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Abstract

Most question answering systems use symbolic
or text information. We present a dataset for
a task that requires understanding descriptions
of visual themes and their layout: identifying
paintings from their descriptions. We annotate
paintings with contour data, align regions with
entity mentions from an ontology, and asso-
ciate image regions with text spans from de-
scriptions. A simple embedding-based method
applied to text-to-image coreferences achieves
state-of-the-art results on our task when paired
with bipartite matching. The task is made all
the more difficult by scarcity of training data.

1 Knowledge from Images

Question answering is a standard NLP task that typi-
cally requires gathering information from knowledge
sources such as raw text, ontologies, and databases.
Recently, vision and language have been amalga-
mated into an exciting and difficult task: using im-
ages to ask or answer questions.

While humans can easily answer complex ques-
tions using knowledge gleaned from images, visual
question answering (VQA) is difficult for computers.
Humans excel at this task because they abstract key
concepts away from the minutiae of visual represen-
tations, but computers often fail to synthesise prior
knowledge with confusing visual representations.

We present a new instance of visual question an-
swering: can a computer identify an artistic work
given only a textual description? Our dataset con-
tains images of paintings, tapestries, and sculptures
covering centuries of artistic movements from dozens
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of countries. Since these images are of cultural impor-
tance, we have access to many redundant descriptions
of the same works, allowing us to create a natural-
istic but inexpensive dataset. Due to the complex
and oblique nature of questions about paintings, their
visual complexity, and the relatively small data size,
prior approaches used for VQA over natural images
are infeasible for our task.

We formalise the task in Section 3, where we also
present a preliminary system (ARTMATCH) and com-
pare with it a data-driven text baseline to illustrate the
usefulness and versatility of our method (Section 4).
Finally, in Section 5 we compare our task and system
to previous work that combines NLP and vision.

2 Describing Art

University Challenge (UK) or quiz bowl (USA) has
previously been studied for question answering us-
ing text-based methods (Boyd-Graber et al., 2012).
However, some quiz bowl questions are inherently
visual in that their answers are works of art.

Figure 1 shows an example of a painting descrip-
tion and associated annotations (to be described later)
from a quiz bowl question. Identifying paintings
from textual descriptions of their contents is difficult;
for example, many disparate paintings feature two
men (Stag at Sharky’s, The Sacrifice of Isaac, and
Kindred Spirits). Given their varied style, composi-
tion, and depiction, how do we teach computers to
infer the meaning of a painting?

To capture the meaning, we rely on redundant de-
scriptions of entities in paintings offered by multiple
text spans in these questions. The man on the right in
Figure 1 is variously described as a “Frenchman”, “a

diplomat”, “a man in black”, and “George de Selve”.
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Figure 1: A painting (left) with image regions matched to coreference chains in a question (right). The question uses a variety of

oblique mentions to make the trivia question more difficult; some entities (e.g., de Selve) are mentioned again later in the question.

We can use this redundancy to learn the meaning of
the pixels within the red contour.

In text, this is the problem of coreference resolu-
tion (Radford, 2004) as the multiple text spans refer
to the same “real world” entity. Trivia questions have
complex descriptive coreferent groupings (Guha et
al., 2015). Thus, to annotate our dataset we map
coreference groups in question text to regions in
paintings using LabelMe (Russell et al., 2008), pro-
viding a direct mapping of text spans to groups of
pixels in the images and their spatial properties.

Our dataset contains 128 paintings,! where each
painting is the answer to a single quiz bowl question.
First, we assign each object in a painting to a single
class from an ontology with eight coarse and fifty
two fine (level two) classes. This ontology is three
levels deep and follows the hyponymy structure of
ImageNet (Deng et al., 2009).> Then, we map each
coreference group from the question text to an im-
age contour from the painting (see Table 1). As the
questions come from a game, the mentions are often
oblique, making them hard to answer with text alone.
For instance, a description of Rain, Steam, and Speed
will avoid explicitly mentioning the painting’s central
object by name (a “locomotive”) in favor of describ-
ing it in a roundabout way (e.g., a “conveyance”).

