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Abstract

Naive Bayes classifiers estimate posterior
probabilities poorly (Zhang, 2004).

In this paper, we propose a modification
to the Naive Bayes classification algorithm
which improves the classifier’s posterior
probability estimates without affecting its
performance.

Since the modification involves the use
of the reciprocal of the perplexity of the
class-conditional feature probabilities, we
call the resulting classifier the Perplexed
Bayes classifier.

We demonstrate that the modification re-
sults in better calibrated posterior proba-
bilities on a gender categorization task.

1 Introduction

Probabilistic classifiers work by selecting the most
probable class given the features of the data point
being classified, as shown in Equation 1.

argmax
c

P (C|F ) (1)

Bayesian classifiers transform P (F |C) into
P (C|F ) as shown in Equation 2.

P (C|F ) =
P (F |C)× P (C)

P (F )
(2)

Naive Bayes classifiers additionally assume that
the features f1, f2, f3, etc. are all independent of
one another, conditional on the class C, yielding
the following equation.

P (F |C) =
∏

i

P (fi|C) (3)

Equation 3 can be substituted into Equation 2 to
obtain Equation 4.

P (C|F ) =

(∏
i P (fi|C)

)
× P (C)

P (F )
(4)

The posterior probability estimates obtained us-
ing Equation 4 tend to be extreme as observed in
Eyheramendy et al (2003).

Improving the posterior probability estimates of
Naive Bayes classifiers might make them more
useful for NLP (Nguyen and O’Connor, 1999).

In this paper, we present the Perplexed Bayes
classification algorithm that produces better cali-
brated posterior probabilities than the Naive Bayes
algorithm and operates with the same accuracy.

2 Related Work

The Naive Bayes classification algorithm is still
commonly used as a baseline algorithm for many
classification tasks (Rennie et al, 2003), and is re-
puted to perform surprisingly well (McCallum and
Nigam, 1998; Rennie et al, 2003; Zhang, 2004)
though the posterior probabilities might be esti-
mated poorly (Eyheramendy et al, 2003; Rennie
et al, 2003; Zhang, 2004).

Attempts to improve the Naive Bayes classi-
fier have relied on augmentations to relax indepen-
dence assumptions (Peng and Schuurmans, 2003;
Peng et al, 2004), transformations to correct sys-
temic errors (Rennie et al, 2003), the weighting of
counts or probabilities (Zaidi et al, 2013; Frank et
al, 2003; Webb and Pazzani, 2004) and the subset-
ting of features (Langley and Sage, 1994).

It has been proposed that one might use cor-
rective sigmoid functions (Platt, 1999; Bennett,
2000; Niculescu-Mizil and Caruana, 2005; Caru-
ana and Niculescu-Mizil, 2006)), isotonic regres-
sion (Zadrozny and Elkan, 2002), asymmetric dis-
tributions (Bennett, 2003) and binning (Zadrozny
and Elkan, 2001; Bella et al, 2009) to obtain cali-
brated posterior probabilities (Rüping, 2006) from
SVMs, decision trees and Naive Bayes classifiers.118
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Figure 1: Reliability diagram for a Naive Bayes
(NB) classifier.

Our approach is closer to that of Zaidi et al
(2013) who used weighted class-conditional fea-
ture probabilities. One of the equations that Zaidi
suggests could be used (but does not go on to ex-
plore) is identical to Equation 8 in this paper.

None of the previous studies has, to our knowl-
edge, explored in detail, attempted to generalize,
or developed a theoretical foundation for the ap-
proach that we describe in this paper.

3 Naive Bayes

In this section, we show that the posterior proba-
bilities of the Naive Bayes classification algorithm
are not well calibrated.

A Naive Bayes classifier’s posterior probabili-
ties were measured on a classification task (iden-
tifying the gender of names using the dataset
described in Section 5) and a reliability dia-
gram (Bröcker and Smith, 2007) plotted for differ-
ent numbers of features used as shown in Figure 1.

A perfectly calibrated classifier’s reliability di-
agram would show a straight line (like the ideal
curve of Figure 1). As can be seen, the Naive
Bayes classifier does not produce well-calibrated
posterior probabilities, except for the feature count
of 6. The calibration is seen to deteriorate as the
number of features increases.

In the next section, we propose a modification to
the Naive Bayes algorithm to attempt to solve the
problem of poor posterior probability estimation.

4 Perplexed Bayes

The perplexity PP (p1, p2, . . . pn) of a set of prob-
abilities {p1, p2, . . . , pn} is computed as shown in

Equation 5.

PP =
1

(p1 × p2 × . . .× pn)
1
n

(5)

So, the reciprocal of the perplexity of the prob-
abilities is merely their geometric mean as shown
in Equation 6.

PP –1 = (p1 × p2 × . . .× pn)
1
n (6)

In the Perplexed Bayes classifier, we combine
the class conditional feature probabilities using the
geometric mean, as shown in Equation 7.

