
DMTW 2015

Proceedings of the

1st Deep Machine
Translation Workshop

3 – 4 September 2015
Charles University in Prague,

Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics

Prague, Czech Republic



Published by:

Charles University in Prague,
Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics
Malostranské náměst́ı 25
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Steven Neale, Lúıs Gomes and António Branco

Lexical choice in Abstract Dependency Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Dieke Oele and Gertjan van Noord

Large Scale Translation Quality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Miguel Angel Rios Gaona and Serge Sharoff

Translation Model Interpolation for Domain Adaptation in TectoMT . . . . . . . . . . . . . . . . . . . . 89
Rudolf Rosa, Ondrej Dusek, Michal Novák and Martin Popel

Factored models for Deep Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Kiril Simov, Iliana Simova, Velislava Todorova and Petya Osenova

Machine Translation for Multilingual Troubleshooting in the IT Domain: A Comparison
of Different Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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Linguistic Linked Open Data: What’s in for Machine Translation?

Christian Chiarcos
Angewandte Computerlinguistik

Fachbereich für Informatik und Mathematik
Goethe-Universität Frankfurt am Main

Robert-Mayer-Str. 10
D-60325 Frankfurt am Main

chiarcos@informatik.uni-frankfurt.de

During the past years, the notion of Linked (Open) Data has gained considerable reception in dif-
ferent communities working with language resources, ranging from academic and applied linguistics
over lexicography to natural language processing and information technology. In this context, the Open
Linguistics Working Group of the Open Knowledge Foundation (OWLG, http://linguistics.
okfn.org/), founded in 2010 in Berlin, Germany, is playing an important integrative role, by reaching
out to a broad band-width of disciplines, by facilitating interdisciplinary information exchange through
meetings, workshops, datathons and joint publications, but most noteably by introducing and maintain-
ing the Linguistic Linked Open Data (LLOD) cloud diagram. Being deeply involved in this emerging
community at the intersection between the different disciplines mentioned above, I will introduce the
basic concepts of Linked Open Data for linguistics/NLP, summarize motivations and history of Linguis-
tic Linked Open Data so far. Since creating the first instantiation of the LLOD cloud diagram in 2012,
LLOD has attracted a lot of activity, we have reached an agreement on vocabularies for many aspects of
language resources and the number of resources included is continuously on the rise. This growth is doc-
umented, for example, by declaring LLOD “the new hot topic in our (= language resource) community”
(Nicoletta Calzolari, LREC-2014 closing session). But with substantial amounts of data being available,
the focus of activity in the LLOD community is slowly shifting from resource creation to applications of
Linguistic Linked Open Data. The primary promise of providing open, but heterogeneously structured
and scattered language resources in a more interoperable way has been fulfilled, and it facilitates using
and re-using existing language resources in novel contexts. Beyond this, innovative LLOD-based appli-
cations for common problems in Natural Language Processing, Digital Humanities and linguistics are on
the horizon. The second part of the talk will give a glimpse on these prospects by discussing use cases
and potential applications of LLOD for (Deep) Machine Translation.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
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Modelling the Adjunct/Argument Distinction in Hierarchical
Phrase-Based SMT

Sophie Arnoult
ILLC

University of Amsterdam
s.i.arnoult@uva.nl

Khalil Sima’an
ILLC

University of Amsterdam
k.simaan@uva.nl

Abstract

We present the first application of the adjunct/argument distinction to Hierarchical Phrase-Based
SMT. We use rule labelling to characterize synchronous recursion with adjuncts and arguments.
Our labels are bilingual obtained from dependency annotations and extended to cover non-
syntactic phrases. The label set we derive in this manner is extremely small, as it contains only
thirty-six labels, and yet we find it useful to cluster these labels even further. We present a cluster-
ing method that uses label similarity based on left-hand-side/right-hand-side joint trained-model
estimates. The results of initial experiments show that our model performs similarly to Hiero on
in-domain French-English data.

1 Introduction

Labelling Hierarchical Phrase-Based models (Hiero) (Chiang, 2005) allows to disambiguate Hiero,
while benefitting from its broad coverage. Using syntactic labels for labelling as Zollmann and Venu-
gopal (2006) do with Syntax-Augmented Machine Translation (SAMT) or, e.g., Li et al. (2012) in an
inspired approach, yields however unwieldy models with large non-terminal vocabularies. We propose
to approach the labelling problem from the other end, using the adjunct-argument distinction to mini-
mally label Hiero.

We interpret adjuncts in the general sense of modifiers, and not only of adjuncts in semantic frames.
Generally speaking, the adjunct-argument distinction accounts for a difference in selectional preferences:
arguments are selected by their heads, while adjuncts select their heads. This distinction is modelled
in Tree-Adjoining Grammar (Joshi et al., 1975; Joshi and Schabes, 1997), through substitution and
adjunction. Shieber and Schabes (1990) and Shieber (2007) have proposed Synchronous Tree-Adjoining
Grammar (STAG) by for SMT, and the adjunct/argument distinction has been applied to Syntax-Based
models notably by DeNeefe and Knight (2009) and Liu et al. (2011).

We do not attempt here to model adjunction in Hiero, rather we reduce the adjunct-argument distinc-
tion to one of type. The semantic aspect of this distinction–adjuncts modify the meaning of a phrase,
while arguments complete it–makes it appealing for Machine Translation, as one may expect that it
can be preserved across a bitext. To circumvene mismatches, we label both sides of the data to derive
bilingual labels. The label set that we derive is minimal as we start from two labels for adjuncts and
arguments on both sides of the data, and derive only four new labels for non-syntactic phrases; after
combining source and target labels into bilingual labels, the label set contains thirty-six labels only.

We conduct experiments on French-English data, and show that while direct application of this small
adjunct/argument label set leads to sub-optimal results, promising results can be obtained by clustering
bilingual labels. While further tests are required, our model is currently limited by Hiero’s phrase-length
limit; to fully apply adjunct/argument labelling, one needs to extend this model, with reordering rules for
instance, or by exchanging the phrase-length constraint for a constraint on recursion.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer are
added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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2 Labelling Adjuncts and Arguments for Hiero

Our labelling procedure follows that of SAMT (Zollmann and Venugopal, 2006) to some extent. We
start from sentence pairs that have been parsed on both sides of the data into dependencies, and we map
dependency labels to either adjuncts or arguments, as is Figure 11.

finally , arms fuel conflicts all over the world .

enfin , les armes alimentent les conflits de par le monde .

Figure 1: Example sentence pair. Adjunct dependencies are indicated with dashes.

Dependency labels vary per parser, but we broadly map modifier and punctuation labels to adjuncts,
and remaining labels to arguments. Table 1 presents the mapping from the dependency converters of
Candito et al. (2010) for French and of Johansson and Nugues (2007) for English.

Table 1: Adjunct-mapping criteria for English and French

head-governor relation other constraints on head h, governor g, etc.

English ADV, APPO, PRN
AMOD relation(g, governor(g)) ! = ADV
PMOD h precedes g
NMOD POS(h) ∉ {CC, DT, EX, POS, MD, PRP, PRP$, RP, SYM, WDT,

WP, WP$, WRB}
P h has no dependents

French mod, mod rel
ponct h has no dependents

2.1 Phrase-Labelling scheme

Next, we define phrase labels to allow for recursion over non-syntactic phrases. Our phrase labelling
procedure is summarized as Algorithm 1. This scheme follows SAMT and beyond that Combinatorial
Categorial Grammar (CCG) (Steedman, 2000), but it is coarser on the one hand, and it is adapted to
syntactic differences between adjunct and arguments, on the other.

It is coarser in that the added phrasal labels, while corresponding to incomplete constituents or con-
stituent sequences, are in fact kept to a minimum, that do not reflect the combination logic of CCG: we
distinguish incomplete adjuncts, incomplete arguments, sequences of arguments, and default all remain-
ing phrases to a single type.

To reflect specific adjunct/argument behaviour, we let constituents that miss adjuncts keep their type,
thus reflecting the fact that adjuncts do not alter the syntactic type of the phrases they modify; for the
same reason, we label sequences of arguments and adjuncts as a sequence of arguments; finally, we label

1Word alignments are tentative, but the adjunct/argument labels are factual; the labelling of “de par le monde” is the result
of a parsing error.
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sequences of adjuncts as a single adjunct, reflecting the absence of linguistic restriction on the number of
adjuncts for a given phrase (although we do not actually test whether adjuncts have the same governor).

Algorithm 1: Labelling procedure for extracted phrases.
input : A phrase φ and a dependency tree with adjunct (A) and argument (C) labels.
output: A phrase label for φ
if φ matches a dependent D then Label(φ) ← Label(D)
else if φ matches a sequence of dependents Di then

if all Di are adjuncts then Label(φ) ← A else Label(φ)← CS
else if φ matches a dependent D less some left and/or right sub-dependents SDi then

if all SDi are adjuncts then Label(φ) ← Label(D)
else

if D is an adjunct then Label(φ) ← AI else Label(φ)← CI
else Label(φ) ← P

2.2 Bilingual labelling

The adjunct/argument label set presented thus far can be equally applied on the source and target sides
of the data. To account for parsing differences and linguistic divergence (Dorr, 1994; Hwa et al., 2002;
Arnoult and Sima’an, 2014), we combine source and target labels into composite, bilingual labels. The
resulting label set consists of 36 labels.

Table 2 shows some phrase pairs for the example of Figure 1.

Table 2: Adjunct/argument-based phrasal labels

label French phrase English phrase label French phrase English phrase

AA enfin , finally , CICI alimentent fuel
CC les armes arms CICI monde world
CA de par le monde all over the world CSCS le monde . the world .
CIAI de par all over PP monde . world .
CIP les conflits de par conflicts all over

The phrase “finally ,” is labelled as an adjunct as it is a sequence of adjuncts with the same gover-
nor; “the world .” is labelled as an argument sequence as it is a multi-headed sequence containing an
argument; “conflicts all over” is labelled as a phrase (P ) as it is a multi-headed sequence containing an
incomplete argument.

3 Model

The model is a SAMT-like, labelled-variant of Hiero (Chiang, 2005). The model is similar to Hiero, but
for the fact that the single non-terminal of Hiero is replaced by a set of labels.

Model derivations are scored by a log-linear model over features; our model uses most of the Hiero and
SAMT features. Like Hiero, the model features comprehend phrase-translation weights, lexical weights,
rule penalty, glue-rule penalty and word penalty; the phrase-translation-weights feature also applies for
adjunct/argument-labelled models, and is then computed on unlabelled rule equivalents, i.e., on lexi-
cal content only. Like SAMT (Zollmann, 2011), the model uses features for left-hand-side-conditioned
rule weights, labelled-rule translation weights, rule-rarity penalty, and flags for lexical-only rules, ab-
stract rules, monotone rules, and abstract-target rules. Unlike SAMT, we do not condition labelled on
unlabelled sides: phrase-translation weights are computed on labelled rules on the one hand, and on
unlabelled rules on the other hand.
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4 Adjunction-label clustering

Hanneman and Lavie (2013) propose a clustering method for SAMT labels to reduce their amount and the
resulting computational load. Their method employs source labels next to the usual SAMT target labels:
combining source and target labels allows them to compute relative-frequency estimates of source/target
labels, which serve to compute distance measures between source labels on one hand, and target labels
on the other. The distance measure between two source labels s1 and s2 is defined as the marginal
difference between P (t∣s1) and P (t∣s2) estimates; the distance between target labels is defined similarly.
Clustering proceeds by searching the source or target labels that minimize either one of the source-label
and the target-label distances, and collapsing the resulting label pair. Clustering stops after a predefined
number of iterations, after which only the clustered target labels are used to extract an SAMT grammar.
The resulting model proves superior to SAMT on a Chinese-English task, and generally superior to
Hiero.

Even though our bilingual label set is very small, the combination of source and target labels is ad-hoc,
and initial experiments show it is misadapted. To correct this, we adapt the method of Hanneman and
Lavie (2013) to cluster combined, bilingual labels.

4.1 Label-distance measures
Rather than using a joint distribution of source and target labels to compute label distance, we use a joint
distribution of left-hand-side and right-hand-side labels. We define a distance dLHS between left-hand-
side label occurrences, and a distance dRHS between right-hand-side label occurrences.

The lhs distance between two non-terminals υ1 and υ2 in the bilingual label set U is computed by
marginalizing the difference between non-terminal rewriting probabilities, where probability estimates
are obtained by heuristic counting of joint LHS/RHS labels in extracted labelled rules:

dLHS(υ1, υ2) = ∑
υ∈U

(PRHS∣LHS(υ∣υ1) − PRHS∣LHS(υ∣υ2)) (1)

This distance captures similarities in the rewriting behaviour of non-terminals.
For the rhs distance, we tested two definitions. The first one, dnRHS , mirrors the lhs distance, by

marginalizing the difference between inverse non-terminal rewriting probabilities:

dnRHS(υ1, υ2) = ∑
υ∈U

(PLHS∣RHS(υ∣υ1) − PLHS∣RHS(υ∣υ2)) (2)

Under this definition, two non-terminals are similar if they have similar generating distributions.
The second one, duRHS , marginalizes the difference between joint lhs/rhs probabilities over left-hand-

side non-terminal labels:

duRHS(υ1, υ2) = ∑
υ∈U

(PLHS,RHS(υ, υ1) − PLHS,RHS(υ, υ2)) (3)

Under this definition, the similarity in right-hand-side label occurrences is not normalized anymore by
right-hand-side label probabilities, so this rhs distance is also conditioned on right-hand-side labels hav-
ing similar frequencies.

We derive a single label distance measure by adding the lhs and rhs distances. Depending on the
variant of rhs distance (normalized or unnormalized), we obtain either dn or du:

dn(υ1, υ2) = dLHS(υ1, υ2) + d
n
RHS(υ1, υ2) (4)

du(υ1, υ2) = dLHS(υ1, υ2) + d
u
RHS(υ1, υ2) (5)

4.2 Clustering
Clustering proceeds by searching at each step for the label pair that minimizes label distance. The two
closest labels are clustered into a single label, and probability estimates are updated for the next round.
Clustering stops when a predefined label-set size has been reached. The clustered bilingual labels can
then be used to extract a new grammar.
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5 Experiments

5.1 Experimental set-up
5.1.1 Data
We conduct experiments of French-English data from the Europarl corpus (v7) with in-domain test data
from the WMT07 Europarl development and test sets (devtest2006 and test2006).

We use the Berkeley aligner2 for training word alignments, with 5 rounds of IBM1 and HMM train-
ing; the training data consist of the French-English Europarl training set, containing 1.97M sentence
pairs with a maximum length of 40 tokens. The data are tokenized with a script adapted from the Moses
tokenizer and lowercased. The language model is a 4-gram model with interpolated Kneser-Ney smooth-
ing, and is trained with KenLM3 on the English side of the training set with a sentence-length limit of 80
tokens; the set contains 52.5M tokens.

The training data consist of 200k sentence pairs of length limited to 40 tokens, taken from the training
set used for the language model and the word alignments; the data contain 4.18M English tokens;

5.1.2 Annotations
We parse both sides of the training data with the Berkeley Parser4–the data are then true-cased–, and
then convert parses to dependency parses: with the Pennconverter of Johansson and Nugues (2007) for
English, and the Functional Role Labeller of Candito et al. (2010) for French.

5.1.3 Model Training and decoding
We train models using an in-house grammar extractor, and a decoder based on Joshua5. Training and
decoding constraints and defaults are the same as for Hiero, but we disallow consecutive non-terminals
on both sides, and not only on the source side.

Model parameters are tuned with Mira, allowing up to 20 iterations. Following (Clark et al., 2011) we
average results over three rounds of tuning/decoding.

5.2 First results
Table 3 reports tests on adjunct/argument label sets, where we use source-language labels only
(AA-Src), target-language labels (AA-Trg), or combined, bilingual labels (AA-Bi).

Table 3: Performance of monolingual and bilingual labelling
schemes with regard to Hiero; significant differences are marked
with one ▿ for p = 0.05 and two for p = 0.01

BLEU METEOR TER
dev test dev test dev test

Hiero 32.1 31.8 34.9 34.8 52.9 53.3

AA-Src 31.9▿▿ 31.3▿▿ 34.8▿ 34.7▿▿ 53.0 53.5▿▿

AA-Trg 32.0▿ 31.6▿▿ 34.9 34.7▿ 52.9 53.5▿▿

AA-Bi 31.9▿ 31.5▿▿ 34.8 34.7▿▿ 53.0 53.5▿

All models underperform Hiero, on the test set more than on the development set, and on BLEU more
than Meteor or TER. The AA-Src model performs worse: source-labelling models are most known to
guide reordering, which is relatively absent in French-English. The AA-Bi model appears to give poorer
results than the AA-Trg model, and that while it disposes of more information; argueably, even if the
source-language labels are not directly useful, they might serve to refine target labels. We attribute the
relatively poor results of the AA-Bi model to the undirected combination of source and target labels, and

2https://code.google.com/p/berkeleyaligner/
3http://kheafield.com/code/kenlm/
4https://github.com/slavpetrov/berkeleyparser
5http://joshua-decoder.org/
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we use label-rewriting statistics on the development set grammar of the AA-Bi model to cluster labels
as described in section 4.

5.3 Label clustering

We apply both definitions of the rhs distance of Equations 2 and 3 to extract two label sets. In both cases,
we limit the final, clustered label-set size to six labels. Table 4 presents the label set obtained with the
rhs-normalized distance dn (equation 4), and Table 5 the label set obtained with the rhs-unnormalized
distance du (Equation 5).

Table 4: Clusters obtained with normalized (conditional) RHS distance dn and relative frequency of LHS
occurrence

clustered bilingual labels P (LHS)

1 CA, CAI , CC, CCI , CCS , CP, CIA, CIAI , CIC, CICI , CICS , CIP 0.381
2 AA, AAI , AC, ACI , ACS , AP, CSA, CSAI , CSC, CSCI , CSCS , CSP, PA, PAI , PC,

PCI , PCS
0.255

3 PP 0.328
4 AICS 0.024
5 AIC, AICI 0.012
6 AIA, AIAI , AIP 0.001

Table 5: Clusters obtained with unnormalized (joint) RHS distance du and relative frequency of LHS
occurrence

clustered bilingual labels P (LHS)

1 CC, CCI , CIC, CICI 0.288
2 CA, CAI , CCS , CP, CIA, CIAI , CICS , CIP, CSC, CSCI , CSCS , CSP, PC, PCI ,

PCS , PP
0.595

3 AC, AIC, AICI 0.016
4 AA, AAI , AIA , AIAI 0.050
5 ACI , ACS , AP, AICS , AIP 0.018
6 CSA, CSAI , PA, PAI 0.032

Clusters obtained with dn (Table 4) show a dominance of the source-label component: labels with an
AI source component form half of all clusters (clusters 4,5 and 6), and other labels–PP excepted–are
clustered by their source component only.

In contrast, clusters obtained with du (Table 5) show some symmetry between source and target com-
ponents, and they group together adjuncts and incomplete adjuncts, arguments and incomplete argu-
ments, and multi-headed dependent sequences and phrases: cluster 1 corresponds to argument/argument
translations; cluster 2 to argument/adjunct pairs and phrasal (multi-headed) or semi-phrasal equivalences;
cluster 3 to adjunct/argument pairs; cluster 4 to adjunct/adjunct pairs; cluster 5 to adjunct/phrase pairs;
and cluster 6 to phrase/adjunct pairs.

These clusters also lead to better translation results, as Table 6 shows.
The model trained with the label set of Table 4, AA-Cn performs worse than the original labelled

model AA-Bi. The second label set leads to a better AA-Cu model, which performs significantly better
than AA-Bi on the test set. Compared to Hiero, AA-Cu is still less performant on the development
set–at least in terms of BLEU scores–, but achieves comparable results on the test set.
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Table 6: Performance of clustered labelling schemes with regard
to Hiero and the original bilingual-label model; significant differ-
ences with Hiero are marked with one ▿ for p = 0.05 and two for
p = 0.01; significant differences with the original label-set model
are marked with one ▴ for p = 0.05 and two for p = 0.01;

BLEU METEOR TER
dev test dev test dev test

Hiero 32.1 31.8 34.9 34.8 52.9 53.3
AA-Bi 31.9 31.5 34.8 34.7 53.0 53.5

AA-Cn 31.8▿▿/▾ 31.4▿▿ 34.8 34.7▿ 53.1▿▿ 53.6▿▿

AA-Cu 31.9▿▿ 31.8▴▴ 34.9 34.8▴▴ 53.0 53.3▴▴

6 Discussion

Our first results show that direct matching of source and target labels leads to sub-optimal performance.
Our solution uses rule estimates to cluster bilingual labels. This is orthogonal to the approach of Chi-
ang (2010), who applies rule-matching features on both sides of the data, without explicitely matching
source and target labels. While using bilingual labels is appealing as these labels are directly inter-
pretable in terms of syntactic correspondence, clustering only allows to merge labels. A more refined
method would allow to both split and merge labels, with the original adjunct/argument labels as a starting
point for characterizing synchronous recursion linguistically.

As far as the current clustering procedure is concerned, we have shown that a distance based on rewrit-
ing patterns of left-hand-side non-terminals and occurrence patterns of right-hand-side non-terminals
weighed over left-hand-side contexts leads to meaningful clusters and decent results. The clustered la-
bels pair up labels of type adjunct, argument or (multi-headed) constituent sequence with their incomplete
counterparts. This is not surprising: as, e.g., adjunct phrases rewrite largely to the same phrases as the
incomplete adjunct phrases, their corresponding labels are close according to the left-hand-side distance;
similarly, as both types of phrases are largely extracted from the same phrases, their corresponding la-
bels are close according to the joint right-hand-side distance6. The results we obtain with these clustered
labels suggest that the distinction between full and incomplete constituents is not essential for phrase
labelling, which agrees with the labelling method of Li et al. (2012), where phrases are labelled with the
highest, undominated head(s).

