Natural Language Processing for Solving Simple Word Problems

Sowmya S Sundaram
Indian Institute of Technology, Madras
Chennai 600036

sowmya@cse.iitm.ac.in

Abstract

This paper describes our system which
solves simple arithmetic word problems.
The system takes a word problem
described in natural language, extracts
information required for representation,
orders the facts presented, applies
procedures and derives the answer. It
then displays this answer in natural

language. The emphasis of this
paper is on the natural language
processing(NLP) techniques used to

retrieve the relevant information from the
English word problem. The system shows
improvements over existing systems.

1 Introduction

The aim of this work is to solve a mathematical
problem involving addition/subtraction which is
given in English. It uses the principles of NLP
to extract information from the text. Then, it uses
some pre-stored routines to calculate the answer.
To illustrate, a sample input and the corresponding
output is shown below.

Input: John has 3 apples. He gave 1 apple to
Mary. How many apples does John have now?

Output: John has 2 apples.

The system extracts the information that, to use
the parlance of (Bakman, 2007), an owner “John”
has 3 apples. The natural language processor maps
the word “give” to the knowledge that it must
happen between two owners, where the first owner
loses something and the second owner gains it.
This information is coded in the form of schemas
which are templates describing different scenarios.
For example, the above scenario is known as a
“Transfer-In-Ownership” or “Change-Out” which
says John loses one apple and Mary gains it.

The issues in this simple example are many. The

ronoun, “He” must be mapped to “John”. TRe4

Deepak Khemani
Indian Institute of Technology, Madras
Chennai 600036

khemani@iitm.ac.in

order of the sentences matter. If the problem was
“John gave 1 apple to Mary. He has 3 apples
now. How many apples did John have?”, then the
answer is completely different.

To elaborate, the problem solving process
begins by processing the question that is
expressed in natural language. After processing
the question, the information required by the
knowledge representation is extracted. This is
a knowledge-based natural language processing
system. Hence, the domain knowledge provided
by the underlying representation can also help
clear ambiguities faced by the natural language
Processor.

For example, one of the heuristics used is
described as follows. If the problem is, “There
are 2 pencils in the drawer. Tim placed 3 pencils
in the drawer. How many pencils are now there
in total?”, the natural language processor does
not understand whether the question is about
the pencils with Tim or the ones in the drawer.
However, after representing the knowledge, it is
clear that the “drawer” has a change in state and
more probably, the question is about the ones in
the drawer.

The given word problem is split into constituent
sentences. Every sentence is analysed and
the information required by the representation
is extracted using Stanford Core NLP Suite
(Manning et al., 2014) in a manner that is
described in detail in the following sections. The
answer is again displayed in natural language.

For evaluation, the datasets provided by
(Hosseini et al., 2014) are used. The proposed
system shows an improvement because of the
exploitation of knowledge representation and
using keywords other than verbs.

2 Related Work

Such a problem was first attempted by Bobrow
as part of his PhD dissertation in 1964. The

S Sharma, R Sangal and E Sherly. Proc. of the 12th Intl. Conference on Natural Language Processing, pages 394-402,
Trivandrum, India. December 2015. (©2015 NLP Association of India (NLPAI)

system described in (Bobrow, 1964) could solve
an algebra problem given in a subset of natural
language. A common trait of most systems
that use this approach is to work with a subset
of the natural language, most commonly via a
Controlled Natural Language. This work attempts
to extract information from the ambiguous English
sentences themselves. The latest in this line of
work for mathematical algebraic word problems,
without using empirical methods, is in (Bakman,
2007) which proposed a method that improved
upon (Dellarosa, 1986). Dellarosa used “schemas”
to solve addition/subtraction problems in 1986
with some improvements over (Fletcher, 1985)
for classifying entities like “dolls” are “toys”.
Schemas are templates for problem solving.
(Bakman, 2007) extends schemas to handle
extraneous information and can solve multi-step
problems unlike its predecessors. In a review
of such knowledge-based systems by (Mukherjee
and Garain, 2009), it was remarked that there
are no datasets to compare performances. The
recent empirical methods that are cited below
provided datasets that can now be used for
evaluation. For example, (Kushman et al., 2014)
proposed a word problem solver which uses
statistical analysis to solve word problems. They
handled a more complex class of word problems
which involve solving a set of simultaneous
linear equations. More recently, (Hosseini et
al., 2014) attempted the same addition/subtraction
word problem framework where they concentrated
on classifying the verbs in a given problem
into semantic classes. They were able to show
remarkable improvement over (Kushman et al.,
2014). They used a state representation to depict
temporal ordering. However, the system could
not reason about existing scenarios like questions
that involved comparisons. There is some
development in this direction by the mathematical
modelling conglomerate WolframAlpha (2015).

