguistic Data

There are three main feature representations for
the linguistic data: bag-of-words (BOW), term-
frequency inverse-document-frequency (tf-idf ) on
top of BOW, and topics from LDA.

Preprocessing and text normalization were per-
formed in Python and NLTK, involving lowercas-
ing, punctuation removal, stop-listing, and number
removal (with exception of age mentions). Be-
sides regular stop-listing, words or phrases reveal-
ing a subject’s diagnostic state (for example MCI)
were removed. Words in a document were lem-
matized to merge inflections (removing distinctions
between for instance cataracts and cataract). Ab-
breviation expansion used lexical lists. The 200
most frequent lexical content bigrams and trigrams
were extracted and concatenated (breast cancer →
breast cancer). Lastly, while dates were removed,
age expressions were kept after conversion and bin-
ning (AGE >=70 <80), as they may be important
for this problem. Ages below 40 were represented
as AGE <40 and ages at or above 90 as AGE >=90.

BOW and tf-idf were implemented using
gensim (Řehůřek and Sojka, 2010). The standard
BOW representation is very sparse, since any
document only contains a small subset of the
vocabulary. An extension weights the terms based
on their distribution in the corpus using tf-idf. Thus
higher weights are assigned to terms which appear
more times in fewer documents, and lower weights
to terms which appear fewer times and/or in more
documents. The feature space of tf-idf corresponds
to standard BOW, but the values are the weights.

LDA is a generative model for identifying latent
topics of related terms in a text corpus, D, which
consists of M documents and is assumed to contain
K topics. Each topic k is essentially follows a multi-
nomial distribution over the corpus vocabulary, pa-
rameterized by φk, which is drawn from a Dirichlet
distribution, i.e., φk ∼ Dir(β). Similarly, each doc-
ument follows a multinomial distribution over the
set of topics in the corpus, also assumed to have a
Dirichlet probability, denoted θi ∼ Dir(α). Work-
ing backwards, the probability of each term in a doc-
ument is determined by the term distribution of its
topic, which is in turn determined by the topic dis-
tribution of the document (Blei et al., 2003).

Under LDA, a document is modeled as a prob-
abilistic distribution over topics, learned from the
occurrence of terms through Collapsed Variational
Bayesian (CVB) inference methods using the Stan-
ford Topic Modeling Toolbox (Teh et al., 2007).3

Since topics are determined based on statistical rela-
tionships of terms, the effectiveness of the model can
be hampered by extremely frequent or infrequent
terms. For these reasons, we filter out the vocabulary
(Boyd-Graber et al., 2014, p. 9) for terms appearing
less than 3 times and the 30 most common terms.4

3.1 Integration with Structured Data Models

Integration is performed on the results of each un-
structured modeling experiment (BOW, tf-idf, and
LDA) and those of each structured ones–with vs.
without cognitive assessment features. For LDA,
only the parameters with the highest performance
are used in integration. The most intuitive form of
integration is concatenation of the feature vectors for
structured and unstructured data. Hence, concatena-
tion refers to joining two vectors of length n and m
into a single new vector of length n+m. This con-
catenated feature vector is used in classification.

The second approach of integration leverages pos-
terior probabilities from the individual (linguistic vs.
non-linguistic) classification models. For each in-
put, a classifier produces a posterior probability of
each class label and selects the most probable as its
output. One classifier is trained on structured data

3Compared to Gibbs sampling (also explored initially),
CVB converged on more sensible topics and performed better
in model development.

4Other cutoff values were explored initially.
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features Xs, and another on unstructured data fea-
tures Xu, resulting in two posterior distributions.
The probability of a class Ck is then denoted as
p(Ck | Xs, Xu). If these distributions are assumed
to be conditionally independent with respect to their
class labels, then by Bayes’ theorem:

p(Ck | Xs, Xu) ∝ p(Ck | Xs) p(Ck | Xu)
p(Ck)

(1)

From here, the class label with the highest probabil-
ity is selected as the output; for details see Bailer-
Jones and Smith (Bailer-Jones and Smith, 2011).

For integration purposes, we use logistic regres-
sion for all classification experiments, implemented
in scikit-learn (Pedregosa et al., 2011) to
compute the posterior probabilities of all classes.
We adopt a regularized logistic regression model to
further improve the predictive accuracy. By incor-
porating a regularization term into the basic logis-
tic regression model, regularized logistic regression
is able to reach a good bias-variance trade-off and
hence achieve a better generalization capability. The
regularization term is comprised of two parameters,
which are C, the inverse of regularization strength,5

and the penalty function (either the L1 or L2 vector
norm). A smallerC corresponds to harsher penalties
for large coefficients. The values of these parameters
are selected through a grid search of possible values,
evaluated by accuracy in cross validation. The pro-
cess is repeated for each labeling scheme.