The translation results we present here are quite limited, both in extent and scores. One can first
question whether labelling could increase performance for French-English; we intend to extend the ap-
plication of the model to other language pairs in future work. Secondly, as we kept the Hiero constraints
on phrase length and reordering–using labelled but otherwise standard glue rules–the effect of labelling
can only be local. Possible extentions for our model would consist in extending the reordering capacities
of Hiero with adjunct/argument reordering rules, or to use adjuncts to restrict recursion, thereby making
way to lift Hiero’s standard phrase-length constraint.

7 Related Work

Most work on adjunction in SMT takes place in a syntax-based framework, which forms a natural ground
for STAG. DeNeefe and Knight (2009) and Liu et al. (2011) for instance have proposed tree-to-string
models that differentiate between adjunction and substitution. The only application of adjunction to
string-to-string models we know of is that of Arnoult and Sima’an (2012), who exploit the optional
character of adjuncts to extract more rules for a Phrase-Based model.

While the first applications of syntax for SMT (Wu, 1997; Poutsma, 2000; Yamada and Knight, 2001)

6One can also note that, as the right-hand-side distance is not normalized, it takes lower values than the left-hand-side
distance; we have not attempted to weigh them differently, but more experiments in this direction might be worth the while.
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used constituency trees, recent work has come to use a larger array of linguistic formalisms: besides
applications of TAG (DeNeefe and Knight, 2009; Liu et al., 2011), Xie et al. (2011) apply dependency
syntax for tree-to-string modelling and Li et al. (2012) for labelling Hiero; Hassan et al. (2007) apply
CCG supertags to phrase-based SMT and Almaghout et al. (2011) to Hiero; Xiong et al. (2012) apply
predicate-argument structures in a hierarchical phrase-based model and Li et al.(2013) for in Hiero.

Labelling hierarchical models introduces new constraints while providing the opportunity to relax
innate Hiero constraints. New constraints are: a limitation of the grammar to observed substitutions,
which can be remedied by relaxing matching constraints using features to learn subsitution preferences
(Chiang, 2010); an increase of rule sparsity and computational constraints, which can be remedied by
label clustering (Hanneman and Lavie, 2013; Mino et al., 2014). The Hiero constraints that one attempts
to relax are the monotonic top-level ordering, first and foremost (Huck et al., 2012; Li et al., 2012; Li et
al., 2013). Li et al. (2012) also relax the source non-terminal adjacency constraint, while Li et al. (2013)
relax the phrase-length constraint for extraction and decoding.

8 Conclusion

We have presented a bilingual labelling scheme for Hiero that is based on the adjunct/argument distinc-
tion. Even though our label set is very small, containing only thirty-six labels, we find that clustering
these labels is useful. As it is, our model is able to perform similarly to Hiero on in-domain test data for
French-English.

For future work, we plan to refine our labelling method, and to extend our model to circumvene
the limited reordering capacity of Hiero: either with reordering rules, for which the adjunct/argument
distinction should form a good basis, or through restrictions on recursion, which would allow to lift
Hiero’s phrase-length constraint.
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Junhui Li, Philip Resnik, and Hal Daumé III. 2013. Modeling Syntactic and Semantic Structures in Hierarchical
Phrase-based Translation. In Proceedings of the 2013 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages 540–549, Atlanta, Georgia, June.
Association for Computational Linguistics.
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Abstract
The idea to improve MT quality by using deep linguistic and knowledge-driven information has
frequently been expressed. If the goal is to use deep information for building an MT system,
there are two extreme options: (1) to start from a purely knowledge-driven approach (RBMT)
and try to arrive at the same recall found in current SMT systems; (2) to start from an SMT
system and try to arrive at higher precision by modifying it so that more knowledge drives the
translation process.

The system architecture we will describe in this paper starts in the middle of these extreme
options. It is a hybrid architecture that we take as a starting point for future experiments and
extensions to increase MT quality by more knowledge-driven processing.

1 Introduction

Statistical Machine Translation (SMT) based on comparably shallow features can be considered the
most successful paradigm in Machine Translation (MT). The processing pipelines and machine learning
architectures have become quite sophisticated and complex and allow for many types of optimisations.
SMT systems have a (theoretical) high recall in the sense that they provide output for most input and that
the pieces that would constitute a good translation are usually present somewhere in a huge search space
during the translation process (e.g. in phrase tables or language models). However, it is very difficult
to arrive at high precision, i.e., to automatically choose the right pieces and put together a fluent and
accurate translation of a given input. The idea to further improve MT quality by adding deeper (i.e.,
more linguistic and knowledge-driven) information has thus frequently been expressed.

At the same time, rule-based MT systems that primarily apply such knowledge and that are able to
control precision much better are used only in certain nieches today. The reason is that they lack recall:
for example, parsing failure or gaps in the lexicon typically lead to a dead-end where the only option is
to manually code the missing information, which is too resource intensive especially if one wants to take
care of those less frequent items and phenomena in the “long tail”.

If one has the goal to use deep information for building an MT system with the best possible results,
there are two extreme options: (1) to start from a purely knowledge-driven approach and try to arrive at
the same (theoretical) recall found in current SMT systems; (2) to start from an SMT system and try to
arrive at high precision by modifying it so that knowledge drives the search process. Today, it is an open
research question what will lead to the best results in the end.

The system architecture we will describe below starts in the middle of both extreme options. It is a
hybrid architecture that we take as starting point for future experiments and extensions to increase MT
quality by more knowledge-driven processing. This systems has been developed within the QTLeap
project1 where it serves as a “deeper” baseline system as compared to a pure SMT baseline. The goal
of the project is to explore different combinations of shallow and deep processing for improving MT
quality. The system presented in this paper is the first of a series of system prototypes developed in the
project. We therefore refer to it as System 1 in this paper.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1http://qtleap.eu/
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Figure 1: Architecture of System 1.

2 A Hybrid System Combination for German↔English

The fact that German is relatively well-resourced in comparison to other language pairs has allowed MT
researchers to build strong statistical systems with very good performance on a lexical or a local level
(Bojar et al., 2014). The German-English MT system we present here (System 1) aims to effectively
incorporate deep linguistic processing into existing successful machine translation methods for this lan-
guage pair.

Since our main goal is to achieve a high-quality system that allows for experimentation, competes
with state-of-the-art systems, and can be useful in the projects real use-case scenario (translating user
queries and expert answers in a chat-based PC helpdesk scenario), we use a system implementation that
takes advantage of deep transfer and also includes a statistical mechanism that enhances performance by
keeping the best parts from each employed method. Figure 1 shows the overall hybrid architecture that
includes:

• A statistical Moses system,

• the commercial transfer-based system Lucy,

• their serial system combination, and

• an informed selection mechanism (“ranker”).

The components of this hybrid system will be detailed in the sections below.

2.1 Statistical MT system: Moses
Our statistical machine translation component was based on a vanilla phrase-based system built with
Moses (Koehn et al., 2007) trained on the following corpora: Europarl ver. 7, News Commentary ver.
9 (Bojar et al., 2014), Commoncrawl (Smith et al., 2013), and MultiUN (Eisele and Chen, 2010) as
well as on the following domain corpora: the Document Foundation (Libreoffice Help – 47K sentence
pairs, Libreoffice User Interface – 35K parallel entries), the Document Foundation Terminology (690
translated terms), the Document Foundation Website (226 sentence pairs), Chromium browser (6,3K
parallel entries), Ubuntu Documentation (6,3K sentence pairs), Ubuntu Saucy (183K parallel entries),
and Drupal web-content management (5K parallel entries). Language models of order 5 have been built
and interpolated with SRILM (Stolcke, 2002) and KenLM (Heafield, 2011). For German to English,
we also experimented with the method of pre-ordering the source side based on the target-side grammar
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(Popovic and Ney, 2006). As a tuning set we used the news-test 2013. In our architecture, this system on
its own also serves as baseline.

2.2 Transfer-based MT system: Lucy
The transfer-based core of System 1 is based on the Lucy system (Alonso and Thurmair, 2003) that
includes the results of long linguistic efforts over the last decades and that has successfully been used in
previous projects including Euromatrix+ and QTLaunchPad.

The transfer-based approach has shown good results that compete with pure statistical systems, al-
though its focus is on translating according to linguistic structures sets. Translation occurs in three
phases, namely analysis, transfer, and generation. All three phases consist of hand-coded linguistic rules
which have shown to perform well for capturing the structural and semantic differences between Ger-
man and other languages. During the analysis phase, a parsing algorithm constructs a tree of the source
language using a monolingual lexicon and the included grammar rules. The analysis algorithm reverts
to a shallower analysis at the phrasal level in cases when the engine is not able to process the full tree.
The analysis tree is subsequently used for the transfer phase, where deep representations of the source
are transferred into deep representations of the target language using a bilingual lexicon based on canon-
ical forms and categories. The generation phase creates the target sentence on the lexical level, using
inflection and agreement rules between the dependent target language structures. A RestAPI allows the
different processing steps and/or intermediate results to be influenced.

Deep features for empirical enhancement Although deep techniques indicate good coverage of a
number of linguistic phenomena, each of the three phases may frequently encounter serious robustness
issues and/or the inability to fully process a given sentence. Erroneous analysis from early phases may
aggregate along the pipeline and cause further sub-optimal choices in later phases, thus severely deteri-
orating the quality of the produced translation. Preliminary analysis (Federmann and Hunsicker, 2011)
has shown that such is the case for source sentences that are ungrammatical in the first place or that
have a very shallow syntax with many specialized lexical entries. To tackle these issues, we combine the
transfer-based component with our supportive SMT engine in the following two ways:

(a) train a statistical machine translation to automatically post-edit the output of the transfer-based
system (“serial combination”)

(b) use the post-edited or the SMT output in cases where the transfer-based system exhibits lower per-
formance. This is done through an empirical selection mechanism that performs real-time analysis
of the produced translations and automatically selects the output that is predicted to be of a better
quality (Avramidis, 2011). Figure 1 shows the overall architecture of System 1 for en→de.

2.3 Serial System Combination: Lucy+Moses
For automatic post-editing of the transfer-based system, a serial Transfer+SMT system combination is
used, as described in (Simard et al., 2007) The first stage is translation of the source-language part of
the training corpus by the transfer-based system. The second stage is training an SMT system with the
transfer-based translation output as a source language and the target-language part as a target language.
Later, the test set is first translated by the transfer-based system, and the obtained translation is translated
by the SMT system. Figure 2 illustrates the architecture for translation direction en→de. Note that
the notion of “German*” in the figure is meant to distinguish the input and output of the SMT system.
“German*” is the normal output of the transfer-based system.

In this linear system combination, improvement of up to 6 absolute BLEU points has been achieved
for both translation directions in several pilot evaluations. Nevertheless, the method on its own could not
outperform the SMT system trained on a large parallel corpus. The example in Figure 1 nicely illustrates
how the statistical post-editing operates.

While the original SMT output used the right terminology (“Menü Einfügen” – “insert menu”), the
instruction (Im Menü “Einfügen”, Tabelle auswählen) is stylistically not very polite. In contrast, the
output of the transfer-based system (Wählen Sie im Einsatz-Menü Tabelle aus) is formulated politely,
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yet mistranslates the menu type. The serial system combination produces a perfect translation. In this
particular case, the machine translation (Wählen Sie im Einfügen Menü Tabelle aus) is even better than
the human reference (Wählen Sie im Einfügen Menü die Tabelle aus) as the latter introduces a determiner
for “table” that is not justified by the source.

English German* German Transfer-­‐
based	
  MT	
   SMT	
  

Figure 2: Serial System Combination en→de.

2.4 Parallel System Combination: Selection Mechanism

The selection mechanism is based on encouraging results of previous projects including Euromatrix Plus
(Federmann and Hunsicker, 2011), T4ME (Federmann, 2012), QTLaunchPad (Avramidis, 2013; Shah et
al., 2013). It has been extended to include several deep features that can only be generated on a sentence
level and that would otherwise blatantly increase the complexity of the transfer or decoding algorithm.
In System 1, automatic syntactic and dependency analysis is employed on a sentence level, in order to
choose the sentence that fulfills the basic quality aspects of the translation: (a) assert the fluency of the
generated sentence, by analyzing the quality of its syntax (b) ensure its adequacy, by comparing the
structures of the source with the structures of the generated sentence.

All deep features produced are used to build a ranker based on machine learning against training
preference labels. Preference labels are part of the training data and indicate which system output for a
given source sentence is of optimal quality. Preference labels are generated either by automatic reference-
based metrics or derived from human preferences. The ranker is a result of experimenting with various
combinations of feature set and machine learning algorithms and choosing the one that performs best on
the project corpus. The selection mechanism is based on the “Qualitative” toolkit that was presented in
the MT Marathon, as an open-source contribution (Avramidis et al., 2014).

Feature sets We started from feature sets that performed well in previous experiments and we experi-
mented with several extensions and modifications. In particular:

• Basic syntax-based feature set: unknown words, count of tokens, count of alternative parse trees,
count of verb phrases, parse log likelihood. Parse was done with Berkeley Parser and features were
extracted from both source and target. This feature set has performed well as a metric in WMT11
metrics task.

• Basic feature set + 17 QuEst2 baseline features: this feature set combines the basic syntax-based
feature set described above with the baseline feature set of the QuEst toolkit. This feature set
combination obtained the best result in the WMT13 quality estimation task.

• Basic syntax-based feature set with Bit Parser: here we replace the Berkeley parser features on the
target side with Bit Parser.

• Advanced syntax-based feature set: this augments the basic set by adding IBM model 1 probabili-
ties, full depth of parse trees, depth of the ‘S’ node, position of the VP and other verb nodes from
the beginning and end of the parent node, count of unpaired brackets and compound suggestions
(for German, as indicated by LanguageTool.org).

Machine Learning We tested all suggested feature sets with many machine learning methods, includ-
ing Support Vector Machines (with both RBF and linear kernel), Logistic Regression, Extra/Decision
Trees, k-neighbors, Gaussian Naive Bayes, Linear and Quadratic Discriminant Analysis, Random Forest

2http://www.quest.dcs.shef.ac.uk/
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and Adaboost ensemble over Decision Trees. The binary classifiers were wrapped into rankers using the
“soft pairwise recomposition” to avoid ties between the systems.

The classifiers were trained on MT outputs of all systems that participated in the translation shared
tasks of WMT (years 2008-2014). We also experimented on several sources of sentence level preference
labels, in particular human ranks, METEOR and F-score. We chose the label type that maximizes (if
possible) all automatic scores, including document-level BLEU.

Best combination The optimal systems used:

1. the basic syntax-based feature set for English-German, trained with Support Vector Machines
against METEOR scores.

2. the advanced syntax-based feature set for German-English, trained with Linear Discriminant Anal-
ysis against METEOR scores as well.

Table 1 shows the results of the selection mechanism on a test set used in the QTLeap project that
consists of 1000 German questions and English answers to be translated in the respective other language.3

The table quantifies the contribution of the three systems: Transfer-based, SMT, and the linear Trans-
fer+SMT combination. It is notable that the mechanism in many cases favors transfer-based output,
which is an indication that the deep features are active; one would have expected a bias towards SMT
for a shallower selection mechanism. However, this first hypothesis needs to be confirmed by further
studies.

Transfer SMT Transfer+SMT
de→en questions 45.2% 33.3% 23.8%
en→de answers 42.5 % 16.3% 50.5%

Table 1: Percentages chosen automatically by the selection mechanism from each of the systems. Per-
centages which sum more than 100% indicate ties. When ties occur, there is a preset order of preference
SMT, Transfer, Transfer+SMT.

3 Evaluation

3.1 Automatic Evaluation
Translation results were evaluated using three automatic metrics: BLEU,4 word-level F-score (wordF)
and character-level F-score (charF) using rgbF.py (Popovic, 2012). F-scores are calculated on 1-
grams, 2-grams, 3-grams and 4-grams and then averaged using the arithmetic mean. The final score is
obtained in the usual way and is the harmonic mean of precision and recall. Although BLEU is certainly
the most used automatic metric, F-score has been shown to correlate better with human judgments, espe-
cially if n-grams are averaged using arithmetic instead of geometric mean. We also calculated character
level F-score because the target language is morphologically rich.

As baseline, we used the Moses SMT system described above on its own. Following the evaluation
scenario in the project, we evaluate on the translation of questions for the direction German into English
and on the answers only for the direction from English to German. Table 2 shows the scores for the
baseline (Moses) and contrasts them with the results for System 1.

The results show that System 1 performs comparably to the baseline for translation of questions into
English while the translation of answers into German still poses more problems. In addition to the scores
discussed above, the translation errors were analyzed using Hjerson (Popović, 2011), an automatic tool
for error analysis that provides a categorization into five classes:

• word form (agreement errors, tense, capitalization, part of speech)
3The corpus is available for Basque, Bulgarian, Czech, Dutch, English, German, Portuguese and Spanish and can be down-

loaded from the META-SHARE portal (http://metashare.metanet4u.eu/) under the name “QTLeap Corpus”.
4We used the official BLEU script mteval-v13a.pl --international-tokenization.
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questions de→en answers en→de
BLEU 43.0 41.7

Moses wordF 44.6 42.2
charF 64.9 64.7
BLEU 43.3 33.0

System 1 wordF 43.8 30.2
charF 63.4 57.4

Table 2: BLEU scores, word-level and character-level F-scores for Moses baseline and System 1 trans-
lation outputs.

• word order

• omission

• addition

• mistranslation (general mistranslations, terminology errors, style, punctuation and any changes to
wording)

For each error class, the tool provides raw error counts together with error rates (raw counts normalized
over the total number of words in the translation output). Block error counts and block error rates are
calculated as well, where the block refers to a group of successive words belonging to the same error
class.

The tool is language independent. It requires the translation output and a reference, both in full form
and lemmatized. During the evaluation experiments, it has been observed that there are a number of
capitalization errors (or inconsistencies between the reference and the translation), such as “OpenOffice”
vs. “openOffice”, “VLC” vs “vlc”, etc. Therefore we subsequently calculated capitalization error rates
as difference between word form error rate of true-cased texts and word form error rates of lower-cased
texts that are displayed in the table below. The pure morphological errors are those obtained with lower-
cased texts. In order to arrive at a fair treatment of the prevalent items in the input such as “File > Save
As” or URLs, we have reported block error rates instead of word-level error rates.

The results are presented in Table 3. The error classification results are presented below, in the form
of block error rates (lower is better). The error rates read as follows, taking Moses de→enas an example:
12.2% of the word groups in the translation output are mistranslated in comparison to the human refer-
ence (i.e. these words are different than the reference words). So, if the system has translated 100 words,
ca. 12 (consecutive blocks of) words consist of other words than found in the reference.

questions de→en answers en→de
form 1.2 4.4
order 6.5 5.7

Moses omission 4.4 4.6
addition 2.8 3.7
mistranslation 12.2 11.9
form 1.1 4.0
order 5.6 5.6

System 1 omission 3.4 3.0
addition 3.6 7.4
mistranslation 12.8 13.5

Table 3: Class error rates for Moses and System 1 translation outputs.

When going from Moses to System 1, this automatic analysis indicates that the number of morpho-
logical errors, reordering errors and omissions goes down slightly while the number of mistranslations
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(lexical errors) goes up. The most striking difference is the increase in additions when translating into
German which almost doubles. The reason for this might be that deeper systems produce structurally
different translations that do not match the reference translations. This needs to be analysed in more
detail.

3.2 User Evaluation
Finally, we also evaluated the performance of System 1 compared to the Moses baseline in a task-based
user evaluation performed by volunteers that will be published in this volume (Del Gaudio et al.). Ex-
plained briefly, users were presented a technical question (in German) in a web interface, a German
reference answer and answers translated from English by Moses and System 1 in random order. They
had to indicate which MT answer is better or if both are the same given these options (where A and B
are the two systems, respectively):

i A is a better answer than B

ii B is a better answer than A

iii A and B are equally good answers

iv A and B are equally bad answers

100 question-answer pairs were judged by three volunteers. If we lump ties (i.e., iii and iv) together,
the central (averaged) results of the user evaluation are:

• System 1 has been judged better than Moses in 17.3% of cases (i)

• System 1 has been judged better or same as Moses in 75.5 % of cases (i+iii+iv)

Given that, for translation into German, the BLEU score of System 1 is more than 8 points worse than
that of Moses, further detailed investigation is needed to interpret these results.

4 Summary and outlook

In this paper, we’ve described a first experimental systems that combines deep and shallow MT compo-
nents in different hybrid combinations. The goal is to explore various ways of using “deeper” informa-
tion for translation between English and German. Evaluation has shown that the hybrid system performs
comparably to an SMT baseline for some tasks, yet shows worse performance on others. A small user
evaluation has shown promising results. In the future, various experiments and improvements are pos-
sible and foreseen, starting from improving the transfer-based system (handling of lexical items such as
terminology, MWEs, untranslatables, and robustness of parsing), the serial combination (e.g., improved
disambiguation), and moving up to more detailed analysis and testing and improvement of the selection
mechanism (e.g., integrating more linguistic information from external parsing).
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Maja Popović. 2011. Hjerson: An Open Source Tool for Automatic Error Classification of Machine Translation
Output. The Prague Bulletin of Mathematical Linguistics, (96):59–68, October.

Maja Popovic. 2012. rgbf: An open source tool for n-gram based automatic evaluation of machine translation
output. The Prague Bulletin of Mathematical Linguistics, 98:99–108, 10.
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Abstract

Compounding is a highly productive word-formation process in some languages that is often
problematic for natural language processing applications. In this paper, we investigate whether
distributional semantics in the form of word embeddings can enable a deeper, i.e., more
knowledge-rich, processing of compounds than the standard string-based methods. We present
an unsupervised approach that exploits regularities in the semantic vector space (based on analo-
gies such as “bookshop is to shop as bookshelf is to shelf”) to produce compound analyses
of high quality. A subsequent compound splitting algorithm based on these analyses is highly
effective, particularly for ambiguous compounds. German to English machine translation exper-
iments show that this semantic analogy-based compound splitter leads to better translations than
a commonly used frequency-based method.