P (F |C) =


 ∏

1≤i≤n
P (fi|C)




1
n

(7)

So, the posterior probability equation can be
written as shown in Equation 8, where n is the
number of features, and N is the normalizer.

P (C|F ) =

∏
i P (fi|C)

1
n × P (C)

N
(8)

We call a classifier that uses the posterior prob-
ability equation in Equation 8 the fully Perplexed
Bayes classifier.

4.1 Assumption

We can show that Equation 8 can be derived from
Equation 2 if we assume that the class C is in-
dependent of all features but one, and that none
of the features is special as shown in Equation 9,
where 1 ≤ i ≤ n.

P (C|f1, f2, . . . fn) = P (C|fi) (9)

We can write Equation 9 in n different ways, as
follows, because no feature is special.

P (C|f1, f2, . . . fn) = P (C|f1)
= P (C|f2)

...

= P (C|fn)

(10)

We show below that the assumption embodied
in Equation 9 is sufficient for the derivation of
Equation 8 (but we have not shown that it is also
necessary).119



4.2 Derivation

Multiplying together all the terms on both sides of
Equation 10 we get Equation 11.

P (C|f1, f2, . . . fn)n =

=
∏

1≤i≤n
P (C|fi) (11)

Inverting the terms on the right-hand side of
Equation 11 using the Bayesian inversion equation
(2), we get Equation 12.

P (C|F )n =


 ∏

1≤i≤n

P (fi|C)× P (C)

P (fi)


 (12)

Since P (C) and P (F ) are independent of i, we
can write Equation 12 as Equation 13.

P (C|F )n =


 ∏

1≤i≤n
P (fi|C)




× P (C)n∏
1≤i≤n P (fi)

(13)

P (C|F ) =


 ∏

1≤i≤n
P (fi|C)




1
n

× P (C)

N
(14)

Finally, taking the nth root on both sides, we get
Equation 14 (where N is the normalizer) and this
is substantially the same as Equation 8.

So we have shown that the assumption that the
class C is independent of all features but one,
and that none of the features is special (written
as Equation 10) can give us Equation 8.

It is interesting to note that Equation 15, rep-
resenting the posterior probabilities of a classifier
that uses the arithmetic mean instead of the geo-
metric mean, can be derived by a similar sequence
of steps from Equation 10 as well.

P (C|F ) =


 ∑

1≤i≤n
P (fi|C)


× P (C)

n×N
(15)

4.3 Interpretation

It can be shown that the independence of classes
and features P (C|F ) = P (C) is a direct result of
Equation 10 as follows.

P (ci) =
∑

F

P (ci, F ) =
∑

F

P (ci|F )P (F )

(16)
But, since P (ci|F ) is a constant mi by reason

of Equation 10, we get:

P (ci) = mi ×
∑

F

P (F ) (17)

But,
∑

F P (F ) = 1.
So, P (ci) = mi = P (ci|F ) for all i.
So, it has been shown that Equation 10 implies

that P (C|F ) = P (C) and therefore the features
are independent of the classes.

Moreover, it can be seen that the constraints in
Equation 10 are only constraints on the classes.

It follows that the features are not constrained
in any way by Equation 10 and do not have to be
class-conditionally independent of one other.

4.4 Generalization
It appears possible to model assumptions that fall
between those of the Naive Bayes classifier and
the fully Perplexed Bayes algorithm described
above through the use of an attenuation coefficient
k in the geometric mean as shown in Equation 18.

PP –k = (p1 × p2 × . . .× pn)
k
n (18)

By plugging Equation 18 into Equation 2, we
get the following posterior probablity equation.

P (C|F ) =


 ∏

1≤i≤n
P (fi|C)




k
n

× P (C)

N ′′′
(19)

The attenuation coefficient k ranges from 1 to n,
where lower values correspond to more perplexity.

It may be noted that if we set k = n, Equation 19
becomes Equation 4 used in the Naive Bayes clas-
sifier.

On the other hand, if we set k = 1, Equation 18
becomes the same as Equation 8 used in the fully
Perplexed Bayes classifier.

4.5 Approximation
It is possible to obtain the same accuracy as a
Naive Bayes classifier and yet retain the excel-
lent posterior probability characteristics of the Per-
plexed Bayes classifier using the approximation
shown in Equation 20.120



P (C|F ) =

(
(
∏

i P (fi|C))× P (C)
) k

n+1

N ′′
(20)

It can be seen from Equation 20 that the numer-
ator is the k/(n+1)th root of the numerator of the
posterior probability equation of the Naive Bayes
classifier as shown in Equation 4.

So, the posterior probability approximation of
Equation 20 provably makes classification deci-
sions about data points in exactly the same way
as Equation 4 because if a positive real number
a/N ′ is greater than b/N ′, then ak/N ′′ must also
be greater than bk/N ′′ where k, N ′ and N ′′ are
constants.