4 Experimental Study

Each subject is annotated with a dementia status
class label. Each subject’s linguistic and structured
non-linguistic data are used separately or integrated,
as instances for classification.Two different classifi-
cation problems are reported on. One involves all
four classes (NL, EMCI, LMCI, AD). This 4-class
problem is henceforth referred to as Standard. As
discussed, early detection of dementia is critical.
Accordingly, EMCI subjects are of particular inter-
est, as they represent the beginning of the disease’s
progression. In the second experiment, we use 367
subjects having one of these two class labels (187

5It is common in other sources to use λ for the regulariza-
tion strength, but the employed scikit-learn library in-
stead uses C = 1/λ, i.e. the inverse of regularization strength.

NL, 180 EMCI). While this does not perfectly match
the reality of diagnosis, as it excludes the later de-
mentia stages, it could be argued that those later
stages are in less need of automatic analysis since
they are more readily observable.The resulting bi-
nary problem is referred to here as Early Risk.

The results and discussions presented later in this
paper include a comparison to a majority class base-
line, however, this is included merely as a standard
comparison, while the actual comparison of inter-
est is between integration of non-linguistic (with vs.
without cognitive assessment scores) and linguistic
features compared to those groups in isolation.

Held-out Data The data set is randomly split into
80% (n = 544 subjects) for model development
(dev set), and 20% (n = 135 subjects) for final
evaluation (held-out set). Models are only exposed
to the held-out set after satisfactory performance is
achieved using the dev set. Class distributions are
preserved in the dev and held-out sets.

LOO Cross-Validation Although the dev and
held-out sets have similar class distributions, over-
fitting is still a potential issue. For this reason, after
the held-out evaluation is complete, a leave-one-out
cross-validation (LOO or LOOCV) procedure is run
on the entire merged dataset to serve as an additional
evaluation, to either confirm or call into question the
trends from held-out testing, which may be evident
through differences in performance of the same fea-
tures and models. LOOCV is a case of k-fold cross-
validation where k is equal to the number of training
instances, resulting in one fold for every data point
in which all other data points are used for training.

4.1 Topic Exploration and Evaluation
Tuning of the topic number parameter is essential
to finding an appropriate LDA model. This process
is performed by iteratively measuring classification
accuracy at values of K ranging from 5 to 100, in
multiples of 5, using the training data from the held-
out evaluation split. LDA is being used here with
two goals in mind: to improve classification perfor-
mance as a form of dimensionality reduction, as well
as to provide human-interpretable topics. The for-
mer is more convenient and appropriate in the con-
text of this work, but does not necessarily imply
good results for the latter. A clinical expert view-
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ing the output of such a model would likely prefer
fewer topics, each with higher interpretability. Ac-
cordingly, LDA models in classification are exam-
ined with various per-topic metrics known to cor-
relate well with human evaluation. Thus, the best-
performing reduced topic-feature space is selected
for classification results and then additionally ana-
lyzed using the topic coherence metric (Mimno et
al., 2011), which measures how often the most prob-
able words of a topic appear together in documents,
and has been shown to match well with human eval-
uation of topic quality (Boyd-Graber et al., 2014).

4.2 Classification of Standard Labels
The upper part of Table 1 shows the results of struc-
tured vs. linguistic features in isolation for the Stan-
dard problem, while the rest of the table shows
results of integration techniques. Overall, perfor-
mance improved in LOOCV, with a few exceptions
(e.g. tf-idf ), which is likely due to the greater num-
ber of available training instances in this evaluation.

The performance of structured data alone is sub-
stantially higher than the majority class baseline,
and more so when cognitive assessment features
were included (+cognitive), as expected. Im-
portantly, the BOW representation for text data
achieved similar performance compared to the struc-
tured data without cognitive assessment scores,
showing that simple text modeling can be useful in
the common event that structured data are missing.

The benefit of tf-idf appears inconsistent be-
tween held-out and LOOCV evaluations, possibly
attributable to differences in document frequency of
important terms in the different training data (dev vs.
dev+held-out, respectively).

For LDA, performance was dependent on the
number of topics, as seen in Figure 2, with two per-
formance peaks (at K = 60 and K = 85) surpass-
ing BOW. This supports that dimensionality reduc-
tion by LDA can improve performance, but data size
may influence results. This is a limitation of using an
unsupervised algorithm for a supervised task. Per-
formance differences between held-out and LOOCV
indicate overfitting to the dev set in particular.