1 Introduction

In languages such as German, compound words are a frequent occurrence leading to difficulties for
natural language processing applications, and in particular machine translation. Several methods for
dealing with this issue—from shallow count-based methods to deeper but more complex neural network-
based processing methods—have been proposed. The recent surge in practical models for distributional
semantics has enabled a multitude of practical applications in many areas, most recently in morphological
analysis (Soricut and Och, 2015). In this paper, we investigate whether similar methods can be utilized to
perform deeper, i.e. more knowledge-rich, processing of compounds. A great asset of word embeddings
are the regularities that their multi-dimensional vector space exhibits. Mikolov et al. (2013) showed that
regularities such as “king is to man what queen is to woman” can be expressed and exploited in the form
of basic linear algebra operations on the vectors produced by their method. This often-cited example can
be expressed as follows: v(king)− v(man) + v(woman) ≈ v(queen), where v(.) maps a word into its
word embedding in vector space.

In a very recent approach, Soricut and Och (2015) exploit these regularities for unsupervised mor-
phology induction. Their method induces vector representations for basic morphological transforma-
tions in a fully unsupervised manner. String prefix and suffix replacement rules are induced directly
from the data based on the idea that morphological processes can be modeled on the basis of prototype
transformations, i.e. vectors that are good examples of a morphological process are applied to a word
vector to retrieve its inflected form. A simple example of this idea is ↑dcars = v(cars) − v(car) and
v(dogs) ≈ v(dog) + ↑dcars, which expresses the assumption that the word car is to cars what dog is to
dogs. The direction vector ↑dcars represents the process of adding the plural morpheme -s to a noun.

While this intuition works well for frequently occurring inflectional morphology, it is not clear whether
it extends to more semantically motivated derivational processes such as compounding. We study this
question in the present paper. Our experiments are based on the German language, in which compound-
ing is a highly productive phenomenon allowing for a potentially infinite number of combinations of
words into compounds. This fact, coupled with the issue that many compounds are observed infre-
quently in data, leads to a data sparsity problem that hinders the processing of such languages. Our

This work is licenced under a Creative Commons Attribution 4.0 International License.
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contributions are as follows: After reviewing related work (Section 2), we study whether the regularities
exhibited by the vector space also apply to compounds (Section 3). We examine the relationship between
the components within compounds, as illustrated by the analogical relationship “Hauptziel is to Ziel what
Hauptader is to Ader.”1 By leveraging this analogy we can then analyze the novel compound Haupt-
mann (captain) by searching for known string prefixes (e.g. Haupt-) and testing whether the resulting
split compound (Haupt|mann) has a similar relation between its components (haupt, mann) as the proto-
typical example (Haupt|ziel). We induce the compound components and their prototypes and apply them
in a greedy compound splitting algorithm (Section 4), which we evaluate on a gold standard compound
splitting task (Section 4.3) and as a preprocessing step in a machine translation setup (Section 5).

2 Related work

Our methodology follows from recent work on morphology induction (Soricut and Och, 2015), which
combines string edits with distributional semantics to split words into morphemes. In this model, mor-
phemes are represented as string edits plus vectors, and are linked into derivation graphs. The authors
consider prefix and suffix morphemes up to six characters in length; in contrast, our approach to noun
compound splitting only considers components at least four characters long.

2.1 Splitting compounds for SMT

Dealing with word compounding in statistical machine translation (SMT) is essential to mitigate the
sparse data problems that productive word generation causes. There are several issues that need to
be addressed: splitting compound words into their correct components (i.e. disambiguating between
split points), deciding whether to split a compound word at all, and, if translating into a compounding
language, merging components into a compound word (something we do not address, but see Fraser et al.
(2012) and Cap et al. (2014) for systems that do). Koehn and Knight (2003) address German compound
splitting using a straightforward approach based on component frequency. They also present splitting
approaches based on word alignments and POS tag information, but find that while the more resource-
intensive approaches give better splitting performance (measured by gold-standard segmentations) the
frequency-based method results in the best SMT performance (measured by BLEU). This is attributed
to the fact that phrase-based MT system do not penalize the frequency-based method for over-splitting,
since it can handle components as a phrase.

Nießen and Ney (2000), Popović et al. (2006) and Fritzinger and Fraser (2010) explore using morpho-
logical analyzers for German compound splitting, with mixed results. Since these approaches use heavy
supervision within the morphological analyzer, they are orthogonal to our unsupervised approach.

It may be advantageous to split only compositional compounds, and leave lexicalized compounds
whole. Weller et al. (2014) investigate this question by using distributional similarity to split only words
that pass a certain threshold (i.e., where the parts proposed by the morphological analyzer are similar to
the compound). Contrary to their hypothesis, they find no advantage in terms of SMT, again indicating
that oversplitting is not a problem for phrase-based SMT. The use of distributional similarity as a cue for
splitting is similar to the work presented in this paper. However, the approach we follow in this paper is
fully unsupervised, requiring only word embeddings estimated from a monolingual corpus. Additionally,
it stands out for its simplicity, making it easy to understand and implement.

2.2 Semantic compositionality

Noun compounding has also been treated within the field of distributional semantics. Reddy et al. (2011)
examine English noun compounds and find that distributional co-occurrence can capture the relationship
between compound parts and whole, as judged by humans in terms of ‘literalness’. Schulte im Walde
et al. (2013) replicate this result for German, and also show that simple window-based distributional
vectors outperform syntax-based vectors.

1In vector algebra: ↑dHauptziel = v(Hauptziel) − v(Ziel) and v(Hauptader) ≈ v(Ader) + ↑dHauptziel. The compounds
translate to main goal (Hauptziel) and main artery (Hauptader). As a separate noun, Haupt means head.
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3 Towards deeper processing of compound words

3.1 Unsupervised morphology induction from word embeddings
Our approach is based on the work of Soricut and Och (2015), who exploit regularities in the vector space
to induce morphological transformations. The authors extract morphological transformations in the form
of prefix and suffix replacement rules up to a maximum length of 6 characters. The method requires
an initial candidate set which contains all possible prefix and suffix rules that occur in the monolingual
corpus. For English, the candidate set contains rules such as suffix:ed:ing, which represents the
suffix ed replaced by ing (e.g. walked→walking). This candidate set also contains overgenerated rules
that do not reflect actual morphological transformations; for example prefix:S:ϵ2 in scream→cream.

The goal is to filter the initial candidate set to remove spurious rules while keeping useful rules.
For all word pairs a rule applies to, word embeddings are used to calculate a vector representing
the transformation. For example, the direction vector for the rule suffix:ing:ed based on the
pair (walking, walked) would be ↑dwalking→ed = v(walked) − v(walking). For each rule there are
thus potentially as many direction vectors as word pairs it applies to. A direction vector is consid-
ered to be meaning-preserving if it successfully predicts the affix replacements of other, similar word
pairs. Specifically, each direction vector is applied to the first word in the other pair and an ordered
list of suggested words is produced. For example, the direction vector ↑dwalking→ed can be evalu-
ated against (playing, played) by applying ↑dwalking→ed to playing to produce the predicted word form:
v(played∗) = v(playing) + ↑dwalking→ed. This prediction is then compared against the true word em-
bedding v(played) using a generic evaluation function E(v(played), v(playing) + ↑dwalking→ed).3 If
the evaluation function passes a certain threshold, we say that the direction vector explains the word
pair. Some direction vectors explain many word pairs while others might explain very few. To judge
the explanatory power of a direction vector, a hit rate metric is calculated, expressing the percentage of
applicable word pairs for which the vector makes good predictions.4 Each direction vector has a hit rate
and a set of word pairs that it explains (its evidence set). Apart from their varying explanatory power,
morphological transformation rules are also possibly ambiguous. For example, the rule suffix:ϵ:s
can describe both the pluralization of a noun (one house→two houses) and the 3rd person singular form
of a verb (I find→she finds). Different direction vectors might explain the nouns and verbs separately.

Soricut and Och (2015) retain only the most explanatory vectors by applying a recursive procedure
to find the minimal set of direction vectors explaining most word pairs. We call this set of direction
vectors prototypes, as they represent a prototypical transformation for a rule and other words are formed
in analogy to this particular word pair. Finally, Soricut and Och (2015) show that their prototypes can be
applied successfully in a word similarity task for several languages.

3.2 Compound words and the semantic vector space
According to Lieber and Štekauer (2009), compounds can be classified into several groups based on
whether the semantic head is part of the compound (endocentric compounds; a doghouse is a also a
house) or whether the semantic head is outside of the compound (exocentric compounds; a skinhead
is not a head). In this paper, we focus on endocentric compounds, which are also the most frequent
type in German. Endocentric compounds consist of a modifier and a semantic head. The semantic head
specifies the basic meaning of the word and the modifier restricts this meaning. In German, the modifiers
come before the semantic head; hence, the semantic head is always the last component in the compound.
When applying the idea of modeling morphological processes by semantic analogy to compounds, we
can represent either the semantic head or the modifier of the compound as the transformation (like the
morpheme rules above). Since the head carries the compound’s basic meaning, we add the modifier’s
vector representation to the head word in order to restrict its meaning. We expect the resulting compound
to be in the neighborhood of the head word in the semantic space (e.g., a doghouse is close to house).

2ϵ denotes the empty string.
3We follow Soricut and Och (2015) in defining E as either the cosine distance or the rank (position in the predictions).
4A transformation is considered a hit if the evaluated score is above a certain threshold for each evaluation method E.
5Gloss for modifiers: (a) main, (b) federal, (c) children, (d) finance. Heads: (e) piece of work, (f) ministry, (g) man, (h) city.
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(a) Compounds with the same modifier. (b) Compounds with the same head.

Figure 1: Semantic representations of compounds based on (a) their modifiers and (b) their heads.

We illustrate this intuition by visualizing compound words and their parts in the vector space. All
visualizations are produced by performing principal component analysis (PCA) to reduce the vector
space from 500 to 2 dimensions. Figure 1 presents the visualization of various compounds with either
the same head or the same modifier. For Figure 1a, we plot all German compounds in our dataset
that have one of the modifiers Haupt-,5a Super-, Bundes-,5b Kinder-5c or Finanz-.5d Figure 1b, on the
other hand, shows a plot for all German compounds that have one of the heads -arbeit,5e -ministerium,5f

-mann5g or -stadt.5h Hence, the two plots illustrate the difference between learning vector representations
for compound modifiers or heads. Words with the same modifier do not necessarily appear in close
proximity in the embedding space. This is particularly true for modifiers that can be applied liberally
to many head words, such as Super- or Kinder-.5c On the other hand, compounds with the same head
are close in the embedding space. This observation is crucial to our method, as we aim to find direction
vectors that generalize to as many word pairs as possible.

4 Compound induction from word embeddings

4.1 Compound extraction

Candidate extraction We compile an initial set of modifier candidates by extracting all possible pre-
fixes with a minimum length of 4 characters.6 We retain a modifier as a candidate if both the modifier
and the rest of the word, i.e. the potential head of the compound, occur in the vocabulary. The initial
candidate set contains 281K modifiers, which are reduced to 165K candidates by removing the modifiers
occurring in only one word. The length of the average support set (i.e., the set of all compounds the
modifier applies to) is 13.5 words. Table 1a shows the ten candidate modifiers with the biggest support
sets. At this stage, the candidate set contains any modifier-head split that can be observed in the data, in-
cluding candidates that do not reflect real compound splits.7 Compound splits are not applied recursively
here, as we assume that internal splits can be learned from the occurrences of the heads as individual
words.8

Prototype extraction To find the prototype vectors that generalize best over the most words in the
support set, we apply the same recursive algorithm as Soricut and Och (2015). The algorithm initially
computes the direction vector for each (modifier, compound) pair in the support set by subtracting the
embedding of the head from the embedding of the compound, e.g. ↑ddoghouse = v(doghouse)−v(house).
Each direction vector is then evaluated by applying it to all the word pairs in the support set, for example
v(owner) + ↑ddoghouse

?
= v(dogowner) for the word pair dog|owner. If the resulting vector is close

(according to E) to the vector of the actual target compound, we add it to the evidence set of the vector.
The direction vector with the largest evidence set is selected as a prototype. All pairs this prototype
explains are then removed and the algorithm is applied recursively until no direction vector explains

6For efficient computation, we use a directed acyclic word graph: https://pypi.python.org/pypi/pyDAWG.
7For example, as Para (a river) and dies (this) occur in the data, an incorrect candidate split occurs for Para|dies (paradise).
8For example, for Haupt|bahn|hof (main train station), we observe both Haupt|bahnhof and Bahn|hof.
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Modifier Support Modifier Support

1. Land- 8387 6. Landes- 5189
2. Kinder- 6249 7. Schul- 5011
3. Haupt- 5855 8. Jugend- 4855
4. Lande- 5637 9. Ober- 4799
5. Stadt- 5327 10. Groß- 4656

(a) Modifiers by size of support set.

Prototype Evidence words

v-Zeiger -Bewegung -Klicks -Klick -Tasten
-Zeiger

v-Stämme -Mutanten -Gene -Hirnen -Stämme
v-Kostüm -Knopf -Hirn -Hirns -Kostüm
v-Steuerung -Ersatz -Bedienung -Steuerung

(b) Prototypes and evidence words for Maus-.9

Table 1: Overall most common modifiers and the prototypes extracted for the modifier Maus-.

at least tevd compounds. As the evaluation function E we use the rank of the correct word in the list
of predictions and experiment with tevd = {10, 6, 4}. Lastly, for efficient computation we sample the
evidence set down to a maximum number of 500 words.

4.2 Implementation considerations

We now turn to implementation considerations and perform an intrinsic evaluation of the prototypes.

Word embeddings We use the German data of the News Crawl Corpora (2007-2014).10 The text
is truecased and tokenized, and all punctuation characters are removed, resulting in approximately 2B
tokens and a vocabulary size of 3M. We use word2vec to estimate the word embeddings.11 We train
500-dimensional word embeddings using the skip-gram model, a window size of 5 and a minimum word
frequency threshold of 2. The latter ensures that we find word embeddings for all words that occur at
least twice in the corpus, which is useful as long compounds may occur only very few times.

Treatment of interfixes (Fugenelemente) For mostly phonetic reasons, German allows the insertion
of a limited set of characters between the modifier and the head. As learning this set is not the aim of our
work, we simply allow the fixed set of interfixes {-s-, -es-} to occur. For any combination of interfix and
casing of the head word, we add the tuple of the two to the support set of the corresponding modifier.

What do the prototypes encode? An inspection of the prototypes for each modifier shows that the
differences between them are not always clear cut. Often, however, each prototype expresses one specific
sense of the modifier. Table 1b illustrates this on the example of the German modifier Maus- (Engl.
mouse), which can refer to both the animal and the computer device. Although there are more than two
prototype vectors, it is interesting to observe that the two word senses are almost fully separated.

Calculating the hit rate To evaluate the quality of the prototypes, we use the hit rate metric defined
by Soricut and Och (2015). A direction vector’s hit rate is the percentage of relevant word pairs that
can be explained by the vector. A prediction is explainable if the actual target word is among the top
trank predictions and, optionally, if the cosine similarity between the two is at least tsim.

The implementation of this evaluation function E requires the calculation of the cosine distance be-
tween a newly created vector and the word vector of every item in the vocabulary. Since this score is
calculated N times for every of the N word pairs (i.e., N2 times), this is a computationally extremely
expensive process. For more efficient computation, we use an approximate k-nearest neighbor search
method.12 While this is not a lossless search method, it offers an adjustable trade-off between the model’s
prediction accuracy and running time.13 For a standard setting (tevd = 6, trank = 80), the hit rates using
approximate and exact rank are 85.9% and 60.9% respectively. This shows that the hit rates obtained
with the approximate method are more optimistic, which will affect how the prototype vectors are ex-
tracted. Additionally, restricting both rank and similarity (trank = 80, tsim ≥ 0.5) leads to lower hit rates
(25.9% for approximate and 15% for exact rank).

9Words are related to mouse pointer (Zeiger), biological genus (Stämme), mouse costume (Kostüm) and control (Steuerung).
10http://www.statmt.org/wmt15/translation-task.html
11https://code.google.com/p/word2vec/
12https://github.com/spotify/annoy
13With this fast approx. search method the total training time would be just below 7 days if run on a single 16 core machine.
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(a) Mean hit rate (b) Mean cosine sim. (c) % with prototypes (d) Mean # of prototypes

trank = 80 100 80 100 80 100 80 100

tevd = 4 26% 22% 0.39 0.39 8.93% 9.52% 4.20 4.16
tevd = 6 31% 26% 0.43 0.43 5.13% 5.47% 3.29 3.30
tevd = 10 36% 31% 0.45 0.45 2.91% 3.14% 2.25 2.29

Table 2: Overview of the influence of the hyperparameters on prototype extraction.

Influence of thresholds Table 2 compares the parameters of our model based on (a) the mean hit rate,
(b) cosine similarity, (c) the percentage of candidate modifiers with at least one prototype and (d) the
mean number of prototypes per rule. Higher values of tevd (minimum evidence set size) lead to better
quality in terms of hit rate and cosine similarity as prototypes have to be able to cover a larger number
of word pairs in order to be retained. The rank threshold trank also behaves as expected. Reducing trank to
80 means that the predicted vectors are of higher quality as they need to be closer to the true compound
embeddings. Tables (c) and (d) illustrate that the more restrictive parameter settings reduce the amount
of modifiers for which prototypes can be extracted. From a total of 165399 candidate prefixes, only 3%-
10% are retained in the end for our settings. Similarly, the average number of prototypes per modifier also
decreases with more restrictive settings. Interestingly, however, for the most restrictive setting (tevd = 10,
trank = 80), this number is still a relatively high 2 prototypes per vector.

4.3 Compound splitting
To obtain a clearer view of the quality of the extracted compound representations, we apply the prototypes
to a compound splitting task.

Splitting compounds by semantic analogy The extracted compound modifiers and their prototypes
can be employed directly to split a compound into its components. Algorithm 1 presents the greedy
algorithm applied to every word in the text. V is the word embedding vocabulary, M is the set of
extracted modifiers with their prototypes, and PREFIXES(.) is a function returning all string prefixes.

1: procedure DECOMPOUND(word , V , M )
2: modifiers ← {m | p← PREFIXES(word) if p ∈ M }
3: if modifiers = ∅ OR word /∈ V then
4: return word

5: bestModifier ← ∅
6: for modifier ∈ modifiers do
7: head ← word without modifier ▷ e.g. house← doghouse without dog-
8: if head ∈ V then
9: for (headproto ,wordproto) ∈ modifier do

10: Evaluate “word is to head what wordproto is to headproto”
11: ▷ e.g. doghouse is to house what dogowner is to owner
12: Update bestModifier if this is the best match so far
13: return word split based on bestModifier

Algorithm 1: Greedy compound splitting algorithm.
Compounds may only be split if (a) the full compound word is in the vocabulary V , i.e. it has been

observed at least twice in the training data (Line 3), (b) it has a string prefix in the modifier set and
this modifier has at least one prototype (Line 3), (c) the potential head word resulting from splitting
the compound based on the modifier is also in our vocabulary (Line 8). The last case, namely that the
compound head candidate is not in the vocabulary can occur for two reasons: either this potential head is a
valid word that has not been observed frequently enough or, the more common reason, the substring is not
a valid word in the language.14 The algorithm’s coverage can be increased by backing off to a frequency-
based method if conditions (a) or (c) are violated. The core of the algorithm is the evaluation of meaning

14For example, when applying the algorithm to Herrengarderobe (male cloak room), two possible prefixes apply: Herr and
Herren. In the first case, the remaining slice is engarderobe, which is not a valid word and thus the candidate prefix is discarded.
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(a) Evaluation of highly ambiguous compounds.

This work Moses (partial) Moses (full)

Scenario Acc. Cov. Acc. Cov. Acc. Cov.

Full test set 27.43 58.45 18.04 31.41 6.57 13.75

2 splits 24.94 56.75 13.13 20.13 1.79 3.11
3 splits 21.10 68.37 8.04 18.35 1.21 2.92
4 splits 22.09 62.11 9.98 15.91 1.19 1.90
5 splits 24.04 69.23 9.62 11.54 0.96 1.92

(b) Evaluation of all compounds and highly ambiguous compounds only.

Table 3: Gold standard evaluation of compound splitting.

preservation in Line 10. This evaluation is performed using the rank-based and cosine similarity-based
evaluation functions. Modifiers that do not pass the thresholds defined for these functions are discarded
as weak splits. To split compounds with more than two components, the algorithm is applied recursively.

General evaluation We use the test set from Henrich and Hinrichs (2011), which contains a list of
54569 compounds annotated with binary splits. As we only consider prefixes with a minimal length of 4
characters, we filter the test set accordingly, leaving 50651 compounds. Moses (Koehn et al., 2007) offers
a compound splitter that splits a word if the geometric average of the frequencies of its components is
higher than the frequency of the compound. We trained two instances of this compound splitter to use as
references: one using the German monolingual dataset used to train the Word2Vec models and a second
using a subset of the previous dataset.15 Unlike our method, the two baseline systems do not consider
the meaning preservation criteria of the compound splitting rules that are applied. Results for the full test
set (accuracy and coverage, i.e. |correct splits|

|compounds| and |compounds split|
|compounds| ) are presented in the first row of Table 3b.

Evaluation of highly ambiguous compounds The strength of our method resides in the capacity to
discriminate good candidate splits from bad ones. By capturing the meaning relation between compounds
and their components, we are able to decide for a given word which splitting rule is the most appropriate.
With this in mind, our approach should stand out in contexts where multiple split points may apply to
a compound. We simulate different ambiguity scenarios based on Henrich and Hinrich’s gold standard
dataset: We extract compounds for which we find 2, 3, 4, and 5 potential split points.16 The resulting
test sets consists of 18571, 1815, 842 and 104 compounds, respectively. For all compound splitting
experiments, we use the prototype vectors extracted with the parameters tevd = 6 and trank = 100.