! Annotated data and code available after blind review.
2Ontology provided as supplementary material.
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Number of ... dataset
Unique Paintings 128
Objects with contours 1,436
Coreferring text groups 1,104
Object gross classes 8
Object fine classes 52

Table 1: Statistics of our new question answering dataset

3 Identifying Paintings from Text

Given one of the questions in our dataset, our goal is
to provide the name of the painting that it describes.
Because our focus is not on building better feature
extractors for paintings, we assume that we have gold
visual annotations (e.g., object contours, classes, and
locations).> The task is challenging due to the size
of our dataset (only 128 annotated question/painting
pairs), which prevents the training of most machine
learning models, as well as high visual complexity
and vagueness in question text.

3.1 A Text-Only Baseline

Our baseline model is “blind” in that it does not use
any visual features to solve the task. We use the
deep averaging network (Iyyer et al., 2015, DAN),

3When applied to paintings, state-of-the-art semantic segmen-
tation models (Zheng et al., 2015) trained on natural images are
only reliable for four coarse object classes (vs 60 coarse and fine
ones), which leads to near-random accuracies for ARTMATCH.



which takes as input a textual description of a paint-
ing and learns a 128-label classifier over an average
of embeddings from words in the question. Since
this model does not do any visual mapping, we col-
lect unannotated questions about our 128 paintings
to form a respectably-sized training set of 503 ques-
tions. While the DAN has access to more data than
our non-blind model, we hope that we can improve
over the baseline using visual information.

3.2 Answer Questions Using Annotated
Paintings

Our method, which we call ARTMATCH, assumes
that some of the groups of coreferent text in a ques-
tion describe visual objects in the associated painting.
If we have a unified vector representation of visual
object classes from painting regions and textual coref-
erent groups, a bipartite mapping can match them.

3.2.1

To identify the painting described by a question,
we first convert every question to a list of objects
obtained from coreference chains (e.g., a lute, a dis-
torted skull). On the painting side, we have a list
of annotated visual objects. These two lists form
the nodes of a bipartite graph on which we perform
a maximum cardinality match (Hopcroft and Karp,
1973), where edge weights represent match strength.
We consider the painting with the most matched
edges as the answer; in case of a tie, the painting
with the highest cumulative edge weight wins.

This process requires that our visual object classes
are in the same vector space as objects found in tex-
tual coreference chains. For one chain, we compute
a vector representation by averaging the embeddings
of its words.* Also, for each visual object class, we
obtain a set of synonyms and hyponyms and compute
an averaged word vector over this set. Similarly, we
produce averaged vectors over location and number
attributes (e.g., the single attribute is represented by
a vector average over {single, one, a, an}). Since dis-
tance between word embeddings measures semantic
similarity, we assign an object class and attributes
that have the highest cosine similarity to that chain’s
vector representation, as shown in Figure 2.

Matching Mentions to Images

*We use publicly available 300-dimensional word2vec em-
beddings trained on Google News (Mikolov et al., 2013).
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beings, the winged creatures
Figure 2: Using word2vec representations from coreferent
groupings in a description to deduce object class and attributes

by cosine similarity.

We easily combine ARTMATCH’s matching with
DAN by modifying the weight of a bipartite match by
multiplying that weight with the probability of that
question-answer pair being correct as given by DAN.

4 Performance and Analysis

We investigate the performance both locally (match-
ing specific objects) and globally (identifying the
correct image) before doing an error analysis.

First, we examine the individual matching on ob-
jects and measure accuracy on three different tasks:

1. Does ARTMATCH properly match coarse and
fine visual object classes to question text (e.g.,
is “an angel” mentioned in the question matched
to an image region depicting an angel)?’

2. Are the matches is in the correct locations (e.g.,
is the “angel” in the top-left corner?)?

3. Is the number of objects correctly matched (e.g.,
are there two or three angels)?

Table 2 shows the results of these experiments. Ad-
ditionally, for the highest-scoring paintings (the an-
swers output by ARTMATCH), 13.2% of objects are
exactly matched with location and number; without
considering those attributes, 20.4% of fine-grained
classes are matched.