Table 2a shows 5 of the top 10 topics from the 60
topic model, based on topic coherence. This met-
ric appears to aid in identifying interpretable topics.
For example, Topic 2 is about cognitive assessment,
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Figure 2: Classification accuracy of LDA features
on the held-out set, with increasing number of topics
K (increments of 5).

referencing people in their 60’s. Topic 45 pertains to
regular medical visits (PCP is primary care physi-
cian), with some common concerns of elderly pa-
tients (back, heart). Topic 25 captures heart disease
(cardiac, stent, chest pain) and related visits (hospi-
talization, admitted, discharged).

Linguistic and non-linguistic models are inte-
grated to improve classification performance. Ta-
ble 1 shows results for 16 integrated models (2 non-
linguistic models × 4 linguistic models × 2 inte-
gration methods). Similar trends were observed for
BOW and tf-idf in most cases. Interestingly, inte-
grating with BOW is better than including cognitive
assessment scores for held-out. The LDA-reduced
features are again less consistent than other text fea-
tures, but still comparatively improved performance
in many cases. LDA integration experiments appear
more robust between held-out and LOOCV than
when LDA features were used alone, likely due to
structured features taking the brunt of the decision.

It was predicted that the posterior probability
composition method would yield better results than
vector concatenation. Interestingly, this is not ap-
parent, with many cases revealing the opposite. Yet
overall, the best performing cases include results
where integration is done by this method. One po-
tential limitation of the posterior probability com-
position is that a stronger decision is made when
each of the underlying classifiers produces an asym-
metric posterior class distribution. A limitation of
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Held-out Evaluation Leave-one-out Cross-validation

NL EMCI LMCI AD NL EMCI LMCI AD

Features Acc. P / R P / R P / R P / R Acc. P / R P / R P / R P / R

Baseline (majority class) 32.6% 33 / 100 − / 0 − / 0 − / 0 27.5% 28 / 100 − / 0 − / 0 − / 0

Structured (−cognitive) 51.9% 68 / 73 27 / 28 47 / 23 55 / 88 53.9% 57 / 77 43 / 34 40 / 26 66 / 81
Structured (+cognitive) 55.6% 80 / 84 35 / 38 33 / 20 56 / 79 62.7% 70 / 86 52 / 48 50 / 33 71 / 85

Bag-of-words 48.1% 67 / 55 32 / 38 52 / 46 43 / 54 50.2% 59 / 67 40 / 39 43 / 42 60 / 51
Tf-idf 55.6% 61 / 61 37 / 63 78 / 40 74 / 58 48.9% 49 / 75 39 / 43 49 / 32 73 / 42
LDA(K = 85) 49.6% 57 / 48 39 / 72 65 / 37 53 / 42 39.3% 39 / 62 34 / 32 39 / 29 52 / 32
LDA(K = 60) 50.4% 64 / 61 37 / 66 53 / 23 57 / 50 37.4% 39 / 54 32 / 33 35 / 28 48 / 33

S−cog ∪ Bag-of-words 61.5% 77 / 68 41 / 50 70 / 46 62 / 88 59.8% 69 / 79 48 / 44 45 / 41 73 / 76
S−cog ⊕ Bag-of-words 57.0% 90 / 59 41 / 53 47 / 40 59 / 83 58.3% 69 / 73 46 / 46 45 / 44 75 / 71
S+cog ∪ Bag-of-words 58.5% 78 / 71 35 / 41 59 / 46 61 / 79 61.3% 72 / 79 48 / 43 47 / 44 74 / 80
S+cog ⊕ Bag-of-words 59.3% 88 / 64 39 / 53 56 / 43 63 / 83 61.9% 74 / 80 48 / 48 48 / 45 77 / 75

S−cog ∪ Tf-idf 53.3% 74 / 71 31 / 34 45 / 26 55 / 88 58.0% 62 / 83 49 / 38 45 / 31 68 / 81
S−cog ⊕ Tf-idf 51.1% 83 / 55 37 / 59 39 / 14 51 / 88 59.6% 63 / 83 52 / 43 46 / 30 70 / 82
S+cog ∪ Tf-idf 59.3% 79 / 86 41 / 44 45 / 26 58 / 79 64.7% 73 / 88 53 / 53 52 / 34 72 / 84
S+cog ⊕ Tf-idf 61.5% 95 / 80 45 / 72 42 / 14 57 / 83 65.4% 73 / 89 55 / 53 54 / 35 73 / 85