3 Architecture

The architecture of the system is described in
Figure 1. The given problem is first simplified
such that every sentence in the new problem has
exactly one verb. Then, linguistic information is
extracted from each sentence and passed on for the
Knowledge representation. For example, “Ruth
has 3 apples” will be translated as “owner = Ruth;
entity.name = apples, entity.value = 3; verb = has9>

[]
l

| Simplify Sentences |

:

| Analyse Sentences |

!

| Represent Knowledge |

!

| Apply Procedures |

!
/ Answer /

Figure 1: Architecture of Word Problem Solver

the beach. How many seashells did they find together?

'

[Joan found 6 seashells on the beach. Jessica found 8]

[Jcan found 6 seashells and Jessica found 8 seashells on]

seashells on the beach. How many seashells did they find
together?

_—

1. owner = “Joan” 2. owner = “Jessica” 3. isAggregator = “true”
verb = “find" verb = “find" isQuestion = “true”
entity.value = “6" entity.value = “8" verb = “find"

entity.name = “seashell’ entity.name = “seashell’

—

Joan : find : 6 : seashell
Jessica : find : 8 : seashell

Combine Schema:
Altogether 6 + 8 seashell

Altogether 14 seashell

entity.name = “seashell”

Figure 2: Example of the Problem Solving Process

During the knowledge representation phase, all the
sentences are taken into consideration the events
are ordered according to time. Then, the problem
is solved using the procedures stored in it. These
units are explained in more detail in the following
sections. An example that depicts how a problem
is solved is shown in Figure 2.

4 Knowledge Representation

4.1 Schemas

A popular representation idea is to use schemas.
Schemas are templates that describe how entities
interact. In this discussion, the schemas described
by (Bakman, 2007) are explained. For instance,
“John had 3 apples. He forfeited 1 apple. How

many apples does he have now?” will trigger the
“Transfer in Ownership” schema because of the
keyword “forfeit”. This situation is described
below.

(owner) had (X) (object)

(owner) (transfer-in-ownership) (Y) (object)
(owner) has (Z) (object)

To elaborate, each sentence is examined
sequentially until a keyword is encountered. In the
second sentence, the word “’forfeit” is such a word
that maps to the “transfer-in-ownership” schema.
This is matched against the second statement in
the schema description and the owner is identified
as “John” and Y = 1 and object as “apple”.
Now the problem is re-examined searching for
sentences with ”John” and “apple” to match.
(owner) = John, (X) =3, (Y) =1, (object) = apple,
(transfer-in-ownership) = forfeit
Y+Z=X.

The equation is attached to every schema.

ROBUST, the system developed by (Bakman,
2007), was able to solve multi-step problems with
extraneous information.

Disadvantages of ROBUST:

e Sometimes, due to the lack of some implicit
common sense knowledge, the problem
cannot be solved. To illustrate, “A farmer
bought 3 apples and lost 2 of them. How
many fruits does he have now?”’. This
problem cannot be solved by schemas as
there is no explicit statement saying the
farmer had no apples initially.

e There is a search overhead to match
sentences against all possible schemas
because all the sentences are examined
whenever a keyword is encountered.

4.2 Temporal Schemas

In this paper, by using time, default assumptions
and heuristics, a large number of problems are
solved. To illustrate, the following problem is
taken.

“John buys 11 peaches. He eats 9 peaches. How
many does John have now?”

The first sentence is represented as:

to

John : has : peaches : x1

unknowng : has : peaches : xo

t

John : buy : peaches : 11 396

to
John : has : peaches : x1 + 11
unknowng : has : peaches : xo — 11

This represents the knowledge that the keyword
“buy” signifies a “Change Out” in ownership for
“John”, the buyer and “unknowng”, the unnamed
seller. As we don’t know some values, they are
kept as variables. The time stamp tg is the initial
default one.

When the next sentence is read, “John eats 9
peaches”, it is updated as:
to
John : has : peaches : x1
unknownyg : has : peaches : x

John : buy : peaches : 11

John : has : peaches : x1 + 11
unknownyg : has : peaches : xo — 11
i3

John : eat : peaches : 9

t4

John : has : peaches : x1 +11 -9
unknowng : has : peaches : xo — 11

Now, once the system encounters the question,
it retrieves the most recent value of John’s
peaches. Hence, it retrieves “x; + 11 - 9”. By
making an assumption that John had no peaches
in the beginning, we compute “11-9”, that is “2”
and display the answer.