Table 3b presents accuracy and coverage for the compounds within the different ambiguity scenar-
ios. To better visualize the trends for highly ambiguous compounds, we plot the accuracy and coverage
scores in relation to the ambiguity of the compounds in Table 3a. The analogy-based method outperforms
the frequency-based baselines in both coverage and accuracy. While for the Moses splitter, the cover-
age decreases with increasing ambiguity, the opposite behavior is shown by our approach, as having
more possible splits results in a higher number of direction vectors increasing the likelihood of obtaining
meaning-preserving splits. This experiment shows that the analogy-based compound splitter is advanta-
geous for words that can potentially be explained by several candidate splits.

5 Compound splitting for machine translation

Translation setup We use the Moses decoder (Koehn et al., 2007) to train a phrase-based MT system
on the English–German Common crawl parallel corpus and WMT news test 2010 (tuning). Word align-
ment is performed with Giza++ (Och and Ney, 2003). We use a 3rd order language model estimated
using IRSTLM (Federico et al., 2008), as well as lexicalized reordering. The test data set is WMT news

15Subset: News Crawl 2007-2009 (275M tokens, 2.09M types). Full set: News Crawl 2007-2014 (2B tokens, 3M types).
16Each string prefix which occurs as a separate word produces a potential split point (indicated by .). The potential split

points may not be linguistically motivated and can lead to correct (general|stabs) or incorrect splits (gene .rals .tabs). Examples
include Einkauf .s .wagen, Eis .en .bahn .unternehmen, Wissen .s .chaft .s .park and Gene .ra .l .s .tab .s.
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(a) No comp. splitting (b) OOV only (c) Rare: c(w) < 20 (d) All words

Splits BLEU MTR Splits BLEU MTR Splits BLEU MTR Splits BLEU MTR

Moses splitter 0 17.6 25.5 226 17.6 25.7A 231 17.6 25.7 244 17.9 25.8A

This work 317 17.6 25.8A 744 18.2ABC 26.1ABC 1616 17.7 26.3A

A Stat. sign. against (a) at p < 0.05 B Stat. sign. against Moses splitter at same c(w) at p < 0.05 C Stat. sign. against best Moses splitter (d) at p < 0.05

Table 4: Translation results for various integration methods.

test 2015,17 which contains approx. 2100 de-en sentence pairs and 10000 tokens (with one reference
translation). We compare our method against a baseline translation system with no compound splitter,
and the same system implementing Moses’ default compound splitting tool. The test set contains 2111
out-of-vocabulary word types (natural OOV words), which yields a total of 2765 unknown tokens, con-
sisting mostly of compounds, brand names, and city names. This implies that 22.16% (word types) resp.
7.15% (tokens) of the test corpus are unknown to the baseline system.

Translation experiments To test the analogy-based compound splitter on a realistic setting, we per-
form a standard machine translation task. We translate a German text using a translation baseline system
with no compound handling (a), a translation system integrating the standard Moses compound split-
ter tool trained using the best-performing settings, and a translation system using our analogy-based
compound splitter. We test the following basic methods of integration: Splitting only words that are
OOV to the translation model (b), splitting all words that occur less than 20 times in the training corpus
(c),and applying the compound splitters to every word in the datasets (d). Table 4 shows the results of
these translation experiments. For each experiment, we report BLEU (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), and the number of compound splits performed on the test set. Statistical
significance tests are performed using bootstrap resampling (Koehn, 2004).

Discussion The results show that when applied without restrictions, our method splits a large number
of words and leads to minor improvements. When applied only to rare words the splitter produces statis-
tically significant improvements in both BLEU and METEOR over the best frequency-based compound
splitter. This difference indicates that a better method for deciding which words the splitter should be ap-
plied to could lead to further improvements. Overall, the output of the analogy-based compound splitter
is more beneficial to the machine translation system than the baseline splitter.

6 Conclusion

In this paper, we have studied whether regularities in the semantic word embedding space can be ex-
ploited to model the composition of compound words based on analogy. To approach this question, we
made the following contributions: First, we evaluated whether properties of compounds can be found
in the semantic vector space. We found that this space lends itself to modeling compounds based on
their semantic head. Based on this finding, we discussed how to extract compound transformations and
prototypes following the method of Soricut and Och (2015) and proposed an algorithm for applying
these structures to compound splitting. Our experiments show that the analogy-based compound splitter
outperforms a commonly used compound splitter on a gold standard task. Our novel compound splitter
is particularly adept at splitting highly ambiguous compounds. Finally, we applied the analogy-based
compound splitter in a machine translation task and found that it compares favorably to the commonly
used shallow frequency-based method.

Acknowledgements Joachim Daiber is supported by the EXPERT (EXPloiting Empirical appRoaches
to Translation) Initial Training Network (ITN) of the European Union’s Seventh Framework Programme.
Stella Frank is supported by funding from the European Unions Horizon 2020 research and innovation
programme under grant agreement Nr. 645452.

17http://www.statmt.org/wmt15/translation-task.html
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Abstract

Source-side reordering has recently seen a surge in popularity in machine translation research,
often providing enormous reductions in translation time and showing good empirical results in
translation quality. For many language pairs, however—especially for translation into morpho-
logically rich languages—the assumptions of these models may be too crude. But while such
language pairs call for more complex models, these could increase the search space to an extent
that would diminish their benefits. In this paper, we examine the question whether purely syntax-
oriented adaptation models (i.e., models only considering word order) can be used as a means to
delimit the search space for more complex morphosyntactic models. We propose a model based
on a popular preordering algorithm (Lerner and Petrov, 2013). This novel preordering model is
able to produce both n-best word order predictions as well as distributions over possible word
order choices in the form of a lattice and is therefore a good fit for use by richer models taking
into account aspects of both syntax and morphology. We show that the integration of non-local
language model features can be beneficial for the model’s preordering quality and evaluate the
space of potential word order choices the model produces.

1 Introduction

A significant amount of research in machine translation has recently focused on methods for effectively
restricting the often prohibitively large search space of statistical machine translation systems. One pop-
ular method providing a crude but theoretically motivated restriction of this space is preordering (also
pre-reordering or source-side reordering). In preordering, the source sentence is rearranged to reflect the
assumed word order in the target language. This provides an effective method for handling word and
phrase movements caused by long-range dependencies, which usually enlarge the search space signifi-
cantly. After preordering, decoding can be performed in fully monotone or close to monotone fashion,
making the method applicable to a wide range of translation systems, including ngram-based translation
(Marino et al., 2006) and recent approaches to neural machine translation (Bahdanau et al., 2015, inter
alia). While systems using this approach have in the past not always been able to show improvements
in translation quality over systems using more exhaustive search algorithms or specialized reordering
models, preordering provides several benefits: Apart from facilitating the integration of additional infor-
mation sources such as paraphrases, preordering approaches provide significant improvements in runtime
performance. Jehl et al. (2014), for example, report an 80-fold speed improvement using their preorder-
ing system compared to a standard system producing translations of the same quality.

Preordering systems can be compared along several dimensions. The main distinctions are whether the
reordering rules are specified manually (Collins et al., 2005) or automatically learnt from data (Lerner
and Petrov, 2013; Khalilov and Sima’an, 2012). Furthermore, approaches differ in the types of syntac-
tic structures they assume. Systems may use either source or target syntax (Lerner and Petrov, 2013;
Khalilov and Sima’an, 2012), both source and target syntax or no syntax at all (e.g. DeNero and Uszko-
reit (2011)). In this paper, we focus on approaches using only source-side syntax. Dependency grammar
offers a flexible and light-weight syntactic framework that can cover a large number of languages and

This work is licenced under a Creative Commons Attribution 4.0 International License.
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Figure 1: Translation of an English prepositional phrase as a genitive noun phrase in German.

provides suitable syntactic representations for reordering. Hence, we follow Lerner and Petrov (2013), in
using dependency trees for the representation of source syntax. After reviewing related work in Section 2,
we propose a model and general framework for producing the space of potential word order choices in
Section 3. Since the possible reorderings in source-syntax approaches to preordering are often restricted
by the source trees, the annotation conventions of the training treebank and hence the form of the pre-
dicted dependency trees play a significant role for the preordering system. We will briefly describe the
treebank format and other details of the experimental setup in Section 4.1. Section 4.2 and 4.3 present
results of the experimental evaluation and a discussion of these results. We conclude in Section 5.

2 Related work

Various approaches to preordering have been explored in the literature. A brief overview of the work
establishing the background for the presented method will be given in this section.

2.1 Gold experiments
To investigate the upper bounds of preordering in terms of quality and integration with translation sys-
tems, several researchers have performed studies with gold reorderings. Khalilov and Sima’an (2012), as
well as Herrmann et al. (2013) compare various systems and provide oracle scores for syntax-based pre-
ordering models. These studies show that perfect gold reorderings estimated via automatic alignments
enable translation systems enormous jumps in translation quality and further provide improvements in
the size of the downstream translation models. Additionally, it was found that properties of the source
syntax representation, such as how deeply phrase structure trees are nested, can significantly hamper the
quality of these approaches.

2.2 Preordering with source syntax
Jehl et al. (2014) learn order decisions for sibling nodes of the source-side parse tree and explore the
space of possible permutations using a depth-first branch-and-bound search. In later work, this model
is further improved by replacing the logistic regression classifier with a feed-forward neural network
(de Gispert et al., 2015). This modification shows both improved empirical results and eliminates the
need for feature engineering. Similarly, Lerner and Petrov (2013) learn classifiers to permute the tree
nodes of a dependency tree. The main difference here is that the permutation of up to 6 tree nodes
is predicted directly instead of predicting the orientation of individual node pairs. Figure 1 shows an
example dependency tree that can serve as input to such systems.

2.3 Preordering without source syntax
Tromble and Eisner (2009) apply machine learning techniques to learn ITG-like orientations (straight or
inverted order) for each pair of input words in the sentence. The best reordering is then determined using
a standardO(n3) chart parsing algorithm. Generally, systems not relying on syntactic information fill the
full spectrum from simple to advanced approaches. A simple approach is the application of multiple MT
systems (Costa-jussà and Fonollosa, 2006): one MT system learns the preordering (i.e. the translation
of the source sentence to its preordered form, s → s′) and the second MT system learns to translate the
preordered form into the target sentence (s′ → t). More advanced approaches include the automatic
induction of parse trees from aligned data (DeNero and Uszkoreit, 2011).
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3 Generating the space of potential word order choices

3.1 Going beyond first-best predictions

Our work is related to the work of Lerner and Petrov (2013), in which feature-rich discriminative clas-
sifiers are trained to directly predict the target-side word order based on source-side dependency trees.
This is done by traversing the dependency tree in a top-down fashion and predicting the target order for
each tree family (a family consists of a syntactic head and its children). To address sparsity issues, two
models are introduced. For each subtree, the 1-step model directly predicts the target order of the child
nodes. Unlike other preordering models, which often restrict the space of possible permutations, e.g. by
the permutations permissible under the ITG constraint (Wu, 1997), the space of possible permutations
for each subtree is restricted to the k permutations most commonly observed in the data. The blow-up in
permutation space with growing numbers of children is addressed by a second model, the 2-step model.
This model decreases the number of nodes involved in any single word order decision. A binary classifier
(pivot classifier, in analogy to quicksort) first predicts whether a child node should occur to the left or to
the right of the head of the subtree. The order of the set of nodes to the left and to the right of the head is
then directly predicted as in the 1-step model. In total, the 2-step approach requires one pivot classifier,
5 classifiers for the children on the left and 5 classifiers for the children on the right.

The cascade-of-classifiers approach used by this method (i.e. first predict the pivot, then predict the left
and right orders, then recurse) exhibits the problematic characteristic that classification errors occurring
near the top of the tree will propagate disproportionately to later decisions. The goal of the present
work is to enable the preordering model to pass its decisions to a more complex morphosyntactic model.
Hence, this error propagation issue may become problematic. In order to address this problem, we extract
n-best word order predictions from the classifier decisions. A distribution over the n-best preordered
sentences can then be passed to the subsequent model or directly to a machine translation decoder either
as a list of options or in the form of a lattice. Similar to the practice of n-best list extraction in MT
decoders such as Moses, the preordering problem likewise allows the extraction of n-best preordering
options either with or without additional integration of non-local features such as a language model.

General model We define a model over the possible orders of the tokens in the source sentence. Given
a source sentence s and a corresponding dependency tree τ , π is the permutation of source tokens and
πh is a local permutation of a single tree family under head h. The score of a source word order s′ is:

P (s′ | s, τ) =
∏
h∈τ

PT (πh | s, h, τ) (1)

PT (π | s, h, τ) = P (ψ | s, h, τ)PL(πL | s, h, τ)PR(πR | s, h, τ)

For each dependency tree family, the generative story of this model is as follows: First, decide on the
positions of the child nodes relative to the head, i.e. P (ψ | s, h, τ). Then, decide the order of the nodes
on the left, PL(πL | s, h, τ), and on the right, PR(πR | s, h, τ).

Preordering algorithm Based on this model, we introduce the following preordering algorithm. For
each source dependency tree family with head h, we extract the best kT local word order predictions
using the function PREORDERFAMILY in Algorithm 1. Ψ(cs) is the set of possible choices when dis-
tributing nodes using the pivot classifier. Given a set of child nodes cs, Π(cs) is the set of their possible
permutations. The best permutations for the left and right side are extracted by the following methods:

π̂L ← arg bestk
πL∈Π(csL)

PL(πL | s, h, τ) (2) π̂R ← arg bestk
πR∈Π(csR)

PR(πR | s, h, τ) (3)

Since this model is implemented using multi-class classifiers, finding the best kO permutations for the
nodes to the left and right of the head, i.e. Equation 2 and 3, only require one multi-class classification.
Following Lerner and Petrov (2013), we restrict the set of allowed permutations Π(cs) to the 20 most
common permutations observed in the training data. Given a pivot decision ψ̂ (which children go left and
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which go right of the head?), LEFT(ψ̂) returns the children to the left and RIGHT(ψ̂) returns the children
to the right of the head. The function PERMUTATION(ψ̂, π̂L, π̂R) returns the word order permutation
resulting from the pivot decision, the left children order and the right children order.

Algorithm 1 n-best preordering of a source tree family
procedure PREORDERFAMILY(h, τ )

cs← CHILDREN(h, τ)
topk ← PRIORITYQUEUE()

for ψ̂ ← arg bestk
ψ∈Ψ(cs)

P (ψ | s, h, τ) do ▷ Pivot decisions

csL ← LEFT(ψ̂)
csR ← RIGHT(ψ̂)
for π̂L ← arg bestk

πL∈Π(csL)
PL(πL | s, h, τ) do ▷ Left order decisions

for π̂R ← arg bestk
πR∈Π(csR)

PR(πR | s, h, τ) do ▷ Right order decisions

p← PERMUTATION(ψ̂, π̂L, π̂R)
TOPK.PUSH(P (ψ̂ | s, h, τ)× PL(π̂L | s, h, τ)× PR(π̂R | s, h, τ), p)

return TOPK.TAKE(kT )

For n children, there are S(n, 2) possible pivot decisions, where S(n, k) is the Stirling number of the
second kind. Since this number grows exponentially with n, it would be extremely expensive, if not
infeasible, to consider all possible pivot decisions. Hence, similar to the extraction of π̂L and π̂R, the
extraction of the possible choices for the pivot decision, i.e. ψ̂, is implemented as k-best Viterbi extraction
from a conditional random field classifier: ψ̂ ← arg bestk

ψ∈Ψ(cs)
P (ψ | s, h, τ).

This approximation means that only the best kP pivot decisions are considered. Hence, for each
of the maximally kP possible ways to distribute the child nodes when taking the pivot decision, two
classifications have to be performed: one for the nodes on the left and one for the nodes on the right.
The extraction of n-best word order predictions therefore requires 2× kP classifications for each source-
side tree family. With the best kT local permutations for each source tree family, we can then extract
n-best permutations for the whole tree. If all order decisions in this model are local to their tree family,
extracting the best permutations for the whole sentence is straight-forward. In the next section, we will
discuss how this assumption changes with the introduction of non-local features.

3.2 Integration of non-local features

While the basic model introduced by Lerner and Petrov (2013) shows promising empirical performance,
it also makes fairly strong independence assumptions. The generative process assumes that the local
order decisions occur only within individual tree families defined by the dependency tree. Hence, a local
word order decision at any point in the dependency tree is fully independent from any other decision in
the tree. For languages such as German, this independence assumption can be problematic because the
position of a constituent in the sentence bracket influences the internal word order (Müller, 2015). For
example, certain positions allow for scrambling, i.e. more or less free movement of some constituents
within a specific area of the sentence. Previous work on preordering (Khalilov and Sima’an, 2012) has
shown that the integration of even a weak trigram language model estimated over the gold word order
predictions s′ can improve preordering performance. Since we use projective dependency trees, which
are internally converted to a flat phrase structure representation, the model can be expressed in the form
of a weighted context-free grammar in which labels encode the order of the constituents. One method
to weaken the independence assumptions of this grammar is the direct integration of a language model
(LM). This idea is reminiscent of the integration of the finite state language model with the synchronous
context-free grammar used in hierarchical phrase-based machine translation (Chiang, 2007).
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Hence, instead of searching for ŝ′ = argmaxs′ P (s
′ | s, τ), the search will now include the ngram

language model, such that: ŝ′ = argmaxs′ P (s
′ | s, τ)PLM (s′). This integration can be performed in

three ways: the simplest form of integration, which is fast but allows for significant search errors, is to
generate an n-best list of word order predictions using the −LM preordering model (i.e., without the
LM or other non-local features) and re-score this list using the language model. On the other end of the
spectrum, the language model can be integrated by performing a full intersection between the preordering
CFG and the finite state automaton that defines the language model (Bar-Hillel et al., 1961). While this
would allow for exact search, this method is found to be too slow in practice. A compromise between
these two extremes is cube pruning (Chiang, 2007), in which the inner LM cost as well as the left and right
LM states are stored on each node, so that it is possible to perform bottom-up dynamic programming to
efficiently determine the total LM cost by combining the intermediate node costs. Keeping the properties
required for performing cube pruning, we use the more general log-linear model formulation (Och and
Ney, 2002) by defining the search for the best word order prediction ŝ′ as follows:

ŝ′ = argmax
s′

P (s′ | s, τ)λRMPLM (s)λLM ... = argmax
s′

∏
i

ϕi(s
′)λi = argmax

s′

∑
i

λi log ϕi(s
′)

On every source tree node, cube pruning is performed with a beam size of k+LM word order predictions.
The best k−LM preordering labels are considered for expansion. Additionally, we prune all preordering
labels for which the language model cost is higher than the language model cost of the original source tree
order (i.e., performing no reordering). To make individual configurations comparable, we follow Chiang
(2007) in adding a heuristic cost that approximates the cost of the first m − 1 words: logPLM(e1...el)
where l = min{m − 1, |e|} for an m-gram language model. In our case, e is the vector of preordered
source-side words at a specific tree node. We add the heuristic cost of all relevant feature functions ϕi
for the set of language model feature functions ΦLM as

∑
i∈ΦLM

λi log ϕi(e1...el).

Feature functions
The log-linear model formulation makes the addition of arbitrary local and non-local features possible;
i.e., any suitable feature function can be added to this model. We use the following initial features:

Lexicalized preordering model The most important feature is the lexicalized preordering model
P (s′ | s, τ) introduced in Section 3.1. It is lexicalized since it makes decisions based on the source
words while other models might make predictions based on non-lexical information (e.g., POS tags).

Language models To weaken the strong independence assumptions of this model, we add a generic
ngram language model over the gold word order predictions s′, a language model over part-of-speech
tags and a class-based language model.

Unlexicalized preordering model As the lexicalized preordering model might run into sparsity issues,
we add as a further feature function a weaker model PW (π | h, cs), where cs is the set of children
represented by their dependency label and by whether they have children, and h is the head represented
by its POS tag. The model is estimated via maximum likelihood estimation from the oracle word order
choices restricted by the source-side dependency trees (oracle tree reorderings). These tree-restricted
oracle word order choices differ from the free oracle word order choices in that words are not allowed
to move out of the constituents of the dependency tree. For example, in the English sentence “the house
of the green man” in Figure 1, the word “green” would always be on the same side of “house” as “man”
since as a dependent of “man”, it will always move with “man” in relation to its grandparent “house”.

3.3 Applicability of the model
While we focused on one particular n-best preordering method in Section 3.1, the general model intro-
duced in Section 3.2 is applicable to any preordering model over source trees for which n-best candidates
can be extracted. For example, the pairwise neural network-based method by de Gispert et al. (2015) can
be used either by extracting n-best decisions directly from the graph or, more efficiently, by applying the
CKY algorithm on the space of permutations permissible under ITG (Tromble and Eisner, 2009).
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4 Experiments

We perform various experiments to evaluate these ideas. Before providing experimental results and eval-
uation, we will describe selected details of the preordering system and the experimental setup. Further,
we highlight assumptions and decisions that were necessary for training the system.

4.1 Implementation and experimental setup

Source-side syntax For preordering to work reliably, the dependency representation should fulfill cer-
tain requirements: Flatter trees increase the space of covered permutations while the information in the
left-out segmentations may be recoverable by the preordering model. Additionally, whenever reasonable,
content-bearing elements should be treated as the head.1 We use a customized version of the treebank
collection and transformation tool HamleDT (Zeman et al., 2012) for this purpose.