S−cog ∪ LDA(K = 85) 54.8% 73 / 73 31 / 34 56 / 29 55 / 88 56.4% 60 / 82 46 / 33 42 / 31 70 / 80
S−cog ⊕ LDA(K = 85) 44.4% 80 / 46 28 / 50 27 / 09 50 / 88 56.3% 60 / 79 45 / 36 42 / 30 71 / 81
S+cog ∪ LDA(K = 85) 58.5% 84 / 86 39 / 44 38 / 23 58 / 79 62.0% 70 / 86 49 / 45 46 / 34 74 / 84
S+cog ⊕ LDA(K = 85) 58.5% 90 / 77 44 / 69 36 / 11 53 / 79 63.6% 71 / 87 52 / 48 49 / 35 75 / 85

S−cog ∪ LDA(K = 60) 51.1% 69 / 61 30 / 34 48 / 29 55 / 88 55.7% 59 / 78 47 / 37 40 / 28 69 / 82
S−cog ⊕ LDA(K = 60) 45.9% 78 / 48 30 / 53 33 / 09 49 / 88 56.4% 60 / 78 47 / 37 40 / 30 71 / 82
S+cog ∪ LDA(K = 60) 60.0% 88 / 86 44 / 53 37 / 20 56 / 79 62.4% 72 / 86 50 / 47 45 / 33 74 / 85
S+cog ⊕ LDA(K = 60) 59.3% 92 / 77 45 / 72 33 / 11 54 / 79 62.9% 74 / 86 51 / 48 44 / 34 75 / 84

Table 1: Results on Standard problem (4-classes). Integration by vector concatenation is indicated by∪, and posterior
probability composition by ⊕. Structured (−cognitive) = S−cog , Structured (+cognitive) = S+cog .

ID Top 10 Words

3 corroborated, subjective, continues meet, score, factor, other, SP, AGE >=60 <70,
controlled medication, unremarkable

2 impression, CDR, MMSE, ADLS, AGE >=60 <70, cog, amnestic, global, function, score
17 medical, consistent, status, function, continues, health, occasional, active, daily, functional
45 blood, pressure, month, visit, PCP, diagnosed, dizziness, back, doctor, heart
25 hospital, admitted, discharged, stent, cardiac, went, chest pain, AE, anxiety, total

Table 2a: Five high-ranked topics from the Standard problem with K = 60 (ranked by topic coherence).

ID Top 10 Words

38 completed, visit, reported, mg, performed, protocol, testing, study partner, blood, year
25 criterion, subjective, corroborated, factor, other, AGE >=60 <70, continues meet, score,

memory problems, confounding
55 hip, left, right, removed, normal, arthritis, cataract, eye, allergy, hand
36 year, smoked, ago, pack, o, quit, per day, c, urinary frequency, memory problems
56 work, up, valve, cardiac, aortic, ER, heart, x, cardiologist, visit

Table 2b: Five high-ranked topics from the Early Risk problem with K = 100 (ranked by topic coherence).
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this method is its dependence on strong or accu-
rate decisions from the underlying models. Vec-
tor concatenation is not subject to this limitation,
but has the drawback of potentially overwhelming
a smaller feature set with a larger sparse one. As for
class-specific differences, the NL (normal) and AD
(Alzheimer’s disease) subjects were classified with
higher precision and recall scores than were the MCI
classes in nearly all integration experiments, point-
ing to the challenge of subtler disease stages.

4.3 Classification of Early Risk

In addition to the experiments above, the more spe-
cific problem of distinguishing normal (NL) subjects
from those with early mild cognitive impairment
(EMCI) was also explored. Only LOOCV is per-
formed because the subsampling of NL and EMCI
subjects slightly distorts the class distributions in the
original held-out set. Results are given in Table 3.

As in the Standard problem, all non-linguistic and
linguistic feature types perform well above the ma-
jority class baseline. One major difference here is
that all linguistic data types outperform the struc-
tured features when cognitive assessments are ex-
cluded. This may suggest a potential linguistic dif-
ference in clinical notes at the onset of MCI.

The number of LDA topics is selected as before
(but using the whole Early Risk subsample, as op-
posed to the Standard dev set). Two peaks found
at K = 65 and K = 100 achieve the same classi-
fication accuracy, but do not outperform BOW and
tf-idf. The difficulties LDA faced in the Standard
problem are also faced here, and thus similar per-
formance shortcomings are observed. The ability
to approximately match tf-idf performance is still
noteworthy since the LDA features are a smaller
and denser representation than tf-idf, which may be
more easily interpretable by clinical professionals.