There are situations when an expression has to
be substituted by a value. For example, John may
have 6 apples. Then, we come to know that John
has 3 more apples than Mary and we do not know
how many apples Mary has (say x apples). After
applying the schema, we know that John has (x+3)
apples. When John has two consistent values at
the same time, an equation 6 = 3 + x is created and
solved. The fact that Mary has 3 apples is stored.

Sometimes, we may require a value that occurs
in the first time step. By analysing the tense and
narrative order, the correct value to be retrieved
can be ascertained. For example, if the first two
sentences are in present tense and the question is
in past tense, the value in the first time step is
retrieved. The reason information such as “John
buys 11 apples” is stored is because sometimes, a
question may be how many John bought or how
many John ate.

4.3 List of Schemas

In the schemas we have designed, no sentence is
explicitly matched against a template. Whenever
a keyword is encountered, this information is
adjusted according to its corresponding procedure.
If the schema requires some information which is
not available, a variable is introduced. If the value
that corresponds to that variable is seen later, it
is replaced in all the expressions that contain the
variable. The list of schemas used is given in Table
2.

l Name ‘ Schema ‘ Update ‘
Owner; has X objects.
Change In Ownerp has Y objects. Owner; has (X+Z) objects.
& Z objects were transferred Ownery has (X-Z) objects.
from Ownera to Ownery
Ownerq has X objects.
. Ownerg has Y objects. Ownery has (X-Z) objects.
Change Out Z objects were transferred Ownerg has (X+Z) objects.
from Owner; to Ownerg
Owner; had X objects.
Combine Ownerg had Y objects. Z=X+Y

Together, they have Z
objects.

Owner; had X objects.
Ownerg had Y objects more
than Ownery .

Compare Plus Ownery has (X+Y) objects.

Owner; had X objects.
Ownerg had Y objects less
than Ownery .

Compare

Minus Owner has (X-Y) objects.

Owner; had X objects.

Increase b
Owner; got Y objects more.

Ownery has (X+Y) objects.

Owner; had X objects.

Reduction Owner lost Y objects.

Owner has (X-Y) objects.

Table 1: List of Schemas

4.4 Common Sense Law of Inertia

When the number of discrete time steps increase,
unaffected owners and entities are assumed to
retain their value as per the common sense law of
inertia (Shanahan, 1999). For example, “John has
3 apples. Mary gave 4 apples to Tom” implies that
at the second time step also John has 3 apples.

5 Natural Language Processing

The natural language processing is done during
the simplification and the analysis phase. The aim
of the simplification phase is to make the text as
unambiguous as possible and to make it amenable
for analysis. After the analysis is completed,
the relevant information needed for knowledge
representation would have been extracted. These
tasks, which are described below, extensively
used the Stanford CoreNLP suite (Manning et al.,
2014).

{ Problem f

y

| Resolve Conjunctions |

'

| Preprocess Currency |

'

| Resolve Co-references |

'

| Preprocess Sentences |

'

| Resolve Missing Entities |

¥
/ Simplified Problem /

Figure 3: Simplifying the Problem

5.1 Problem Simplification

The steps involved in simplifying the problem is
described in Figure 3.

5.1.1 Resolving Conjunctions

The first step of simplification is to deal with
sentences that contain “and”, “but”, “if”, and
“then”. To illustrate, take the example “John had 5
apples and ate 2 of them”. The fact that “John” is
the person who ate 2 apples can be made clearer if
this sentence was split into the following sentences
- “John had 5 apples. John ate 2 apples.”
Algorithm:

e Separate the sentence into two parts, Partl
and Part2, by splitting at the conjunction.

o If the first part has no verb, then no
processing is required. This is to handle
situations like “Ram and Sita have 13 apples
altogether”. It does not make sense to split
this sentence as “Ram has 13 apples. Sita has
13 apples.”.

e Split each part into four strings, pre-verb (P),
verb (V), after-verb (A), preposition- phrase
(PrP). Some of these strings may be empty.

e Whenever a string of Part2 is empty, copy the
corresponding string from that of Partl.

e Concatenate these four strings into a single
sentence and return the two sentences.