Model training For training the model, we mostly follow the process from Lerner and Petrov (2013).
Training instances are extracted from the automatically aligned training data based on a small set of
manually defined rules. To ensure high quality training data, only subtrees that are fully connected by
high confidence alignments are considered. The preordering classifiers are trained on the intersection of
high-confidence word alignments and the first-best output of the TurboParser dependency parser (Martins
et al., 2009). The alignments are created using the Berkeley aligner2 with the hard intersection setting.
This setting ensures that only high confidence alignment links are produced. While this will lead to
a reduction in the number of alignment links, it creates more reliable training data for the preordering
model. The dependency parser is trained to produce pseudo-projective dependency trees (Nivre and
Nilsson, 2005).3 Appropriate values for k+LM and k−LM are determined using grid search. We found
that beam sizes above k+LM = 15 and k−LM = 5 did not improve first-best preordering quality.

Model tuning The set of weights λ for the combination of the preordering model and the language
models are optimized for a selected target metric on heldout data. The straight-forward choice for this
metric is Kendall τ , which indicates the similarity of the word order of both sides. The Kendall τ distance
dτ (π, σ) between two permutations π and σ is defined as (Birch et al., 2010):

dτ (π, σ) = 1−
∑n

i=1

∑n
j=1 zij

Z

where zij =

{
1 if π(i) < π(j) and σ(i) > σ(j)

0 otherwise
and Z =

(n2 − n)
2

The metric indicates the ratio of pairwise order differences between two permutations. An alternative to
this ordering measure is the simulation of a full machine translation system, as first proposed by Tromble
and Eisner (2009). To ensure that the changes in word order do not affect this mock translation system
and to limit its complexity, the system is limited to phrases of length 1.

Tuning is performed using the tuning as ranking (PRO) framework (Hopkins and May, 2011). At
tuning time, k−LM and k+LM are set to 15 and 100 respectively. PRO requires the unweighted values
of all feature functions; hence, during tuning only, we remember the unweighted feature values on each
node and sum over intermediate values to arrive at the overall scores. Training instances for ranking are
sampled from the best 100 word order predictions for each sentence in the tuning set. We perform 6
iterations and interpolate the weights of each iteration with the weights from the previous iteration by
the recommended factor of Ψ = 0.1.

Translation setup To evaluate the model in a full translation setup, we follow the standard approach to
preordering. Given the source side s and the target side t of the parallel training corpus, we first perform

1For example, auxiliary verbs should modify the finite verb and prepositions depend on the head of the noun phrase.
2https://code.google.com/p/berkeleyaligner/
3Projectivization was performed using MaltParser version 1.8; http://www.maltparser.org/.
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Model Kendall τ BLEU (ŝ′ → s′)

First-best −LM 92.16 68.1
First-best +LM (cube pruned) 92.27 68.7

Best out of n-best +LM (cube pruned, n = 5) 93.33 –
Best out of n-best +LM (cube pruned, n = 10) 93.72 –

Table 1: LM integration tested on first-best prediction (en–de, scores from predicted to gold-ordered en).

word alignment using MGIZA++ (Gao and Vogel, 2008). We perform 6 iterations of IBM model 1
training followed by 6 iterations of HMM word alignment and 3 iterations each of IBM model 3 and 4.

After initial training, the preordering model is applied to s, obtaining the preordered corpus ŝ′. Since
the word order differences between ŝ′ and t should be less acute, less computationally expensive word
alignment tools are sufficient to re-align the corpus. We align ŝ′ and t using fast align,4 an effi-
cient re-parameterization of IBM model 2 (Dyer et al., 2013). Improvements in word order can lead
to improvements in alignments and hence the training and word alignment process can be performed
repeatedly. Lerner and Petrov (2013) report no significant improvements after the initial re-alignment.
Accordingly, we do not iterate the training process either. The underlying translation system is Moses
(Koehn et al., 2007) using the standard feature setup and using only the distortion-based reordering
model. Tuning is performed using MERT (Och, 2003). The system is trained on the full parallel sections
of the Europarl corpus (Koehn, 2005) and tuned and tested on the WMT 2009 and WMT 2010 newstest
sets respectively. The language model is a 5-gram ngram model trained on the target side of Europarl
and the news commentary corpus.5

4.2 Testing the effectiveness of non-local features
While our preliminary results showed that the integration of a language model might be helpful, we now
consider this question in more detail. To test whether the language model features are beneficial to the
reordering model, we compare two versions of the same system: first-best −LM is the reordering system
without a language model and first-best +LM is the same system with the language model integrated
via cube pruning. Results are presented in Table 1. While Kendall τ gives an impression of the overall
word order quality, the BLEU metric gives an indication of the quality of reorderings within the more
restricted space of the length of the ngrams used in the metric. The results show that the integration of
the language model helps the system improve the quality of the reorderings. We expected the language
model to provide benefits mostly on the borders between tree nodes. The BLEU score indicates an
improvement in the ordering of short word sequences, which hints at the presence of this benefit.

In the n-best +LM setup, we produce the top n word order predictions and select the prediction that
provides the most Kendall τ improvement. These results hint at the potential improvement contained in
the best n predictions of the model. Next, we turn to examining the quality of the space of word order
predictions in more detail by applying them in a machine translation task.

4.3 Evaluating the quality of the word order predictions
Our goal in this work has been to use a syntax-oriented preordering model to delimit the search space for
a subsequent, more complex model. Hence, in order to examine the model presented in Section 3, we
determine the quality of the n-best predictions the model produces. We perform the following experiment
for the language pair English–German: Using the preordering system, we produce the 10 best word order
predictions for each sentence in the test set. We then translate each sentence arranged according to each
of the word order predictions using a standard phrase-based machine translation system trained on the
corpus produced by the first-best preordering system. After the translation is performed, one translation
is selected based on the best sentence-level BLEU score. Table 2 shows results for this setup and for a
baseline system without preordering. Both systems use a distortion limit of 7 and use only the standard

4http://github.com/clab/fast_align
5http://statmt.org/wmt13/translation-task.html
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Distortion limit BLEU METEOR TER

Baseline
7

15.20 35.43 66.62
Best out of k (k = 10) 17.26∗ 37.97∗ 62.64∗

∗ Result is statistically significant against baseline at p < 0.05.

Table 2: Estimation of the quality of the k best word order predictions.

distance-based reordering model. Statistical significance tests are performed using bootstrap resampling
(Koehn, 2004) and statistically significant results (p < 0.05) are marked with an asterisk. These results
show that significant improvements in translation quality measured in terms of BLEU, METEOR and
TER are possible based on the space of word order choices provided by our model.

4.4 Discussion

Having introduced our preordering method and having evaluated the influence of non-local features, we
are now interested in two basic aspects of the output space provided by this system:

The first aspect is the quality of the space of the space delimited by the preordering system. Since
we plan to pass the output space to a richer model, it has to be ensured that a sufficient number of
good candidates are contained in this space. This question is answered by the translation experiments
performed in Section 4.3, which indicate that even within the first 10 word order predictions, there are
enough good instances to enable a significant improvement in translation quality. Since the evaluation
of our translation experiments is performed using only automatic evaluation metrics, it is difficult to
pinpoint the exact source of these potential improvements. In order to examine the gains in more detail
and to determine how much the fluency of the output increased, we therefore intend to perform manual
evaluation in future work. The second question is whether the size of the space of potential word order
choices is manageable for subsequent models. Since the previous experiments showed that even with
only 10 word order predictions, a significant improvement can be observed, it is clear that this very small
space can be used by a subsequent model. In addition to this, the output in the form of a lattice allows for
using more options and efficient processing using dynamic programming algorithms. Since the model
from Section 3.1 works on local tree families in a chart, it may be able to work with a parse forest instead
of a tree, possibly alleviating parse errors on the source. We plan to explore this direction in future work.

5 Conclusion

Source-side reordering provides a significant potential for improvements in translation quality and trans-
lation performance in machine translation, which was shown in previous studies and is further supported
by the method’s recent surge in popularity. It is therefore an attractive model to extend to morphosyntax
beyond pure word order patterns. Most of the benefits of source-side reordering are due to enabling the
modeling of much larger reordering spaces in a more reliable manner than it would be possible within
the underlying machine translation system. For languages such as German or Arabic, however, word
order and morphology are interconnected and should not be treated in isolation. As a first step towards
broader morphosyntactic processing beyond word order only, this paper has explored how a preordering
model can be utilized to produce a space of sensible word order predictions. We have presented a novel
preordering model for this purpose and have evaluated its outputs with translation experiments using a
common system setup. The experiments also show that non-local language model features integrated
via cube pruning improve the preordering quality for the language pair English–German. Further, our
translation experiments show that this preordering system, when optimized for producing n-best predic-
tions, provides an output space that is valuable for further processing both in its compactness and in the
potential improvement in translation quality it enables.
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Abstract

In this document we report on a user scenario based evaluation aiming at assessing the perfor-
mance of a machine translation (MT) system in a real context of use. This extrinsic evaluation
exemplifies a framework that makes it possible to estimate MT performance and to verify if im-
provements of MT technology lead to better performance in a real usage scenario. We report on
the evaluation of Moses baselines for several languages in a cross-lingual IT helpdesk scenario.

1 Introduction

Extrinsic evaluation of MT, i.e., assessment of MT quality within a task other than translation, has not
(yet) been established as a major research topic. Reasons may include the prevalent focus of MT re-
search on translation of newspaper texts, which does not readily lend itself to task-based evaluation. In
industrial applications of MT, task-based evaluation is certainly performed more frequently, but the re-
sults are typically not published. The evaluation reported in this paper joins together general research
and industrial applications. The focus is to find the best procedure for evaluating a machine translation
system in a real-world application using a user-based scenario methodology.

This evaluation is based on the integration of MT services in a helpdesk application developed by
the company Higher Functions as part of its business (see Section 3) to make it cross-lingual. It has
been performed within the QTLeap project1, which aims to investigate an articulated methodology for
machine translation based on deep language engineering approaches and evaluates several different MT
approaches in a usage scenario.

In general, the focus of this evaluation is to assess the added value of the translations in terms of their
impact on the performance of the QA system of the helpdesk in a multilingual environment. The main
goals are to i) assess the impact of the MT services on the application, ii) find out to what extent the
inclusion of MT can generate business opportunities, and iii) set a baseline that makes it possible to see
if future improvements of the MT technology lead to better performance in the usage scenario.

In order to reach this objective, the evaluation was split in two distinctive parts. The first part focuses
on evaluating how the translation affects the answer retrieval component of the question and answer (QA)
algorithm. The second part focuses on outbound translation to evaluate to what extent it delivers a clear
and understandable answer to final customers without the intervention of a human operator. In this paper
we report on the second part of the evaluation covering seven different languages: Basque, Bulgarian,
Czech, Dutch, German, Portuguese and Spanish.

Section 2 reports on the state of the art, while Section 3 describes the real user scenario. Section 4
explains in details how the evaluation was carried out. Section 5 presents the results for each of the seven
languages. Finally we draw some conclusions in Section 6.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1www.qtleap.eu
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2 State of the art

Previous work includes extrinsic evaluation of machine translation through several MT applications:
cross-lingual patent retrieval, cross-lingual sentiment classification, collaborative work via idea ex-
change, speech-to-speech translation, and dialogue.

The Patent Translation Task at the Seventh NTCIR Workshop employed search topics for cross-lingual
patent retrieval, which was used to evaluate the contribution of machine translation for retrieving patent
documents across languages (Fujii et al., 2008). They also analysed the relationship between the accu-
racy of MT and its effects on retrieval accuracy (Fujii et al., 2009), which comes closest to the evaluation
of answer retrieval in our scenario.

Duh et al. (2011) investigated the effect of Machine Translation on Cross-lingual Sentiment classi-
fication and suggested improvements to the adaptation problems that have been identified. Yamashita
and Ishida (2006) started research on collaborative work using machine translation. Similarly, Wang et
al. (2013) evaluated MT through idea exchange: in this scenario, pairs of one English and one Chinese
speaker performed brainstorming tasks assisted by MT, which helped the non-native English speakers
produce ideas; nevertheless comprehension problems were identified with MT output.

In the early years of NLP, the Verbmobil project (Jekat and Hahn, 2000) performed end-to-end
Machine-Translation as part of a longer pipeline with several modules, and evaluation of MT via speech-
to-speech translation has been conducted in the frame of a yearly shared task (e.g., Cellotolo et al.
(2013)). In another example on dialogue systems, Schneider et al. (2010) employed a “Wizard of Oz”
technique in order to assess the quality of translations in the context of a dialogue application. A human
operator (the “wizard”) who is not visible to the user, takes the role of the system. In that scenario,
German speakers have to find a good offer on Internet connections in Ireland. The extrinsic evalua-
tion measuring elapsed time, shows different results to the intrinsic error-specific MT evaluation. The
questionnaire we use in our evaluation is based on the one used in this task.

3 Tech support scenario

The scenario used in our evaluation is based on a real service developed by the Portuguese company
Higher Functions to support their clients. This service, named PcWizard, offers technical support by
chat. Usually technical support can be divided into three levels based on the difficulty of the request:
first-level, second-level, and third-level. Most of the first-level inquiries are straightforward and simple,
and can be easily handled. Literature has shown that the majority of user requests can be answered by
the front-line level, as they are “simple and routine”, and do not require specialized knowledge (Leung
and Lau, 2007). At the same time, these kinds of requests represent the majority of all requests and are
responsible for long waiting times, leading to user dissatisfaction. The PcWizard application attempts to
address this specific context, trying to automate the process of answering first-level user requests. The
area of specialization of this service is basic computer and IT troubleshooting for both hardware and
software.

The process of providing support to end-users involves remote, written interaction via chat channels
through a call centre. This process of problem solving can be made efficient by using a Question An-
swering (QA) application that helps call centre operators prepare replies for clients.

Using techniques based on natural language processing, each query for help is matched against a
memory of previous questions and answers (QAs) and a list of possible replies from the repository is
displayed, ranked by relevance according to the internal heuristics of the support system. If the top reply
scores above a certain threshold, it is returned to the client. If the reply does not score over the threshold,
the operator is presented with the list of possible answers delivered by the system and he can (a) pick the
most appropriate reply, (b) modify one of the replies, or (c) write a completely new reply. In the last two
cases, the new reply is used to further increase the QA memory.

Figure 1 shows the application workflow with the embedded MT services. As the memory of previous
question answering is in English, there are two distinct places where MT services are used in the appli-
cation. The first time occurs when the incoming user request is translated from the original language to
English. This translation is used by the QA search algorithm for retrieving a possible answer.
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Figure 1: The workflow with the MT services

Once an answer is found in English, MT services are used to translate the answer back to the users
original language. This means that the MT services interact with the system in two different moments
and for two very different purposes. In the first, inbound retrieval step, the translation is not presented to
a human, but it is only used by an algorithm. By contrast, in the second, outbound presentation step the
translation is presented to the final user. (In this case all the translations are done to or from English.)

4 The experimental settings

This evaluation was carried out in a controlled setting in order to avoid dealing with different variables
that interfere with the real objective of this evaluation, such as having a relatively small multilingual
database and no previous data on a multilingual scenario. Furthermore a direct field test would lead
to the problem that the questions would differ between evaluations and complicate comparison of the
results. For these reasons 100 question/answer pairs from the corpus were selected and volunteers were
recruited for this in-vitro experiment. Where possible, IT experts were avoided as evaluators in order to
simulate the typical user of the PcWizard application.

4.1 The corpus

A corpus was collected to develop and evaluate different MT systems. This corpus is composed of
4000 question and answer pairs in the domain of computer and IT troubleshooting for both hardware
and software. As this corpus was collected using the PcWizard application, it is composed of naturally
occurring utterances produced by users while interacting with the service. The corpus was collected by
selecting the data contained in the database of the application, in which all client interactions are saved.
For this corpus, only interactions composed of one question and a respective answer were considered.

The corpus consists of short sentences (usually a request of help) followed by an answer, and each
conversation thread involves only two persons (the user and the operator). The request for help is often a
well-formed question or a declarative sentence reporting a problem, but in a significant number of cases,
the question is not grammatically correct, presenting problems with coordination, missing verbs, etc. In
some cases, the request is composed of a list of key words. This kind of utterance is representative of
informal communication via chats. On the other hand, a more formal register characterizes the answers,
as they are produced by well-trained operators and they need to be very precise and concise in order to
clarify the user request and to avoid generating more confusion.

The corpus, available for Basque, Bulgarian, Czech, Dutch, English, German, Portuguese and Spanish,
can be downloaded from the META-SHARE portal 2 under the name “QTLeap Corpus”.

4.2 Evaluation workflow

At a basic level, this evaluation exposes the human evaluator first to the machine translated (MT) answer
and then to the reference answer. In this way, the subject evaluates the MT answer first on its own and
then with respect to the reference.

Using a web interface, a question is presented to the evaluator in the target language and then he/she
is asked to provide a self-estimation of his/her knowledge level (high, medium, or low) on the subject
involved in the question.

2http://metashare.metanet4u.eu/
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A SA N SD D
I have serious problems in understanding this answer - - + +
These sentences are fluent + + - -
There are awkward words and expressions - - + +
I would rate the sentences as comprehensible + + - -
Some words appear in a strange order - - + +
The instructions/information in the answer are not clear - - + +
I would consider using a similar system for technical support in a similar context + + - -

Table 1: List of the statements used in the final questionnaire

Then the same question is presented, followed by the automatically translated answer (A). In this step
the subject assesses on the usefulness of this answer, according to the following options:

• It would clearly help me solve my problem / answer my question

• It might help, but would require some thinking to understand it

• It is not helpful / I don’t understand it

After answering, the evaluator is presented again with the question, the MT answer (A), and the
reference answer (B). This time the subject is asked to compare answers A and B. Taking into account
that the second answer B is giving the correct information, he/she is asked to re-evaluate the first answer
A, selecting one of the following options:

• A gives the right advice.

• A gets minor points wrong.

• A gets important points wrong

Finally, evaluators are asked to give a closer look at the automatically translated answer and provide
a more fine-grained evaluation on seven different aspects using a questionnaire with answers based on
a 5-point Likert scale: agree (A), slightly agree (SA), neither agree nor disagree (N), slightly disagree
(SD), disagree (D). At this point evaluators have also the possibility to leave a comment on the interaction
evaluated.

The statements used for this questionnaire were developed using the questionnaire presented in
(Schneider et al., 2010) for evaluating an MT dialogue system as a starting point. Following the lit-
erature, the statements in the questionnaire were designed in order to balance the number of negative and
positive statements to avoid getting the same judgment and to force evaluators to read each statement
carefully.

Table 1 shows the list of the statements used in the questionnaire. The plus and minus symbols
represent the value of the statement. A positive judgment is represented by the plus, a negative by
minus. For instance, if the evaluator agrees with the first statement, it means that the sentence presents
some kind of problem, so it is negative for the performance of the system. For the second statement
(which presents a positive judgment) the situation is inverted: if the evaluator agrees, it means that, for
that specific aspect, the answer present a positive score.

All the question/answer pairs were evaluated at least by 3 volunteers for each of the seven languages,
with a global average of 3.3.

5 Results

To clarify the framework, this section presents the results of evaluating Moses baselines for the project
languages mentioned above. Is is important to note that it is not our goal to compare performance
between languages, even if the presentation of results might raise this expectation. The Moses systems
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that have been set up for the different languages have been trained on different general and domain
corpora depending on availability of resources. Table 2 shows the evaluation results when the evaluator
is asked to assess on the usefulness of the automatically translated answer. Based on these results, the
quality of the response is very different across the languages.

EU BG CS NL DE PT ES Avg.
It would clearly help
me solve my problem 30.7% 48.1% 49.5% 24.7% 37.3% 12.4% 65.3% 38.3%
/ answer my question
It might help, but would
require some thinking 47.7% 43.6% 35.2% 43.4% 41.4% 35.3% 26.3% 39.0%
to understand it
It is not helpful /
I don’t understand it 21.7% 8.3% 15.3% 31.6% 21.3% 52.3% 8.3% 22.7%

Table 2: Assessment of the usefulness of the translated answers

Bulgarian and Spanish received the best evaluation with only 8.3% of answers judged as not help-
ful/not understandable, versus 52.3% for Portuguese. Czech also demonstrated good performance, with
almost 50% of the answers considered clearly helpful in answering the question.

Table 3 reports on the results when the evaluator was asked to compare the automatically translated
answers (A) with the reference answer (B) giving the correct information.

When the reference answer is presented, very different results were obtained compared to the previous
table. In particular, the evaluations are more homogeneous among all the languages and among the three
different options.

It is interesting to note that the positive evaluation obtained when only the MT answer is presented
decreases for four of the seven languages (Basque, Bulgarian, Czech and Spanish), but increases for the
other three (Dutch, German, Portuguese). Subjects using Dutch and Portuguese were the ones providing
the worst evaluation of MT answers.

Based on this scenario, a metric was elaborated. This metric attempts to determine the probability of
final users making a phone call to get a satisfactory answer to their questions. What it is relevant for this
metric is the perception of the user about the correctness of the answer. This means that if the evaluator
checked that the automatically translated answer would “clearly help to solve my problem/answer the
question” the probability of asking for further help would very low. This would be the case especially
if the answer, when compared to a reference answer, is judged as giving the right advice or just some
minor points wrong.

Cases when an evaluator thinks that the translated answer would require some thinking to understand
it and gets important points wrong are rather different: in this case the probability of calling an operator
would be higher.

Table 4 shows the probability of calling an operator for each different possibility. The results for each
language are presented in Table 5.

In order to draw some considerations, the aggregates results are presented in Table 6.
As noticed in the previous tables, there is a high degree of variance between the different languages.

For example, Spanish or Czech present a much smaller probability of users calling an operator than do
Portuguese and Dutch.