Table 2b shows 5 of the top 10 topics from the
100 topic model trained on the Early Risk subset,
based on the topic coherence metric. A consequence
of a smaller sample of subjects is a smaller vocab-
ulary and thus weaker statistical judgments, Topics
38, 25, 36, and 56 appear to be about routine vis-
its/tests, cognitive evaluations, smoking habits, and
cardiac issues, respectively. Topic 55 is an example
of a chained topic (Boyd-Graber et al., 2014, p. 17),
where unrelated words are linked together through

LOOCV

NL EMCI

Features Acc. P / R P / R

Baseline 51.0% 51 / 100 − / 0

Structured (−cognitive) 67.6% 67 / 73 69 / 62
Structured (+cognitive) 79.8% 78 / 84 82 / 76

Bag-of-words 70.8% 71 / 73 71 / 69
Tf-idf 69.2% 68 / 75 71 / 63
LDA(K = 65) 68.9% 67 / 76 71 / 62
LDA(K = 100) 68.9% 68 / 74 70 / 63

S−cog ∪ Bag-of-words 76.8% 76 / 79 78 / 74
S−cog ⊕ Bag-of-words 76.0% 77 / 77 76 / 76
S+cog ∪ Bag-of-words 77.1% 76 / 80 78 / 74
S+cog ⊕ Bag-of-words 80.7% 80 / 82 81 / 79

S−cog ∪ Tf-idf 72.2% 71 / 78 74 / 66
S−cog ⊕ Tf-idf 72.8% 71 / 79 75 / 66
S+cog ∪ Tf-idf 80.7% 79 / 85 83 / 77
S+cog ⊕ Tf-idf 83.1% 82 / 86 84 / 81

S−cog ∪ LDA(K = 65) 72.2% 71 / 78 74 / 67
S−cog ⊕ LDA(K = 65) 72.5% 71 / 78 74 / 67
S+cog ∪ LDA(K = 65) 79.0% 78 / 82 81 / 76
S+cog ⊕ LDA(K = 65) 79.3% 78 / 83 81 / 76

S−cog ∪ LDA(K = 100) 71.4% 70 / 77 73 / 66
S−cog ⊕ LDA(K = 100) 71.9% 70 / 76 74 / 66
S+cog ∪ LDA(K = 100) 80.4% 80 / 82 81 / 78
S+cog ⊕ LDA(K = 100) 80.9% 80 / 83 82 / 79

Table 3: Classification performance on Early Risk (2
classes). Vector concatenation is indicated by ∪, and
posterior probability composition by ⊕. Structured with
(S+cog) and without (S−cog) cognitive.

shared co-occurring words, in this case with left and
right seeming to link eye and hand, along with their
associated terms cataract and arthritis.

The performance trends for the integrated models
are slightly more consistent for the Early Risk prob-
lem than they were for the Standard problem. When
excluding cognitive assessment scores, all integra-
tion experiments result in a modest improvement,
although there is little to no difference between the
two integration methods employed. This may sug-
gest that results can be achieved without extra so-
phistication provided by posterior probability com-
position, or that further sophistication is needed be-
yond either of these techniques. In general, our re-
sults further justify the integration of linguistic and
non-linguistic features and/or models.
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5 Conclusion and Future Work

We explored classification of dementia progression
status of subjects from a study on Alzheimer’s dis-
ease, and the integration of text data models with
those of structured data, with vs. without cognitive
assessment scores. Experiments support texts’ via-
bility as a useful source for dementia classification,
as an important complement to structured data, or
alone when structured data are missing. LDA was
also studied as interpretable dimensionality reduc-
tion. With a larger sample size, the LDA model
may converge to a more stable set of topics, but
other appropriate public datasets (with both linguis-
tic and non-linguistic data) are presently not avail-
able. An alternative is to apply supervised versions
of LDA (Blei and McAuliffe, 2007; Ramage et al.,
2009). Furthermore, with access to a pool of clini-
cal specialists, it would be useful to integrate experts
in evaluating the latent topics. Chang et al. (2009)
proposed various such human evaluation techniques,
such as the word intrusion task, in which human
evaluators are presented with a list of n high prob-
ability terms of a randomly chosen topic, and one
additional low probability term from that topic, and
asked to identify the former. A drawback is that it
would require access to a large enough pool of de-
mentia specialists.

Other avenues of future work would include the
incorporation of lexical similarity measures from
sources like WordNet.
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