This is depicted for a typical example in Figure

397 4

Sam had 49 pennies and 34 nickels in his bank.

| Sam had 49 pennies | | 34 nickels in the bank |

Mlm pennies | |34nickels | |in the bank |

P1 Vi At A2 PIP2
[P1 V1 A1 PiP2 | {

P1 Vi A2PiP2 |

| Sam had 49 pennies in the bank. | | Sam had 37 pennies in the bank. |

Figure 4: Resolving Conjunctions

5.1.2 Preprocessing Currency

The dependency parser provided by (Manning et
al., 2014) links numbers to their corresponding
entities using the “num” edge or the “number”
edge. To maintain this consistency, “$5.5” is
replaced by “5.5 dollars”.

5.1.3 Resolving Co-references

The task of resolving co-references was described
in the introduction. To reiterate, it has been used to
map pronouns to the referring entity. The system
uses the resolver provided by (Manning et al.,
2014). Some heuristics are used to improve its
current performance. These are listed below.

e If a pronoun refers to another pronoun, it is
not considered. This is to avoid recursive
computations.

e “They” and “their” are ignored. This
is because the mapping found for these
pronouns are often wrong. For example,
the input “Ram has 6 apples. Sita has 7
apples. How many apples do they have in
all?” results in “apples” being mapped to
“they”.

e A inherent ambiguity is exemplified by “Sam
has 13 dimes. His dad gave him 3 dimes”.
Here, “him” is always mapped to the “dad”
instead of “Sam”. In word problems, such a
pronoun mostly refers to someone else and
the program uses this knowledge and maps it
to “Sam” instead.

5.1.4 Preprocessing sentences

The sentences are simplified such that each
sentence has exactly one verb. For example the
sentence “John had 5 apples and Mary gave John
3 apples.” is parsed by the Stanford Core NLP
Suite(Manning et al., 2014) as follows:

Parser output (Stanford Core NLP) :

ROOT (S (S (NP (NNP John)) (VP (VBD
had) (NP (CD 5) (NNS apples)))) (CC and) (S
(NP (NNP Mary)) (VP (VBD gave) (NP (NNP
John)) (NP (CD 3) (NNS apples)))) (. .)))

The corresponding phrase is extracted and
converted into two sentences.

John had 5 apples. Mary gave John 3 apples.

Sometimes the verb phrase encompasses another
verb phrase, hence this process is done recursively
until every sentence has exactly one verb.
Sometimes it is not possible to split sentences such
as “How many apples did he have?”. Here, both
“did” and “have” are identified as verbs. Thus,
such sentences are not simplified further.

5.1.5 Resolving Entities

This step is to address problems of the type “John
has 5 apples. He gave 3 to Mary”. Here, 3 is
not explicitly specified as 3 apples. So, all plural
entities are stored as potential entities and every
time a number is not followed by a noun or an
adjective, one of them is chosen. Their adjectives
are also retained such that a typical entity list
may have (balloons, red balloons, green balloons).
The most suitable entity is chosen based on the
sentence order. Most problems deal with just one
type of entity.

5.2 Analysis of Simplified Problem

At the end of this phase, the following information
would be available for representation.

e A list of all owners such as “John” and
“basket”.

o A list of all entities like “green balloons” and
“red balloons”.

e A list of processed sentences.

Each processed sentence would in turn have the

398 following information.

Procedure

Change Out

Keywords

put, place, plant, add, sell, distribute, load, give

Change In take from, get, pick, buy, borrow, steal

Increase more, carry, find

Reduction eat, destroy, spend, remove, decrease

Compare Plus more than, taller than, longer than, etc.

Compare Minus less than, fewer than, shorter than, etc.

Combine together, in all, combined

Table 2: Schemas and their Keywords

e isAggregator - whether the sentence contains
any aggregating phrases such as “altogether”,
“in all” etc.

e isComparator - whether the sentence contains
any phrase such as “more than”, “less than”,

“fewer”, “taller” etc.

e isDifference - whether the sentence contains
any phrase such as “left”, “remaining” etc.

e isQuestion - whether the sentence denotes a
question such as “Find the number of apples
John has”.

e keyword - whether the sentence contains any
of the keywords listed in Table 2.

e schema - if there is a keyword, the schema
linked with it

e owner; - the first owner in the sentence -
“John gave 3 apples to Mary” would set
owner; to “John” and owners to “Mary”.

e owners - the second owner in the sentence

e entityName - the name of the entity in the
sentence such as “apples”.

e entity Value - the value connected to the entity
- such as 3 in the previous example.

e tense - this is derived from the POS tag of the
verb and is used for ordering the sentences in
the representation.