EU BG CS NL DE PT ES Avg.
A gives the right advice. 25.7% 35.0% 42.2% 25.6% 43.2% 22.9% 45.3% 34.3%
A gets minor points wrong 37.7% 44.3% 31.9% 35.9% 33.4% 23.2% 22.3% 32.7%
A gets important points wrong 36.7% 20.7% 25.9% 38.4% 23.4% 54.0% 32.3% 33.1%

Table 3: Assessment of the translated answer against the reference answer
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MT answer Reference Answer Probability
A Solves my problem Gets the right advice low
B Solves my problem Gets minor points wrong low
C Would require some thinking to understand it Gets the right advice low
D Would require some thinking to understand it Gets minor points wrong medium
E Solves my problem Gets important points wrong high
F Would require some thinking to understand it Gets important points wrong high
G Is not helpful / I don’t understand it Gets the right advice high
H Is not helpful / I don’t understand it Gets minor points wrong high
I Is not helpful / I don’t understand it Gets important points wrong high

Table 4: The metric with the probability of calling an operator

Probability EU BG CS NL DE PT ES Avg.
A low 20.8% 28.6% 34.9% 14.4% 29.0% 8.8% 39.7% 25.2%
B low 7.9% 14.8% 12.6% 8.8% 7.2% 2.5% 15.0% 9.8%
C low 4.6% 4.0% 7.0% 7.2% 11.6% 10.2% 5.7% 7.2%
D medium 28.1% 30.6% 17.9% 21.9% 22.0% 15.8% 7.0% 20.5%
E high 1.7% 1.3% 2.0% 1.6% 1.4% 1.1% 10.7% 2.8%
F high 14.9% 11.7% 10.3% 14.4% 7.8% 9.3% 13.7% 11.76%
G high 0.3% 0.0% 0.3% 4.1% 3.2% 4.0% 0.0% 1.7%
H high 1.3% 1.5% 1.3% 5.3% 3.8% 4.8% 0.3% 2.6%
I high 20.5% 7.5% 13.6% 22.3% 13.9% 43.5% 8.0% 18.5%

Table 5: Results of the metric considering each case

Probability EU BG CS NL DE PT ES Avg.
low 33.3% 47.4% 54.5% 30.4% 47.8% 21.5% 60.4% 42.2%
medium 28.1% 30.6% 17.9% 21.9% 22.0% 15.8% 7.0% 20.5%
high 37.0% 22.0% 27.5% 47.7% 30.1% 62.7% 32.7% 37.1%

Table 6: Aggregated results of the metric
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The following graphics report on the results obtained with the final questionnaire where the MT an-
swers were evaluated on seven different aspects: understanding, fluency, awkwardness, word order, clar-
ity, use of this type of system.

The agree/disagree evaluation are normalised into positive/negative judgments and then calculated as
a weighted average where the slightly positive/negative cases get a lower weight of .5 and neutral values
are simply ignored: (positive - negative) + 0.5*(slightly positive - slightly negative).

Figure 2: Basque Figure 3: Bulgarian

As show in Figure 2, the Basque speaking subjects provide positive evaluation in four out of seven
statements. In particular evaluators agree in the 54.5% of the cases that they do not have serious problems
in understanding the answer, that it was comprehensible (56.5%), and the instructions were clear (54.5%),
and they would consider using a similar system (47.8%). The problems come up with the lack of fluency
of the sentences (51.5%), the presence of awkward expressions (58.6%) and the order of the words
(61.8%).

For Bulgarian (Figure 3) the outcome was more positive than for Basque. The positive dimensions go
from four to five. The sentences are also considered fluent in 78.3% of the cases. In general the positive
dimension obtains higher values. For example, in 89.2% of the cases the evaluators have no problems in
understanding the answer. The problem again is the presence of awkward expressions (58.6%) and the
order of the words (54.5%).

For Czech, Figure 4, all the dimensions are positives with the exception of the fluency of the sentences
where positive and negative judgments present almost the same weight (41.7% and 42.7% respectively).

Figure 5 shows a very opposite evaluation for Dutch speaking subjects. All the statements get a
negative evaluation.

German-speaking evaluators provided positive evaluation on three dimensions: the understandability
of the answer (50.6%), the clarity of instructions (49.1%) and use of the system in a similar situation
(34.6%).

Portuguese speaking evaluators, similarly to Dutch, provide negative evaluation on all the seven state-
ments.

Finally, Spanish-speaking subjects evaluated six of the seven dimensions positively. The only problem
is given by the presence of awkward words and expressions reported in 63.1% of the evaluations.

6 Conclusions

In this paper we presented an innovative method to evaluate MT systems, taking into consideration real
user context.
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Figure 4: Czech Figure 5: Dutch

Figure 6: German Figure 7: Portuguese

With this evaluation we show that although the translations of answers presented to the real user were
produced by baseline systems, results are promising from a business perspective and could result in a
real-world reduction in service calls. Even if there are many flaws in the translations, a considerable part
of the test users would use a system like this again and the approximated chance of calling an operator is
lower than expected (even allowing for the fact that the numbers are approximations).

The results reported in this paper provide the basis for the extrinsic evaluation of the impact of MT
system to the QA system where it was embedded.
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Figure 8: Spanish
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Abstract

The existence of translation divergence precludes straightforward mapping in machine translation
(MT) system. An increase in the number of divergences also increases the complexity, especially
in linguistically motivated transfer-based MT systems. In other words, divergence is directly
proportional to the complexity of MT. Here we propose a divergence index (DI) to quantify the
number of parametric variations between languages, which helps in improving the success rate
of MT. This paper deals with how to build divergence index for a given language pair by giving
examples between Telugu and Tamil, the major Dravidian languages spoken in South India. It
also proposes handling strategies to overcome these divergences. The presentation of the paper
also includes a live demo of Telugu-Tamil MT.

1 Introduction

In MT, there are a number of methods that are being practiced all over the world, chiefly, they are
direct, interlingual, transfer-based methods and a combination of these beside the statistical and corpus
based methods. This paper discusses the development of transfer-based Telugu-Tamil MT system with
a special reference to divergences. In the development of MT1, linguistically-grounded classification of
divergence types need to be formally defined and systematically resolved. Identifying such divergences
is the most significant part that facilitates the design and implementation of MT systems. As divergences
are encountered as the specific problem in MT, identifying these are also the most crucial to obtain
qualitatively a better output.

Divergence between languages may vary from one language pair to another. An increase in the number
of divergence also increases the complexity in building an MT. In other words, it can be stated that
divergence is directly proportional to the complexity of MT. Measuring divergence between languages
supports to ascertain effort justification to build an MT for the proposed languages. Here we propose
a divergence index (DI) to quantify the number of parametric variations between languages. DI also
classifies divergence exhaustively into different levels in order to understand its depth. It facilitates MT
in proposing where to put efforts for the given language pair to attain a better result.

2 Telugu-Tamil MT

Telugu and Tamil are major Dravidian languages with rich literary tradition sharing indubitable linguis-
tic similarities and dissimilarities. An MT between them may be viewed as a bridge to understand and
share the richness of both the languages. The MT system demonstrated here is a completely automatic
translation system without human interference for the first time involving Telugu and Tamil. It is one of
the successfully implemented systems under Indian language to Indian language(IL-IL) MT2.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1In this paper, MT refers to linguistically motivated transfer-based machine translation.
2IL-IL MT is a consortium funded by the Department Of Electronics and Information Technology (DeitY), Ministry Of

Communications and Information Technology, Government of India under the project name Sampark. Telugu-Tamil MT is
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The Telugu-Tamil MT system is an assembly of various linguistic modules run on specific engines
whose output is sequentially maneuvered and modified by a series of modules till the output is generated.
It employs three stage architecture:

Stage 1: Source language analysis
Stage 2: Source language to target language transfer
Stage 3: Target language generation

The most crucial linguistic modules in Source Language analysis include a Morphological Analyzer
(MA), Parts of Speech Tagger (POS), Chunker, Named Entity Recognizer (NER), Simple Parser (SP)
and the Source Language to Target Language Transfer Module includes Multi Word Expression (MWE)
component, Transfer Grammar (TG) Component, Lexical Transfer component consisting of a synset
and bilingual lexicons and in Target Language Generation includes Agreement (AGR) modules and a
Morphological Generator (MG). All the modules have been integrated on the platform called Dashboard
based on black board architecture (Pawan et al, 2010) which configures data flow in a specified pipeline.

The architecture of Telugu-Tamil MT system is given below:

3 Translation Divergence

The term ‘Translation Divergence’ refers to distinctions or differences that occur between languages
when they are translated. It is realized when the source language content is decoded differently in the
target language and affects the ‘well-formedness’ of the target language. According to Dorr (1993), the
translation divergence occurs when the underlying concept or ‘gist’ of a sentence is distributed over dif-

being developed as part of a larger project of IL-ILMT (with Prof. G. Uma Maheshwar Rao as the chief investigator) at
Language Technology Laboratory, Centre for Applied Linguistics and Tanslation Studies(CALTS), University of Hyderabad.
For more details see: http://caltslab.uohyd.ernet.in/. This system is also available at TDIL website for public access: http://tdil-
c.in/components/com mtsystem/CommonUI/homeMT.php.
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ferent words or in different configurations for different languages. The notion of divergence in MT is
comparable to the linguistically motivated notion of parameteric variation i.e. cross-linguistic distinc-
tions.

Telugu and Tamil in spite of being cognate languages, exhibit considerable amount of divergences in
various levels affecting the quality of output. In most of the cases, Dorr’s divergences are noticed as rare
phenomena and do not pose much problem as far as Telugu and Tamil are considered. However, these
language pairs do pose problems at various other levels displaying different divergences. The current
research attempts to classify these divergences into three major kinds, such as morphological, syntactic
and lexical-semantic divergences.

4 Divergence Index

Divergence index (DI) represents a measure of the differences that occur between languages. The
variations of linguistic features can be seen at any levels (L) in terms of surface, shallow and deep
levels of languages. These levels are identified as L1, L2, L3 etc., according to its depth of variation.
Identifying the divergence with its level between a pair of languages enables one to compute and quantify
the effort that is required to build an MT. DI uses a table that attributes to features to identify and
classify divergences exhaustively into different levels in order to understand its depth. It facilitates MT
in proposing where to put effort for the given language pair to obtain a better result.

4.1 Divergence Index Table
Languages may share certain features or differ with each other. When they differ, it indicates that

a certain feature is encoded differently or not available in one of the languages. This is a cause for
divergence. Table 1 provides instances where divergences are possible with reference to a given feature
in the said languages. Y indicates that the feature is available in a language and N indicates not. When
both the languages share similar features (see Table 1 (1.) and (2.)), it means no divergence (indicated
by 0). When they differ (see Table 1 (3.) and (4.)), there arises divergence (indicate by 1).

S.No SL feature TL feature Divergence
Index

1. Y Y 0
2. N N 0
3. Y N 1
4. N Y 1
5. Y/N Y/N 0
6. Y/N Y 1
7. Y/N N 1
8. Y Y/N 0
9. N Y/N 0

Table 1: Divergence Index Table

In certain cases, Y/N is given to indicate optional in the use of a feature. When both source language
(SL) and target language (TL) show optional, it means no divergence (see Table 1 (5.)). When only
SL shows optional, it is counted as divergence because TL element may not be directly mapped when
the option differs (see Table 1 (6.) and (7.)). When the option occurs only in TL, it is counted as no
divergence (see Table 1 (8.) and (9.)) because TL optionally behaves like SL, hence SL features can be
directly mapped to TL.

4.2 Morphological Divergence Index
Morphological divergences, here, we refer to divergences that occur due to inflectional and productive

derivational devices of words between Telugu and Tamil. Open word class categories such as nouns,
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verbs and adjectives and closed word classes such as pronouns, number words and nouns of space and
time (NST) are studied to find out morphological divergences. Functional elements on these categories
need to be carefully matched from the source language to the target language to attain well-formed
wordforms in the output. Uninflected word classes i.e. indeclinables and non-productive derivational
wordforms are excluded here because they are listed in the lexicon and straightforward mapping between
them solves the problem in MT.
For example , nouns in Telugu and Tamil are major word classes inflecting for number and case. The
major inflectional differences occur due to two reasons i.e. (1) the choice of items in terms of inflections
viz., the oblique stem formation, case and postposition and (2) the order of their presentation. For
instance, the Table 2 explicates the differences.

No. PSP Telugu Tamil Gloss
1. Comparitive iMt.i- kaMt.ē vı̄t.t.- ai- vit.a/ ‘compared to

house.OBL- than vı̄t.t.- ai.k- kāt.t.ilum the house’
house- ACC- than

2. Semblative iMt.i- lāMt.i/ vı̄t.t.- ai.p- pōn
¯

r
¯
a ‘like

iMt.i- vaMt.i/ house- ACC- like the house’
house.OBL- like (adnominal usage)
iMt.i- ni- pōlina
house- ACC- like

3. Locative: iMt.i- cut.t.ū vı̄t.t.- ai.c- cur
¯
r
¯
iyum/ ‘around the house’

Circumferential iMt.i- cut.t.ūtā vı̄t.t.- ai.c- cur
¯
r
¯
ilum

house.OBL- around house- ACC- around
4. Locative:Interior:Direction iMt.i- lōpali- ki/ vı̄t.t.- ukk- ul.(l.ē)/ ‘to inside

iMt.i- lō- ki home.OBL- DAT- inside the house’
home.OBL- inside- DAT vı̄t.t.- in

¯
- ul.(l.ē)

home.OBL- GEN- inside
Table 2: Postpositions

As seen in the table 2 (No. 1-3), certain postpositions require their complement nouns differently case
marked between Telugu and Tamil. Also as shown in Table 2 (No. 4) the order of suffixes in Telugu and
Tamil may differ. The difference is explicated as below:

Te. Noun- ±Number suffix- ±Stem-formative- ±Postposition- ±Case Suffix
Ta. Noun- ±Number suffix- ±Stem-formative- ±Case Suffix- ±Postposition
The divergence index for Table 2 is built as below:

No. PSP Telugu Tamil DI/Level
1. Comparative Y Y 0/L1

Accusative case marker N Y 1/L2
2. Semblative Y Y 0/L1

Accusative case marker Y/N Y 1/L2
3. Locative: Circumferential Y Y 0/L1

Accusative case marker N Y 1/L2
4. Locative:Interior:Direction Y Y 0/L1

Dative case marker with PSP Y N 1/L2
Table 3: Divergence Index for Table 2

In predicative positions, nouns in Telugu agree with their subjects in the first person singular and
plural, and in the second person singular and exhibit explicit overt markings unlike Tamil. Consider the
following in Table 4.

S.No. GNP Telugu Tamil Gloss DI/Level

1. 1.SG. manis. i- ni man
¯

itan
¯

- ø ‘(I am) a human’ 1/L1
human.SG.OBL-1.SG. human.SG

2. 1.PL. manus.ula- mu man
¯

itar- kal.- ø ‘(we are) humans’ 1/L1
human.PL.OBL-1.PL. human- PL

3. 2.SG. manis. i- vi man
¯

itan
¯

- ø ‘(You are) a human’ 1/L1
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human.SG.OBL-2.SG. human.SG

Table 4: Nominal predicates in Telugu and Tamil

These kind of divergences need to be noticed and handled strategically in the target language Tamil
since it does not express these details on nominal predicates. Morphological divergences are mainly
handled by the morphological generator (MG), the target language (TL) generation module. MG is
equipped with inbuilt morphological features of TL which generates acceptable TL. Other modules such
as parser, transfer grammar (TG), lexical transfer (LT) and agreement (AGR) modules do involve in
handling morphological divergence.

4.3 Syntactic Divergence Index
Syntactic divergence here we refer to syntactic structural differences that occur between pairs of
languages. It is obvious to find out similar constructions in Telugu and Tamil in majority of cases
but still there are lots of variations arise due to case mismatches, agreement, anaphora, negation,
subordination and clitics. Various syntactic processing and a robust transfer grammar are obviously
required to overcome syntactic divergence.

For example, each case marker has a number of functions and it is obvious that they lead to case
mismatches in MT. The difference in form and function of a case in the source language precludes the
straightforward mapping of it in the target language. For instance, Telugu and Tamil agree in using the
dative case marker in various functions viz., beneficiary of an action, goal of motion, experiencer subject
(Cf. Krishnamurti, 2003:434; Verma and Mohanan, 1990:27) among other functions. However, to
express a possessive relationship between two inanimate nouns, one of the nouns of inanimate category
carries the dative marker to express the locative function in Telugu. On the contrary, the locative case
marker is in use in Tamil. Example:

Syntactic divergences are mainly handled by TG. TG is equipped with performing certain tasks such
as insertion, deletion, modification and re-ordering of words and chunks. It also has the ability to handle
files where it is possible to operate a single rule over a list of items.

4.4 Lexical-Semantic Divergence Index
Lexical-semantic translation divergences are characterized by properties that are entirely lexically

determined between languages. A concept expressed by a lexeme may not have the similar meaning in
all contexts. The major lexical-semantic divergences that occur between Telugu and Tamil are due to the
nature of its semantic compositions and their formal collocation in their expression.

For example, a lexeme, used to express a concept in a language may not have the same meaning in all
contexts. When it has multiple meanings, word sense disambiguation is required to overcome lexical
ambiguity and to select an appropriate sense with its form in the target language.

For instance, the lexeme kut.t.u in Telugu is ambiguous and expresses three different senses as given
below:
Sense 1: kut.t.u ‘to bite’ as in the context of cı̄ma ‘an ant’ and etc. The equivalent word in Tamil is kat.i
‘to bite’.
Sense 2: kut.t.u ‘to stitch’ as in the context of bat.t.alu ‘clothings’. The equivalent word in Tamil is tai ‘to
stitch’.
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Sense 3: kut.t.u ‘to pierce’ as in the context of cevulu ‘ears’ or body parts and etc. The equivalent word
in Tamil is kuttu ‘to pierce’.

Lexical-semantic divergences are handled by MWE component and LT. MWE component contains a
lexical database consisting words of co-occurrence. When a group of words are identified as MWE, this
module transfers them into the acceptable target language expression. Lexical ambiguities are handled
by TG. An exhaustive set of transfer grammar rules operating on identification of the ambiguous words
and disambiguating them by looking at the subject or the object nouns as suggested above are built. For
instance, the following TG rules are samples to handle the different senses of Telugu word kut.t.u in Tamil.

V1:R1::"$x=animate.txt"
R1: NP<root="$x",lcat="n"> VGF<root="kut.t.u",lcat="v"> =>
NP<root="$x", lcat="n"> VGF<root="kat.i",lcat="v">
V2:R2::"$y=inanimate.txt"
R2: NP<root="$y",lcat="n"> VGF<root="kut.t.u",lcat="v"> =>
NP<root="$y", lcat="n"> VGF<root="tai",lcat="v">
V3:R3::"$z=bodyparts.txt"
R3: NP<root="$z",lcat="n"> VGF<root="kut.t.u",lcat="v"> =>
NP<root="$z", lcat="n"> VGF<root="kuttu",lcat="v">

5 Conclusion

Though Tamil and Telugu belong to the same language family (Dravidian language family), some major
and minor differences are found in their linguistic behavior which preclude any straightforward mapping.
To avoid this, it is essential to formalize the divergent patterns and develop a certain number of rules as
the case demands to have a successful system with broad coverage. Building divergence Index is proved
to be a useful activity to identify and handle divergences effectively in transfer-based MT.
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Abstract

Deep-syntax approaches to machine translation have emerged as an alternative to phrase-based
statistical systems, which seem to lack the capacity to address essential linguistic phenomena
for translation. As an alternative, TectoMT is an open source framework for transfer-based MT
which works at the deep tectogrammatical level and combines linguistic knowledge and statisti-
cal techniques. This work describes the development of machine translation systems for English-
Spanish in both directions, leveraging on the modules for the English-Czech TectoMT system.
We show that it is feasible to develop basic systems with relatively low effort in 9 months. Our
evaluation shows that despite not yet being able to beat a phrase-based statistical system, the Tec-
toMT architecture offers flexible customization options, which considerably increase the BLEU
scores.

1 Introduction

Phrase-based machine translation (MT) systems have difficulty in capturing linguistic phenomena, such
as long-distance grammatical cohesion. Syntax-based approaches have appeared as an alternative that
can overcome this barrier more easily. Shallow approaches, however, seem still too restrictive and meth-
ods of deep linguistic analysis have been put forward as a tool to capture all the important parts of the
meaning of the text. Efforts to build translation models around deep syntactic structure often move the
level of linguistic abstraction a step deeper into semantic roles and relations, which should entail a sim-
pler transfer step because of the greater structural similarity between the deep structures of the source
and target languages as compared to the surface realizations; better generalization of the language as
it operates on lemmas of content words and grammatical constructions are abstracted with their mean-
ing captured by language-independent attributes; and improved grammaticality of the output given the
explicit representation of target-side sentence structure.

TectoMT (Žabokrtský et al., 2008; Popel and Žabokrtský, 2010) has emerged as a potential archi-
tecture to develop such an approach, together with other deep-transfer systems such as Matxin (Mayor
et al., 2011) and the one proposed by Gasser (2012). In contrast to those systems, TectoMT combines
linguistic knowledge and statistical techniques, particularly during transfer, and it aims at transfer on the
so-called tectogrammatical layer (Hajičová, 2000), a layer of deep syntactic dependency trees.

In this paper we present a description of the work done to develop a TectoMT system for both direc-
tions of English-Spanish, based on the existing English-Czech TectoMT system. In Section 2 we give
an overview of the TectoMT architecture and the key linguistic concepts it is based on; in Section 3 we
describe the analysis, transfer and synthesis stages, and highlight the upgrades and modifications carried
out to develop the new language pair; in Section 4 we show an initial evaluation of the new prototypes;
and finally, in Section 5 we draw conclusions and comment on the planned future work.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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Figure 1: The general TectoMT architecture (from (Popel and Žabokrtský, 2010, :298)).

2 TectoMT architecture

As with most rule-based systems, TectoMT consists of an analysis, transfer and synthesis stages. The
system works on different levels of abstraction (cf. Figure 1) and uses Blocks and Scenarios to process
the information across the architecture.