5 Experimental Results

For our experiments, we used a collection of 7944
gender-labelled names with 2943 marked male
and 5001 marked female.

The data set was randomized and then split into
a training set consisting of the first 6354 names
and a test set consisting of the remaining 1590
names1.

In all experiments, the approximation in Equa-
tion 20 was used. Unless otherwise stated, for all
experiments where the attenuation coefficient was
automatically computed, it was chosen (through a
binary search) so as to minimize the standard de-
viation of the normalized histogram of posterior
probabilities on the training data.

5.1 Distribution Experiments
The curves of the standard deviation of normalized
histogram counts of posterior probabilities plotted
against feature counts in Figure 2 show that pos-
terior probabilities are more evenly distributed in
Perplexed Bayes classifiers than in Naive Bayes
classifiers for higher feature counts.

5.2 Accuracy Experiments
It is to be expected that as the Perplexed Bayes
classifier’s confidence in its results increases, so
would its accuracy. So, the accuracy of the clas-
sifier for different ranges of posterior probabilities
was computed and is presented in Table 1. It can
be seen from Table 1 that with higher thresholds, it
is possible to obtain higher accuracies in the Per-
plexed Bayes classifier.

1The randomized collection of names used may be down-
loaded from http://www.aiaioo.com/downloads/namesfile.txt
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Figure 2: The standard deviation of the normal-
ized histogram counts of the posterior probabili-
ties plotted against the average number of features.
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Figure 3: The accuracy of the Perplexed Bayes
classifier against its posterior probability.
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Figure 4: Reliability diagram for a Perplexed
Bayes classifier with the attenuation coefficient
optimized for flatness of the posterior probability
histogram, alongside a Naive Bayes (NB) curve.121



P (C|F ) Points PB Acc Points NB Acc
0.5-0.6 387 0.6149 26 0.5000
0.6-0.7 421 0.8361 22 0.3636
0.7-0.8 439 0.9703 26 0.5000
0.8-0.9 300 0.9766 42 0.5238
0.9-1.0 43 1.0000 1474 0.8792

Table 1: Perplexed and Naive Bayes classifier ac-
curacies for different confidence intervals (average
of 24.4 features, and overall accuracy of 0.85).
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Figure 5: Reliability diagram for a Perplexed
Bayes classifier with the attenuation coefficient
optimized for good calibration a validation set,
and a Naive Bayes (NB) curve for comparison.

In contrast, measurements for the Naive Bayes
classifier, also shown in Table 1, indicate that
92.7% of the data points are classified with a con-
fidence of above 0.9, and that the remaining data
points are assigned to classes almost randomly,
so the accuracy is not very sensitive to threshold
changes between 0.5 and 0.9. Figure 3 shows an
increase in the accuracy of classification with an
increase in the posterior probability.

The reliability diagram for the Perplexed Bayes
classifier with the Y-axis values representing the
probability of a data point’s real class equalling the
class for which the classifier’s posterior probabil-
ity is plotted on the X-axis, is shown in Figure 4.

The reliability diagram in Figure 5 was obtained
similarly using a Perplexed Bayes classifier where
the attenuation coefficient was estimated so as to
mimimize the Root Mean Square Error (RMSE)
of the observed posterior probabilities from ideal
values over a held-out validation set of data points.

The RMSEs of the observed posterior proba-
bilities of Figure 5 were 0.069, 0.043, 0.049 and
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Figure 6: The precision and recall of the Perplexed
Bayes classifier against decision thresholds.

0.064 for 6, 12, 21 and 24 features respectively,
whereas the RMSEs for a Naive Bayes classifier
were 0.016, 0.093, 0.173 and 0.164 (at accuracies
of 71.5%, 81.5%, 85.7% and 84.5%), establishing
that on this data set the Perplexed Bayes classifier
produced better calibrated posterior probabilities
for higher feature counts than a Naive Bayes clas-
sifier of the same accuracy.

5.3 Precision & Recall Experiments

The precision and recall of the Perplexed Bayes
classifier plotted against confidence thresholds for
the selection of one class over the others are as
shown in Figure 6.

6 Conclusions

We have shown that it is possible to build a clas-
sifier (the Perplexed Bayes classifier) that makes
classification decisions that are identical to those
of a Naive Bayes classifier without assuming
that the features used are class-conditionally inde-
pendent, by combining the class-conditional fea-
ture probabilities into posterior probabilities using
their geometric mean unlike the Naive Bayes clas-
sifier that takes their product, and that such a clas-
sifier incorporating an attenuation coefficient can
produce better calibrated posterior probabilities on
the given data set than a Naive Bayes classifier for
higher feature counts.

7 Future Work

We should like to see if the mathematics used in
the Perplexed Bayes classifier could be used to
make improvements to Hidden Markov Models
and in Probabilistic Graphical Models.122
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