To get this information, the dependency parser
has been extensively used. Consider “Mary gave
3 apples to John.”
Dependency Parser output (Stanford Core NLP) :
- gave/VBD (root)
- Mary/NNP (nsubj)

- apples/NNS (dobj)

- 3/CD (num) 399

- John/NNP (prep-to)

From this tree, the two owners Mary and John
are identified as well as the entity “3 apples”. As
a general rule, the subject is identified as the first
owner and the noun associated with a preposition
is taken as the second owner. Every number is
identified as “num” and that is taken as the value
of the entity with the corresponding node of the
edge being taken as the entity name. The verb
is identified from the Part-Of-Speech (POS) tag
“VBD” and stored.

If the sentence contains “some” or “few”, the
value of that entity is set to some variable.
Sometimes, especially for word problems that
involve decimals, the parse may not correctly map
the entity name to the entity value. Hence, there
is a check if there is any number in the sentence
that has not been assigned an entity and if so, the
nearest plural noun is set as the entity’s name.

For a question, the entity’s value is not
available. Hence, the sentence is examined and
checked against the list of existing entities and
owners to ascertain what the question is about.

6 Some Heuristics

A list of heuristics are used to increase the
performance. However, like all heuristics, they are
not precise.

o Consider, “Sam grew 41 watermelons but the
rabbits ate 5 watermelons”. Usually, “eat”
would denote that there is a reduction in one’s
own entities, i.e., the rabbits should have had
some watermelons. In such a situation, if that
information is not available, it is mapped to
a reduction in the watermelons possessed by
“Sam”.

e As mentioned before, if there are two
possible answers due to ambiguity in the
question, then the answer which involved
some calculation or which has no unknown
terms is preferred. Consider, “There are 2
pencils in the drawer. Tim placed 3 pencils in
the drawer. How many pencils are now there
in total?”. So the system would correctly
display “drawer has 5 pencils” instead of
“Tim has unknown pencils”.

o If the final answer that the system derived is
simply an entity mentioned in the question

Word Problem Solver

Ruth had 3 apples. She put 2 apples in a basket. How many apples E]
re there in the basket now if there were 4 apples in the beginning?h
= _:[-]

Figure 5: Screenshot of the System

and if it is known that the question has an
aggregator like “altogether”, then the system
bypasses the representation and returns the
sum of all entities.

7 Illustration

A screenshot of the system is available in Figure
5.

8 Experiments

The experiments are similar to the ones performed
by (Hosseini et al., 2014). They had 3 datasets
(DS1, DS2, DS3) with increasing difficulty
in terms of natural language and irrelevant
information. Our system’s performance is
compared against ARIS proposed by (Hosseini
et al., 2014), ROBUST proposed by (Bakman,
2007) and the online mathematical query system
(WolframAlpha, 2015). Also, as we are not
learning the verb categorization, that is the
keyword to schema mapping, the appropriate
comparison is with “Gold ARIS” which is ARIS
with perfect categorization.

DS1 | DS2 | DS3 | Avg
Our System | 96.27 | 80.00 | 90.08 | 88.64
Gold ARIS 94.0 | 77.1 | 81.0 | 84.0
ROBUST 12.69 | 0.71 0 4.56
WolframAlpha | 597 | 2.14 | 0.83 | 3.03

Table 3: Comparison with Existing Systems 400

ROBUST fails almost completely with the
two complex datasets as its NLP is quite weak.
WolframAlpha also does not scale well. However,
they generate an answer in natural language.
ARIS does not present the answer in natural
language though it has the means to do so. The
representation used by ARIS and our system is
similar but there is more reasoning involved in our
system by exploiting non-verb keywords and with
some heuristics. Also, ARIS exploited only one
type of schema, that is “Change” schema and did
not address “Combine” and “Compare” schemas
completely. (Hosseini et al., 2014) analysed the
errors and classified them into five types - set
completion, parser issues, irrelevant information,
implicit knowledge and others. Our system was
able to reduce errors in these areas. The only
category of errors that remains unaffected is set
completion. The system is not able to solve
problems such as “Sara ’s high school played 12
basketball games this year. The team won most of
their games. They were defeated during 4 games.
How many games did they win?”. By using
recognizing antonyms, these error can also be
reduced in a future version. The errors involving
parser issues, irrelevant information and implicit
knowledge are reduced by the use of heuristics.
Other issues are resolved significantly because
of more information available about comparisons
and combinations. For example, “In March it
rained 0.81 inches. It rained 0.35 inches less in
April than in March. How much did it rain in
April?” can be solved by our system because of
the keyword “less”. ARIS fails because the verb
“has” does not signify any operation.