2.1 Tecto layers
TectoMT works on an stratification approach to language, that is, it defines four layers of language, in
increasing level of abstraction: raw text (word layer or w-layer), morphological layer (m-layer), shallow-
syntax layer (analytical layer or a-layer), and deep-syntax layer (tectogrammatical layer or t-layer). This
strategy is adopted from the Functional Generative Description theory (Sgall, 1967), which has been
further elaborated and implemented in the Prague Dependency Treebank (PDT) (Hajič et al., 2006). As
explained by (Popel and Žabokrtský, 2010, :296), each layer contains the following representation:

• Morphological layer (m-layer)

Each sentence is tokenized and each token is annotated with a lemma and morphological tag.

• Analytical layer (a-layer)

Each sentence is represented as a shallow-syntax dependency tree (a-tree). There is one-to-one
correspondence between m-layer tokens and a-layer nodes. Each a-node is annotated with the type
of dependency relation to its governing node or parent.

• Tectogrammatical layer (t-layer)

Each sentence is represented as a deep-syntax dependency tree (t-tree). Autosemantic (meaningful)
words are represented as t-layer nodes (t-nodes). Information conveyed by functional words (such as
auxiliary verbs, prepositions and subordinating conjunctions) is represented by attributes of t-nodes.
Most important attributes of t-nodes are:

– tectogrammatical lemma;
– functor: represents the semantic value of syntactic dependency relations, e.g. causal adjunct,

conditional adjunct, actor, effect;
– grammatemes: semantically oriented counterparts of morphological categories present at the

higher level of abstraction, e.g. tense, number, verb modality, deontic modality, negation;
– formemes: the morphosyntactic form of a t-node in the surface sentence. The set of formeme

values compatible with a given t-node is limited by its semantic part of speech, e.g. subject
noun, direct object noun, verb as a head of a relative clause (Dušek et al., 2012).
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2.2 Blocks and Scenarios

Blocks are reusable components of subsequent steps into which NLP tasks can be decomposed. Each
block has a well defined input and output specification and, in most cases, also a linguistically inter-
pretable functionality. When developing new applications, blocks can be listed in a specific sequence
and applied to the relevant data. These sequences are called scenarios.

TectoMT includes over a thousand blocks; approximately 224 blocks specific for English, 237 for
Czech, over 57 for English-to-Czech transfer, 129 for other languages and 467 language-independent
blocks.1 Blocks vary in lengths, as they can consist of a few lines of code or tackle complex linguistic
phenomena. To avoid code duplications, many routines are implemented separately and used in several
blocks.

3 Development of a new language pair

We set to port the TectoMT system to work for the English-Spanish language pair in both directions.
Because the original system covers both directions for the English-Czech pair, English analysis and
synthesis were ready to use and our work mainly focused on Spanish analysis and synthesis, and on the
transfer stages. In the following subsections we describe the work done on each step, analysis, transfer
and synthesis, for each translation direction in our attempt to build tecto-level MT systems.

TectoMT is integrated within Treex,2 a highly modular open source NLP framework implemented in
Perl programming language. The framework includes modules for the English-Czech and Czech-English
pairs, which are divided into language-specific and language independent blocks, thus facilitating the
work to build the systems for the new language pair. As we will see in what follows, a good number of
resources were reused, mainly those setting the general architecture and those specific to English; others
were adapted, mainly those involving training of new language and translation models; and several new
blocks were created to enable language-pair-specific features.

3.1 Analysis

The analysis stage aims at getting raw input text and analyzing it up to the tectogrammatical level so that
transfer can be performed (cf. figs. 2 and 3). For English, the modules needed for analysis were already
developed and running, and therefore little effort had to be put on it.

For Spanish, however, new analysis tools had to be integrated into Treex. For tokenization and sen-
tence splitting, we adapted the modules of Treex to Spanish. Treex integrates tokenization and sentence
splitting based on non-breaking prefixes. Therefore, we added a list of Spanish non-breaking prefixes in
the module.

For the remaining tasks, we opted for the ixa-pipes tools.3 These tools consist of a set of
modules that perform linguistic analysis from tokenization to parsing, as well as several external tools
that have been adapted to interact with them, adding extra functionality. We integrated the lemmati-
zation and POS tagging (ixa-pipe-pos) and the dependency parsing (ixa-pipe-srl) tools in
Treex. The first provides Perceptron (Collins, 2002) and Maximum Entropy (Ratnaparkhi, 1999) POS
tagging models trained and evaluated using the AnCora corpus via 10-fold cross-validation, dictionary-
based lemmatization, multiword detection and post-processing of probabilistic model pos tags using
monosemic dictionaries. The second provides constituent parsing trained on the AnCora corpus and
HeadFinders based on Collins head rules (Collins, 1999).

The tools were already developed, with accurate models for Spanish, and ready to use. Our efforts
focused on their integration within Treex. We did this by adding them as wrapper blocks that, given a set
of already tokenized sentences, creates the appropriate input in the corresponding format and calls the
relevant tool. Once the tools complete their work, the output of the system is read and loaded in Treex
documents.

1Statistics taken from: https://github.com/ufal/treex.git(27/08/2015)
2https://ufal.mff.cuni.cz/treex,https://github.com/ufal/treex
3http://ixa2.si.ehu.es/ixa-pipes/
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Figure 2: a-level and t-level Spanish analysis.

All ixa-pipes tools read NAF documents (with word forms and term elements) via standard in-
put and output NAF through standard output. The NAF format is a linguistic annotation format designed
for complex NLP pipelines (Fokkens et al., 2014).

The analyses generated by the ixa-pipes tools follow the AnCora guidelines both for mor-
phological tags and dependency tree structures. This mostly equates to the a-layer in the TectoMT
stratification. Therefore, to fully integrate the analyses into Treex and generate the expected a-tree, the
analyses had to be mapped to a universal PoS and dependency tags. TectoMT currently uses the Interset
tagset (Zeman, 2008) and HamleDT guidelines (Zeman et al., 2014). To implement this mapping, we
used existing modules such as the Interset driver for Spanish AnCora Treebank tagset4 by Dan Zeman
and Zdenek Zabokrtsky, and the Harmonization Treex block for Spanish AnCora-style dependencies5 by
Dan Zeman, Zdenek Zabokrtsky and Martin Popel. On top of these, and in order to form the t-level tree,
we used 16 additional blocks:

1. Language-independent blocks. 11 of the blocks were simply reused from the language-
independent set already available in Treex. These mainly re-arrange nodes, mark heads (coordi-
nations, clauses, coreference) and set node types.

2. Adapted blocks. 4 blocks were adapted from blocks originally used for English or Czech analysis.
These include how to mark edges to collapse nodes into a single t-level node, how to annotate a
number of functions words, sentence mood and grammateme values.

3. New language-specific blocks. 1 block was specifically written to set the grammatemes based on
the Interset tagset features (and formemes) of the corresponding auxiliary a-level nodes.

3.2 Transfer
The transfer stage uses a statistical transfer dictionary together with a set of manually written blocks. The
transfer dictionary is trained on parallel corpora analyzed up to the t-level in both languages. Learning
equivalences at this level of representation enriches the model and simplifies the complexity of trans-
lation: it is not word-form equivalences that are learned, but rather the final dictionary includes the
translation of lemmas, formemes and grammatemes (Žabokrtský, 2010). This approach is based on
the assumption that t-tree structures in different languages are shared. Although this is not always true
(Popel, 2009), it allows to model the working language pair as source-target one-to-one mapping.

For each t-lemma and formeme in a source t-tree, the translation model (TM) assigns a score to all
possible translations observed in the training data. This score is a probability estimate of the translation

4https://metacpan.org/source/ZEMAN/Lingua-Interset-2.041/lib/Lingua/Interset/
Tagset/ES/Conll2009.pm

5https://github.com/ufal/treex/blob/master/lib/Treex/Block/HamleDT/ES/Harmonize.pm
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Figure 3: a-level and t-level English analysis.

variant given the source t-lemma and formeme, and other contextual information, and it is calculated as
a linear combination of two main components:

• The discriminative TM (Mareček et al., 2010) is a set of maximum entropy (MaxEnt) models
(Berger et al., 1996) trained for each specific source t-lemma and formeme, where the prediction is
based on features extracted from the source tree (Crouse et al., 1998; Žabokrtský and Popel, 2009).

• The dictionary TM is a bilingual dictionary that contains a list of possible translation equivalents
based on relative frequencies and no contextual features.

Both components are trained on the parallel corpora at the t-level. The final score assigned to each t-
lemma and formeme in the TMs is calculated through interpolation. For the t-lemmas, weights of 0.5 and
1 are assigned to the dictionary TM and the discriminative TM, respectively. In the case of formemes,
the values are reversed. Using these two TMs, we obtain a weighted n-best list of translation variants
for each t-lemma and each formeme. The lists are jointly re-ranked by Hidden Markov Tree Models
(HMTM), similarly to standard chains but operating on trees (Crouse et al., 1998; Žabokrtský and Popel,
2009). This setting was taken as-is from the one used for English-Czech.

The hybrid architecture of TectoMT, where both statistical transfer models and manually defined
blocks can be combined, allows the integration of domain specific human dictionaries. Our development
targets a question-and-answer (Q&A) scenario in the information technology (IT) domain. Therefore, in
order to customize the systems to this domain, we integrated the Microsoft Terminology Collection as
preprocessing (so the two TMs serve as a backoff for this human in-domain dictionary). The Microsoft
Terminology Collection is freely available6 and contains 22,475 entries.

The equivalence of grammatemes is assigned by manually written rules. The information they contain
is linguistically more abstract, e.g. tense and number, and it is usually paralleled in the target language.
Therefore, a set of relatively simple rules (with a list of exceptions) is sufficient for this task. These
rules are inherently language-specific. At the time of writing, we use 5 blocks specifically written for
the English-to-Spanish direction. These blocks address the lack of gender in English nouns (necessary in
Spanish), differences in definiteness and articles, differences in structures such as There is... and relative
clauses.

3.3 Synthesis

The output from transfer is a t-level tree that must be interpreted during the synthesis stage to generate
the a-tree, which is used to create the final raw text (cf. figs. 4 and 5). The English synthesis was already
developed and therefore, once again, our work mainly focused on preparing the Spanish synthesis, as we
explain below.

6http://www.microsoft.com/Language/en-US/Terminology.aspx

59



We distinguish three steps during synthesis. On a first step, the t-tree generated using the information
obtained during transfer must be transformed into an a-tree. At the time of writing, we use a total of 24
blocks.

1. Language-independent blocks. 9 of the blocks were reused from the language-independent set
already available in Treex. Among these are blocks to mark subjects, impose subject-predicate and
attribute agreements, add separate negation nodes, add specific punctuation for coordinate clauses,
or impose capitalization at the beginning of sentence.

2. Adapted blocks. 12 blocks were adapted from the blocks in the English and Czech synthesis, or
generic ones. For example, after acquiring the tree structure, the morphological categories are filled
with values derived from the grammatemes and formemes. Whereas this is done for all languages,
Spanish requires information coming from English grammatemes to be further distinguished. This
is the case of the imperfect tense (a subcategory of past tense) and imperfect aspect, for instance,
which we set on a block. Another block deals with articles. Knowing the definiteness of a noun or
noun phrase is not always enough to decide whether to generate a determiner in the target language,
and when necessary, to generate the appropriate one. Similarly, we adapted blocks for prepositions,
subordinate conjunctions and auxiliary verbs. To mention yet another block, we remove personal
pronoun nodes when acting as subject (the information is passed on to the predicate) as pro-drop
languages such as Spanish do not require that they appear explicitly because this is already marked
in the verb.

3. New language-specific blocks. 3 blocks were written from scratch to deal with Spanish-specific
features. These deal with attribute order, comparatives and verb tenses. Attribute order refers to the
position of adjectives with respect to the unit they modify. In English, adjectives occur before the
noun they modify, but this is the opposite - with some exceptions for figurative effect - in Spanish.
The block addressing comparatives creates additional nodes for the Spanish structure, which is
specially relevant for the cases where no separate comparative word is used in English. Finally,
a block was specifically written to address the complex verb tenses in Spanish. This block uses
the information about tense, perfectiveness and progressiveness of the English verb to select the
appropriate verb form in Spanish.

Overall, we see that most blocks are used (i) to fill in morphological attributes that will be needed in the
second step, (ii) to add function words where necessary, (iii) to remove superfluous nodes, and (iv) to
add punctuation nodes.

On a second step, the lemma and morphosyntactic information on the a-tree must be turned into word
forms to generate the w-tree. We used Flect (Dušek and Jurčı́ček, 2013) to do this, by training new
models for Spanish. Flect is a statistical morphological generation tool based on Python and Scikit-
Learn that learns morphological inflection patterns from corpora. We trained the system with a subset of
morphologically annotated Europarl corpus (530K tokens) where the system automatically learns how
to generate inflected word forms from lemmas and morphological features. Flect can inflect previously
unseen words as it uses lemma suffixes as features and predicts edit scripts that describe the difference
between the lemma and the form, which improves robustness.

On a third step, once we obtain the w-tree with the word forms, a number of blocks can be written to
polish the final output. For example, we use a block to concatenate the prepositions a and de with the
masculine singular article el, which should be presented as the single forms a+el→ al and de+el→ del.

4 Evaluation

We evaluated the new English-to-Spanish and Spanish-to-English TectoMT prototypes in three different
scenarios: using language-independent blocks only,7, adding the blocks written and adapted for Spanish,
and adding the domain-specific dictionary.

7This setup includes ixa-pipes tools and Flect models for Spanish analysis and synthesis, and bilingual transfer
models.
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Figure 4: a-level and t-level Spanish synthesis.

Figure 5: a-level and t-level English synthesis.

Also, we evaluated the new systems against a phrased-based statistical system. To this end, we built
two SMT systems, one per language direction. We used tools available in the Moses toolkit for tokeniza-
tion and truecasing, while mGiza was used for word alignment. For language modeling, we use SRILM
to train a different language model (LM) for each corpus available and to combine them through LM
interpolation. We trained the systems on bilingual corpora including Europarl, United Nations, News
Commentary and Common Crawl (∼355 million words). The monolingual corpora used to learn the LM
include the target-side texts of Europarl, News Commentary and News Crawl (∼60 million words). As
previously mentioned, our efforts focus on a question-and-answer (Q&A) scenario in the information
technology (IT) domain. Therefore, for tuning, we used a set of 1,000 in-domain interactions (question-
answer pairs). The original interactions were in English and they were translated into Spanish by human
translators.

We calculated BLEU scores for the systems on two different test sets. The first is another test-set of
1,000 in-domain interactions. The second is the newswire test-set used in the WMT11 campaign (Table
1) .

We can draw several conclusions from the BLEU scores obtained for each system and language
pair. First, we observe that the TectoMT prototypes do not yet beat the statistical systems, although
the English-to-Spanish system evaluated on the IT test-set remains very close, less than 2 BLEU points
behind. Because a large portion of the TectoMT systems is based on rules, the lower scores of the
baselines was to be expected given the effort put at this stage of development.

With regard to the TectoMT systems, we observe how the BLEU scores increase as we customize
the system. The baseline systems with only language-independent blocks score lower than the systems
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English-Spanish Spanish-English
IT WMT11 IT WMT11

Moses 28.12 26.91 31.92 25.24
TectoMT – language independent blocks 12.40 8.38 12.34 8.17
TectoMT – + Spanish blocks 23.62 13.92 14.67 8.50
TectoMT – + domain dictionary 26.40 13.25 15.82 8.23

Table 1: BLEU scores for the English-Spanish TectoMT prototypes

which include Spanish-specific blocks. For the English-to-Spanish system, BLEU scores almost dou-
ble. For the Spanish-to-English system scores also increase although not as much. When adding the
Microsoft dictionary (IT domain-specific), we observe that the BLEU scores increase almost 3 points for
the English-to-Spanish direction and over 1 point for the Spanish-to-English direction. It is worth noting
the small setback introduced by this specialized dictionary for the news domain with a drop of 0.67 and
0.27.

The scores also show the difference in development effort for the TectoMT systems in terms of lan-
guage direction. The baseline TectoMT systems score similarly for both directions, at around 12 BLEU
points for the IT test-set and 8 BLEU points for the WMT11 test-set. However, the priority given to
Spanish-specific blocks for synthesis result in a better system for the English-to-Spanish direction.

Finally, it is worth mentioning the difference in scores between the test-sets, as the IT test-set scores
substantially higher than the newswire test-set. This is probably because the IT domain test-set contains
shorter and less convoluted sentences and most development work was based on IT-domain text analysis,
even if the blocks written deal with generic linguistic features.

As a reference of the human effort required, we developed the new TectoMT systems over a period of
9 months.

5 Conclusions

In this paper we have shown the work done to develop entry-level deep-syntax systems for the English-
Spanish language pair following the tectogrammatical MT approach. Thanks to previous work done
for the English-Czech pair, we have reused most of the English analysis and synthesis modules, and
mainly focused on the integration of tools and the development of models and blocks for Spanish. In
particular, we have integrated the ixa-pipes tools for PoS and dependency parsing of Spanish, and
adapted its output to comply with the tecto-level representation of language, which uses universal labels.
For transfer, we have trained new statistical models for both English-to-Spanish and Spanish-to-English
directions. For synthesis, we have trained a new morphological model to obtain Spanish word forms.
Substantial effort was also put on writing sets of blocks to address differing linguistic features between
the language pairs across all stages with a total of 55 reused blocks and 5 new/adapted blocks for the
Spanish-to-English direction, and a total of 73 reused blocks and 19 new/adapted blocks for the English-
to-Spanish direction. The system is open source and can be downloaded from https://github.
com/ufal/treex. The evaluation has shown that the English-Spanish TectoMT prototype systems
do not yet score as high as a phrase-based statistical system. However, the TectoMT architecture offers
flexible customization options. We have shown that the BLEU scores can increase considerably as these
are integrated and tuned to the working language pair.
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Abstract

Despite the common assumption that word sense disambiguation (WSD) should help to improve
lexical choice and improve the quality of the output of machine translation systems, how to
successfully integrate word senses into such systems remains an unanswered question. While
significant improvements have been reported using reformulated approaches to the disambigua-
tion task itself – most notably in predicting translations of full phrases as opposed to the senses
of single words – little improvement or encouragement has been gleaned from the incorporation
of traditional WSD into machine translation.

In this paper, we present preliminary results that suggest that incorporating output from WSD
as contextual features in a maxent-based translation model yields a slight improvement in the
quality of machine translation and is potentially a step in the right direction, in contrast to other
approaches to introducing word senses into a machine translation system which significantly
impede its performance.

1 Introduction

Ambiguity is a common problem in language, caused by the phenomena of identical words having mul-
tiple, distinct meanings (Xiong and Zhang, 2014). To use a classic example, the word ‘bank’ could be
interpreted in the sense of the financial institution or as the slope of land at the side of a river, depending
on the context in which it is used. In natural language processing (NLP), word sense disambiguation
(WSD) refers to the process of solving this problem by determining the ‘sense’ or meaning of a word
when used in a particular context (Agirre and Edmonds, 2006).

In computational terms, WSD is a classification task, where the context in which a target word is
used provides evidence that helps to determine which class of words – sense – it should be assigned to
(Agirre and Edmonds, 2006). Most approaches to WSD in recent years have been ‘knowledge-based’,
with those classes of words stored in lexical ontologies such as WordNet (Fellbaum, 1998), where the
collective meanings of open-class words (nouns, verbs, adjectives and adverbs) are grouped together
as ‘synsets’. For tasks such as machine translation, ambiguous terms are a major potential source of
errors, as identical words with different meanings will normally have different target translations (Xiong
and Zhang, 2014). Thus, it has long been assumed that in order for a machine translation system to be
optimally successful, it must incorporate some kind of WSD component (Carpuat and Wu, 2005).

Most attempts to integrate WSD components into machine translation systems have met with mixed –
and usually limited – success. Early attempts at ‘projecting’ word senses directly into a machine transla-
tion system (Carpuat and Wu, 2005) were followed by a complete reformulation of the disambiguation
process as a multi-word ‘phrase sense’ disambiguation approach, yeilding some improvements in transla-
tion quality (Carpuat and Wu, 2007). More recently, a ‘word sense induction’ approach that assigns word
senses without the need for predefined sense inventories (such as WordNets) has been explored (Xiong
and Zhang, 2014), but the question of whether pure word senses from traditional, knowledge-based WSD
approaches can be useful for machine translation still remains.
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In this paper, we demonstrate that by including the output from WSD as a feature in a maximum en-
tropy (maxent)-based translation model, small gains in machine translation from English to Portuguese
can be obtained. The contribution of our work, albeit preliminary in nature, is in showing these gains,
however small, to be possible without having to reformulate WSD or drastically alter the way disam-
biguation is performed – the features added to the transfer model are direct outputs of a state-of-the-art
WSD algorithm, without any kind of intermediary conversion or reformulation of either the word senses
or the algorithm that delivers them.

We first explore previous efforts to integrate word senses into machine translation (Section 2), before
describing our own approaches to the problem (Section 3). Next, we present our evaluation of these
approaches, comparing different methods of integrating the output from a WSD process into a machine
translation system (Section 4). Finally, we discuss our findings (Section 5) before making our conclu-
sions (Section 6).

2 Related Work

Early work from Carpaut and Wu (2005) presented empirical results that cast doubt on the common
assumption that the disambiguation of word senses could help to improve the quality of machine transla-
tion systems. They demonstrated that many of the contextual features important to WSD algorithms are
implicit in the language models that are trained to perform machine translation, making them WSD mod-
els in their own right (Carpuat and Wu, 2005). Despite acknowledging that dedicated WSD algorithms
are usually based on rich semantic data and that this should enable better predictions of lexical choice to
be made, they showed a machine translation system trained on complete parallel sentences (rather than
isolated target words as in WSD) to yield higher BLEU scores than a system where WSD output was
forced into the translation model (Carpuat and Wu, 2005).