Next, we look at the main task of identifying the
correct painting. As Table 3 shows, ARTMATCH
nearly matches the blind DAN baseline with just the
coarse and fine object classes. Spatial location and
number attributes boost ARTMATCH above the base-
line, and combining both systems pushes accuracy

>Coarse class metrics are provided for all objects while fine
class performance is only for those that have fine annotations.



Feature P R F1

Coarse object class 0.72 0.38 0.45
Fine object class 0.72 0.60 0.60
Object location 032 025 024
Object number 0.96 0.81 0.88

Table 2: Individual metrics of classes and features detected by

word embeddings from coreference chains describing objects

Method accuracy
DAN 59.4%
ARTMATCH: fine objects 42.0%
ARTMATCH: all objects 58.6%
ARTMATCH: objects+attributes  61.7%
ARTMATCH+DAN 65.7 %

Table 3: Our system vs the blind baseline. DAN is trained on
503 questions but has no visual information. ARTMATCH has
visual features from paintings but no training data. Combining

both leads to a significant increase in performance.

by four absolute points, indicating that the models
are learning complementary information.

Having established that our simple method of in-
corporating visual information can achieve signifi-
cant gains in accuracy, we now proceed to analyse
instances in which our system does well and the DAN
does not (and vice-versa).

4.1 Error Analysis

There are 34 questions for which the DAN fails but
ARTMATCH succeeds. For many of these questions,
the DAN fails because it overfits to common clues.
Given a test question about Melencholia I, the DAN
answers Madonna with the Long Neck, as the training
questions about both paintings repeatedly mention
a female figure and cherubs. However, the question
also mentions geometric figures, the spatial locations
of which enable ARTMATCH to answer correctly.
Conversely, there are thirty-one questions where
ARTMATCH fails but DAN succeeds. Some of these
questions contain text constructs such as the painter’s
name that are repeated in both training and test ques-
tions, which makes it easy for the DAN to solve (e.g.,
“Identify this most famous work of Claude Monet”).
In other cases, ARTMATCH answers incorrectly be-
cause of spurious matches due to substantial visual
similarity between various objects in paintings. For
example, in a question about The Holy Trinity by
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Masaccio, “St. John” is assigned the close but in-
correct class of “statue” while “Jesus” is correctly
identified as a person. Further confused with spatial
similarities between the paintings, ARTMATCH’S an-
swer is Supper at Emmaus, which has Jesus but no
St. John. In other cases, peripheral similarity leads to
the central mismatch being overlooked, motivating
an an attention mechanism to focus on “significant”
entities for future work (Mnih et al., 2014).

5 Related Work

Our work is specifically related to previous work
on visual question answering and more generally to
multimodal applications of vision and language.

Visual QA has previously focused on content ques-
tions (Antol et al., 2015; Ren et al., 2015; Andreas et
al., 2015), while we focus on identity questions. Re-
latedly, Zhu et al. (2015) find semantic links between
images and text via an attention model.

We use coreference to connect text and image re-
gions, similar to Kong et al. (2014). However, not
all text is “visual” (Dodge et al., 2012) and not all
image regions can be described textually (Berg et
al., 2012). While we focus on meaning, structure of
text (Elsner et al., 2014) can also be inferred from im-
ages. Socher et al. (2014) match sentences to images;
however, our dataset is unique in that the text is inten-
tionally oblique (rather than direct descriptions) and
our images—paintings—are more varied visually.

Aside from QA, images have been successfully
used to generate captions (Karpathy and Fei-Fei,
2014; Mao et al., 2014; Vinyals et al., 2014; Xu
et al., 2015; Chen and Zitnick, 2014). While we use
vision to aid an NLP task, others have gone in the op-
posite direction, inducing correspondences between
words and video clips (Yu and Siskind, 2013), words
and action models (Ramanathan et al., 2013), and
language and perception (Matuszek et al., 2012).

6 Conclusion and Future Work

The major contribution of this work is to extend ques-
tion answering to a complex visual setting by pre-
senting an annotated dataset and a simple system that
manages to exceed the performance of a strong text-
only baseline QA system. The next challenge is to
scale up this dataset to enable end-to-end training
pipelines for answering questions using raw images.
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