9 Discussion

With the availability of sophisticated parsers, we
are able to revisit age-old language understanding
problems and get much better results. While
traditional knowledge based approaches gave
a good base for representation, their NLP
was quite limited due to the limitations in
technology at that time. On the other hand, the
recent empirical systems performed much better
language processing but were semantically limited
in comparison by not exploiting all types of word
problems.

Our system also offers the answer in natural
language and in real time. Though the

performance of WolframAlpha is poor, it provides
visually pleasing explanations for the problems
it can solve and presents the answer in natural
language as well. It is also capable of
analysing phrases such as “two times” that involve
multiplication. One sure direction of future work
is to generate good explanations with our proposed
system.

10 Conclusion and Future Work

We developed a system that solves
addition/subtraction =~ word problems with
considerable accuracy over the existing systems.
It takes a problem, simplifies it and then extracts
information such as owners, entities and keywords
from every sentence. This extracted information
is represented in a temporal representation and
then presents the answer in natural language.

The system was developed in Java and the
code 1is available at https://github.
com/Sowms/AdditionSolver/tree/
KRexperiment. The semantics can be
improved greatly by using a more complex
representation method such as Event Calculus
described in (Shanahan, 1999) which is natural
choice for temporal reasoning. Also, the
semantics for units is not well defined. For
example, consider “Marta picked 2 pumpkins.
The first pumpkin weighed 4 pounds, and
the second pumpkin weighed 8.7 pounds.
How much did the 2 pumpkins weigh all
together?”. The question can refer to two entities,
“pound” or “watermelon”. It arbitrarily chooses
“watermelon” and initially reports the answer as
“Marta picked 2 watermelon”. At this point, the
system recognizes that this fact is already present
in the problem and that there is an aggregator
“altogether” and uses a heuristic to report the
answer as “Altogether 14.7” instead of “12.7”.

Also, more work can be done to improve the
problem simplification, especially for the longer
word problems that involve decimals.

To conclude, a system for solving
addition/subtraction problems has been presented.
It will hopefully be one of the many steps forward
on a long journey towards representing knowledge
that can lead to better question answering systems
and can help teach the eager student.

401

References

WolframAlpha. Wolfram Research,
Inc., Mathematica, Version 10.2,
Champaign, IL (2015). http://blog.

wolframalpha.com/2012/10/04/
solving-word-problems-with-wolframalpha/

Princeton University ”About WordNet.” WordNet.
Princeton University. 2010. http://wordnet.
princeton.edu

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman 2014. Learning
to Solve Arithmetic Word Problems with Verb
Categorization. Proceedings of the Conference on
Empirical Methods in Natural Language Processing.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay 2014. Learning to Automatically
Solve Algebra Word Problems. Proceedings of the
Conference of the Association for Computational
Linguistics (ACL).

Christopher D. Manning, Surdeanu, Mihai,
Bauer, John, Finkel, Jenny, Bethard, Steven
J., and David McClosky. 2014. The Stanford
CoreNLP Natural Language Processing Toolkit.
Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pp. 55-60

Anirban Mukherjee and Utpal Garain 2009. A
review of methods for automatic understanding of
natural language mathematical problems . Artificial
Intelligence Review, Volume 29, Issue 2, pp 93-122

Y. Bakman. 2007. Robust understanding of Word
Problems with Extraneous Information, http://
lanl.arxiv.org/abs/math.GM/0701393

Shanahan, M. 1999. The event calculus explained,
Wooldridge, M., & Veloso, M.(Eds.), Artificial
Intelligence Today, pp. 409430. Springer Lecture
Notes in Artificial Intelligence no. 1600.

D. Dellarosa. 1986. A computer simulation
of childrens arithmetic word-problem solving,
Behavior Research Methods, Instruments, and
Computers Volume 18, Issue 2, pp 147-154

Charles R. Fletcher Understanding and solving
arithmetic word problems: A computer simulation.,
Behavior Research Methods, Instruments, and
Computers, 17, pp 565-571.

Daniel Bobrow. 1964. A question-answering system
for high school algebra word problems.. AFIPS
64 (Fall, part I) Proceedings of the October 27-29,
1964, fall joint computer conference, part I, pp
591-614

402