Based on these outcomes, a reformulated disambiguation process was proposed, with multi-word
phrases the target as opposed to single words (Carpuat and Wu, 2007). Leveraging the fact that ma-
chine translation models are trained using contextual features from full sentences already, this ‘phrase
sense disambiguation’ approach was designed to “generalize WSD to multi-word targets” and to in-
corporate the “crucial assumptions” that underly the sentence-based translation models into the sense
disambiguation process as well (Carpuat and Wu, 2007). Across a number of evaluation metrics for
machine translation, the phrase sense disambiguation approach was found to yield improved transation
quality, suggesting that the sentence-based translation models used by machine translation systems can
benefit from the addition of phrase-based (rather than word-based) sense disambiguation (Carpuat and
Wu, 2007).

Further attempts to reformulate WSD into a more phrase-based concept followed. Chanel et al (2007)
described having successfully integrated WSD into a machine translation system to obtain significantly
improved results, but actually create their ‘senses’ by extracting English translations from full phrases in
Chinese and using them as proposed translations . Inspired by traditional approaches to WSD, Giménez
and Màrquez (2007) also advocated the move from ‘word translation’ to ‘phrase translation’, describing
how lists of possible translations of a single source phrase can help to predict the correct translations of
complete phrases in a given target language.

Recently, a renewed interest in exploring whether traditional, single word-based WSD can be useful
for machine translation has emerged. Xiong and Zhang (2014) use the related technique of ‘word sense
induction’ (WSI) to investigate whether or not pure word senses can be integrated into machine transla-
tion in such a way as to yield improvements in translation quality, being successful in their approach to
predicting the senses of target words (rather than predicting their translations, as with the phrase-based
approaches to disambiguation) (Xiong and Zhang, 2014). However, WSI automatically induces senses
of words by clustering them together using their neighbouring words as context, without the need for a
predefined sense inventory as in traditional WSD (Xiong and Zhang, 2014). The question still remains
– how can word senses disambiguated using the rich semantic ontologies (such as WordNet) on which
traditional WSD is based be successfully integrated into machine translation systems?
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3 Description

This section outlines our implementation of WSD as part of a machine translation process, including
descriptions of the graph-based algorithm we use to perform the WSD, the machine translation system
and framework into which we implement it, and the two approaches we have taken to making use of
the information output by the WSD process: 1) forcing information into the input sentences (directly
affecting the alignment of words before the translation model is trained), and 2) including information as
features in a maxent-based translation model (which does not affect word alignment but rather directly
influences the training of the translation model).

3.1 WSD algorithm - UKB
To perform WSD we use UKB, a collection of tools and algorithms for performing graph-based WSD
over a pre-existing knowledge base (Agirre and Soroa, 2009; Agirre et al., 2014). Graph-based WSD, as
pioneered by a number of researchers (Navigli and Velardi, 2005; Mihalcea, 2005; Sinha and Mihalcea,
2007; Navigli and Lapata, 2007; Agirre and Soroa, 2008), allows knowledge bases such as WordNets
to be represented as weighted graphs, where word senses correspond to nodes and the relationships or
dependencies between pairs of senses correspond to the edges between nodes. The strength of the edge
between two nodes, corresponding to the relationship or dependency between two synsets, can then be
calculated using semantic similarity measures such as the Lesk algorithm (Lesk, 1986).

UKB uses graph-based representations of knowledge bases to choose the most likely sense of a word
in a given context, based on the dependencies between nodes in the graph (Agirre and Soroa, 2009).
Nodes (senses) ‘recommend’ each other based on their own importance – with the importance of any
given node being higher or lower depending on the importance of other nodes which recommend it – and
then follow a ‘random walk’ over the rest of the graph based on the importance of the nodes to whose
edges they are attached (Mihalcea, 2005; Agirre and Soroa, 2009). The final probability of a random
walk from the target word’s node ending on any other node in the graph determines the most appropriate
(probable) sense of the target word.

We choose to use UKB in our work for two reasons:

• UKB includes tools for automatically creating graph-based representations of knowledge bases in
WordNet-style formats.

• The algorithm used by UKB for performing WSD over the graph itself has been consistently shown
to produce results in line with or above the state-of-the-art (Agirre and Soroa, 2009; Agirre et al.,
2014).

For the purpose of our work, we are thus able to perform highly-efficient WSD over an accurate
graph-based representation of our chosen knowledge base (WordNet), meaning that any differences in the
results of our integration of disambiguated output into the machine translation system can be confidently
attributed to the integration process, rather than to the quality of the WSD output itself.

3.2 Machine Translation system - TectoMT
The machine translation system used in our work is TectoMT, a multi-purpose open source NLP frame-
work that allows different software modules and tools to be integrated with each other (Popel and
Žabokrtský, 2010)1. The framework is based on individual modules (known as ‘blocks’) that allow
new or existing tools to be created or ‘wrapped’ in such a way that they can be easily integrated at vari-
ous stages in a larger pipeline. These blocks are re-usable in different contexts and combinations (known
as ‘scenarios’) to perform a variety of NLP tasks and are designed to be language-independent where
possible, reducing the amount of repeated, expensive and time-consuming extra work usually needed to
integrate tools.

For machine translation, TectoMT breaks down the source language and reconstructs the target lan-
guage according to four layers of representation: the word layer (raw text), the morphological layer, the

1The TectoMT framework is now being developed under the name Treex: https://github.com/ufal/treex
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analytical layer (shallow-syntax) and the tectogrammatical layer (deep-syntax). Different combinations
of blocks make up each of the three scenarios needed for machine translation – one for analysis (of the
source language), one for transfer (of tectogrammatical nodes from source to target language) and one
for synsthesis (of the target language).

3.3 Integrating WSD output into a TectoMT-based pipeline

The first step in integrating the output produced by the WSD process into the machine translation pipeline
is to wrap the WSD process as a block that can be included in user-created scenarios using the TectoMT
framework. This new block converts input sentences to a format suitable for the UKB algorithm, and
then performs WSD on each sentence using a graph-based representation of our chosen knowledge base,
WordNet. For each word disambiguated by UKB, the returned output consists of the 8-digit synset
identifier of the appropriate sense in WordNet chosen at the end of the random walk over the graph.

The TectoMT WSD block then maps this output back onto the input sentence, either as the synset
identifier returned by UKB, an ‘unknown’ tag (‘UNK’, given to UKB but not able to be disambiguated)
or a ‘not applicable’ tag (‘ ’, not open-class and not given to UKB). This mapped WSD output is encoded
into the analytical layer of each word in TectoMT as an attribute of the given word. Once words in the
analytical layer have been assigned word senses as attributes, there are two ways with which we have
experimented making use of this information for training actual translation models:

3.3.1 Forcing synset identifiers into input sentences prior to creating translation models

Forcing the synset identifiers produced by the WSD process onto the input sentences prior to creating
translation models is achieved by taking the synset identifier from the WSD attribute stored in the ana-
lytical layer for a given word and using it in place of the original lemma. During the training of transfer
models, when alignments are made between sentences from parallel corpora in the source and target
languages, it should be the case that the forced synset identifiers help to create more accurate alignments
between pairs of words based on their meanings, rather than solely their lexical form2. In this paper, we
investigate two possible ways to force a synset identifier onto the lemma:

• Replacing the lemma with the synset identifier (e.g. ‘word’ becomes ‘01234567’)

• Appending the synset identifier to the lemma (e.g. ‘word’ becomes ‘word 01234567’)

If we consider a link between the English word ‘table’ and the Portuguese word ‘mesa’, we may find
that this alignment is made when ‘table’ should have been interpreted as a table of results, not in the
sense of the piece of furniture which would correspond to ‘mesa’. Replacing the lemma ‘table’ with the
synset identifier for table in the sense of the piece of furniture should ensure a more accurate alignment
between the appropriate sense of the word table and the Portuguese word ‘mesa’. Appending the synset
identifier to the lemma is an extension of this technique which we hypothesized might avoid potential
problems concerning lexical choice.

For example, it might be that in some situations two words such as ‘table’ and ‘desk’ in English might
belong to the same synset, but correspond to different words (‘mesa’ and ‘secretária’ respectively) in
Portuguese. By replacing the English words by the synset identifier and aligning that with the Portuguese
words, we are essentially assigning the main lemma of the synset (e.g. ‘table’) to both Portuguese words,
which while being better than assigning the wrong sense of table altogether, is not quite as accurate
as aligning ‘desk’ to ‘secretária’. Hence, by appending the synset identifiers to the original lemmas
(e.g. aligning ‘table 01234567’ to ‘mesa’ and ‘desk 01234567’ to ‘secretária’), we are hopefully able to
constrain alignments to the correct sense of source language words without introducing problems relating
to lexical choice.

2For the work described in this paper, we make no assumption about the number of synset identifiers found in the training
corpus before using them to align words. This may be an interesting caveat to explore in future work.
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3.3.2 Including synset identifiers as features of a maxent-based translation model
TectoMT leverages the alignments it finds between the words in pairs of sentences from a parallel corpus
to create and train maxent-based translation models, which are used later to perform machine translation
tasks. Maximum entropy (maxent) classifiers, which are used when the conditional independence of a set
of ‘features’ cannot be assumed, are common in NLP, where features such as neighbouring words usually
provide context and are therefore not independent. In TectoMT, for each word in the source language
that has more than one possible translation in the target language a maxent model exists to determine the
probability of any of those translations being correct based on contextual features such as neighbouring
words – words with only one translation have no ambiguity, and hence no need of a maxent model. For
statistical machine translation systems, previous research suggests that maxent-based translation models
are an effective way of leveraging the context provided by the neighbouring words of source sentences
(Ittycheriah and Roukos, 2007; Bangalore et al., 2007).

In order for maxent models to be created, analysis must have been performed on both the source and
target languages, in order for the models to be trained based on aligned parallel treebanks of sentences
represented as tectogrammatical (deep-syntax) trees. The maxent model for each word is trained using a
list of ‘samples’, which are themselves vectors between contextual features in the source language‘node’
(the tectogrammatical representation of the given word) and an output label (e.g. the lemma of the given
word). Contextual features might include information (such as lemmas) from neighbouring nodes in the
tectogrammatical tree (such as parent or sibling nodes), which help to provide the context in which a
particular word was used.

The maxent model learns, using this information, to output the correct label (target language lemma)
given a particular vector of source language contextual features (e.g. a sentence that we want to translate).
With the output from the WSD process already stored as an attribute of the analytical layer by the WSD
block that we added to the TectoMT framework (and hence propagated to the tectogrammatical layer),
synset identifiers can also be added as source language contextual features of words. Thus, the maxent
model can in theory constrain the expected probability of a possible translation as determined by the
neighbouring words in context to the particular sense in which a given word was used.

4 Evaluation

This section describes our evaluation of how the results of translation from English to Portuguese using
our baseline TectoMT-based machine translation system are affected by our two approaches to including
information from WSD in the process:

• Forcing synset identifiers into input sentences prior to creating translation models:

– By replacing lemmas with synset identifiers
– By appending synset identifiers to lemmas

• Adding synset identifers as features in a maxent-based translation model:

– As features of single nodes (words)
– As features of single nodes plus their parent nodes
– As features of single nodes plus their sibling (to the left and right) nodes
– As features of single nodes plus their parent and sibling nodes

4.1 Experimental System Setup
In order to run the evaluation, we introduce different combinations of interchangable blocks to the anal-
ysis scenario in TectoMT, in order that WSD is performed and that its output (synset identifiers) can be
propagated from the analytical to the tectogrammatical layer, and thus included in the eventual transla-
tion model. As described in section 3.3.2, aligned parallel treebanks of sentences are needed in order for
maxent models to be created for target words, and so analysis scenarios are set up for both the source
language (English) and the target language (Portuguese). WSD, however, is only included on the source
language side (English).
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Method BLEU
Baseline 21.67

Replacing Synsets 20.46
Appending Synsets 19.86

Synset as Feature 21.69

Table 1: A comparison of incorporating
WSD into a machine translation system by 1)
forcing synset identifiers into input sentences
(replacing lemmas or appending synsets to
lemmas) or 2) adding synsets identifiers to a
maxent model as features

Feature Types
(Synset of ...)

BLEU

None (Baseline) 21.67

Single Node 21.69
+ Parent 21.61
+ Siblings 21.68
+ Parent & Siblings 21.62

Table 2: A comparison of different types of
features that can be added to a maxent model,
including the synset identifiers of 1) single
nodes, 2) single nodes plus parent nodes, 3)
single nodes plus sibling nodes, and 4) single
nodes plus parent and sibling nodes

For both approaches, the WSD block is used to run the graph-based UKB algorithm (desribed in
section 3.1) over the source sentences in English. In order to use the algorithm, we create the required
dictionary files and corresponding graph from version 3.0 of the Princeton English WordNet (Fellbaum,
1998), comprising approximately 117,000 synsets. The 8 digit identifiers of any of these synsets can
be assigned by the algorithm to given words in an input text, based on the context provided by their
surrounding open class words.

For the adding synset identifiers as features in a maxent-based translation model approach, the inclu-
sion of the WSD block in the scenario is all that is needed – the synset identifiers it returns are included
in the analytical layer of each word, and from there propagated to the tectogrammatical layer and, finally,
the maxent model where they are called upon as features. For the forcing synset identifiers into input
sentences approach, two additional (interchangable) blocks are included in the scenario: 1) a block for
replacing a given lemma in the input sentence with the synset identifier returned by the WSD, and 2) a
block for appending the synset identifier returned by the WSD to a given lemma in the input sentence.

4.2 Training Corpus
Transfer models are trained over a small, in-domain corpus. The corpus primarily consists of 2000
sentences of questions and answers from a chat-based technology help service (1000 questions and 1000
answers). These sentences are sourced from a real-world company who employ human technicians to
provide technical assistance to their customers (technology users) through a chat interface. These 2000
sentences are supported by a number of aligned terms sourced from localized terminology data from
Microsoft (13,000 terms) and LibreOffice (995 terms), making the total size of our in-domain corpus
approximately 16,000 paired segments (of which 2000 are full sentences and approximately 14,000 are
paired terms). No development set or tuning steps are needed in the TectoMT-based pipeline.

4.3 Results of Including WSD Output in Machine Translation
By interchanging the different blocks incorporated into the analysis scenario of TectoMT to train different
translation models for evaluation, we can compare our two chosen approaches to including the output
from WSD in a machine translation system: 1) forcing synset identifiers into the input sentences prior
to creating translation models, and 2) adding synset identifers as features in a maxent-based translation
model. For all evaluations, we analyse the different translation models using a test corpus of 1000 full
answers to questions asked by people seeking assistance in resolving problems using technology, as per
the domain of the training corpus described in section 4.2.

Table 1 shows that when translating these 1000 sentences from English to Portuguese using a baseline
TectoMT system (without WSD), we achieve a BLEU score of 21.67. Using the first approach (forcing
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sysnet identifers into the input sentences prior to creating translation models), the scores we obtain are
significantly lower than the baseline (at a 0.05 level of significance) – 20.46 when we replace lemmas
with synset identifiers, and 19.86 when appending the sysnet identifier to the lemma. Using the second
approach (adding synset identifiers as features in a maxent-based translation model) we obtain a BLEU
score of 21.69, very slightly above the baseline.

Table 2 shows our experimentation with adding different types of features into the maxent-model for
a given word: 1) synset identifiers from single nodes (the standard method, as used to obtain the score
in Table 1), 2) synset identifiers from single nodes plus the parent node in the tectogrammatical tree,
3) synset identifiers from single nodes plus the sibling (left and right) nodes, and 4) synset identifiers
from single nodes plus the parent and sibling nodes. With a baseline BLEU score of 21.67 and a slightly
improved score of 21.69 when including the synset identifiers of single nodes, as before, the table demon-
strates that adding the synset identifiers of sibling nodes yields a BLEU score of 21.68, slightly above
the baseline but slightly below single nodes only, while adding parent nodes alone or parent and sibling
nodes yields BLEU scores of 21.61 and 21.62 respectively, significantly and almost significantly lower
than the baseline (at a 0.05 level of significance).

5 Discussion

In addition to showing that adding synset identifiers as features in a maxent-based translation model
yields a BLEU score very slightly above our baseline TectoMT-based machine translation system –
suggesting that with some further tweaking output from WSD can be useful for machine translation,
without the need for any kind of intermediary reformulation or conversion – there are some interesting
outcomes from our evaluation. Namely, we found it surprising that:

• Using the first approach (forcing synset identifiers into the input sentences prior to creating the
tranlation models), appending synset identifiers to lemmas yielded worse results than replacing
lemmas with synset identifers.

• Using the second approach (adding synset identifiers as features in a maxent-based translation
model), adding the synset identifiers of the parent nodes as extra features in the maxent model
decreases the BLEU score.

A possible explanation for the weaker results obtained in general using the first approach is that maxent
models, as their description in section 3.3.2 demonstrates, already include lemmas from neighboring
nodes as contextual features, in much the same way as graph-based WSD algorithms such as UKB rely
on the open class words surrounding a given target word as context. The maxent model could be seen
as repeating a very similar task, and while it may not be as wholly dedicated to it as a WSD-specific
algorithm, we may find that the maxent models used in machine translation are “sufficiently accurate” so
that the output from WSD is only able to improve on the lexical choice offered by the maxent model in
a “relatively small proportion of cases” (Carpuat and Wu, 2005).

Taken in this context, and assuming as proposed by Carpaut and Wu (2005) that machine translation is
excessively dependent on the language models it trains, it could be the case that forcing synset identifiers
into the input sentences prior to creating translation models only introduces excessive data that cannot
really be put to any efficient use. This might also explain how appending synset identifiers to lemmas
yielded even lower results than replacing lemmas with synset identifiers – while the case made in section
3.3.1 for appending the synset identifiers in order to preserve lexical choice seems persuasive, it may
in fact be that as well as introducing a redundant synset identifier that cannot be put to much use, this
renders the lemma itself redundant (by way of being intrinsically tied to that identifier), thus increasing
the sparsity of the input sentences.

The second surprising outcome of our evaluation was the discovery that while adding the synset iden-
tifiers of nodes as features in a maxent model yields a slight improvement over the baseline BLEU score,
adding synset identifiers from parent nodes as well can have a significantly adverse effect on results (the
inclusion of sibling nodes seems to ‘limit the damage’ to a very small degree). This seems counterintu-
itive – introducing the output of WSD as a feature in the maxent model seems to yield an improvement,
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as Xiong and Zhang (2014) also found when creating a sense-based translation model based on their re-
forumulated word sense induction approach, and one would expect that providing a maxent model with
more features would introduce more useful constraints.

As a possible explanation for this outcome, we consider that not all of the open class words UKB tries
to disambiguate will be assigned an appropriate synset identifier – a particular word may not have had an
entry in WordNet to begin with, or in a very small number of cases the synset identifier assigned by the
algorithm may not have been the correct one. For parent and sibling nodes – parent nodes in particular
– this inevitably means that for a given node whose synset identifier is included in the maxent model, it
might often be the case that its parent (and to a lesser extent sibling) nodes in the tectogrammatical tree
do not have synset identifiers of their own – we are probably not adding many synset identifiers anyway
by choosing to include the extra information from these nodes. We might also consider that if multiple
additional synset identifiers are all very different from each other, they might act as conflicting rather
than constraining information, thus increasing the overall redundancy or sparsity of the data included in
the maxent model.

6 Conclusions

We have presented preliminary findings that suggest that it is possible to improve machine translation
results by incorporating information about word senses, making direct use of the output of WSD tools
and without the need for any kind of intermediary reformulation or conversion of either the WSD tool
itself or its output. By including the output from WSD as features in a maxent-based translation model,
we obtain slightly higher BLEU scores than with a baseline version of the system running without these
added features (translating from English to Portuguese), indicating that these features can increase the
likelihood of pairings between words and phrases occuring in the translation model.

While the improvement we report is not statistically significant, we find any improvement at all to
be in contrast to other approaches we experimented with – replacing synset identifers with lemmas,
appending synset identifiers to lemmas, and including the synset identifiers of the parent nodes of words
as features in the maxent-based translation model – all of which produce results significantly below
our baseline machine translation system. While these results seem counterintuitive – more information
should provide more constraints on the probabilities of alignments and pairings between words being
made – we interpret them as showing that the extra data we introduce to the translation model with these
approaches has resulted in too much sparsity, rather than constraint. It would be interesting in future
work to explore whether a paraphrasing (Marton et al., 2009) or synonym-based approach as opposed to
a strictly word sense-based approach might yield different outcomes.

While the work we report in this paper is in a preliminary state, the small improvement achieved by
adding synset identifiers as features of single nodes in a maxent-based translation model does represent
a step in the right direction, and merits further discussion and experimentation. The results reported
here are based on a very controlled evaluation, trained on a small, in-domain corpus. We acknowledge
that training on large, open domain corpora such as Europarl might produce different results, and aim
to investigate this in the future. In addition, we also plan to explore how different types of word sense
information and different approaches to WSD itself, as well as alternative machine translation evaluation
metrics (possibly more semantically-oriented), might affect the gains we report using the ‘senses as
features’ approach we describe here.
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Abstract

In this work lexical choice in generation for Machine Translation is explored using lex-
ical semantics. We address this problem by replacing lemmas with synonyms in the
abstract representations that are used as input for generation, given a WordNet synset.
In order to find the correct lemma for each node we propose to map dependency trees
to Hidden Markov Trees that describe the probability of a node given its parent node.
A tree-modified Viterbi algorithm is then utilized to find the most probable hidden tree
containing the correct lemmas given their context. The model is implemented in a Ma-
chine Translation system for English to Dutch. The output sentences, generated from the
modified dependency structures, contained a lot of erroneous substituted words. This is
mainly due to the fact that a large amount of synsets, used as input for the model, are
incorrect. The input to the model now contains the synset that is most frequent given
the lemma in general, not the optimal synset given the domain of the sentences. We
therefore propose to implement a domain specific WSD-system in our pipeline in future
work.

1 Introduction

This paper addresses the problem of lexical choice in the generation phase of a deep Machine
Translation (MT) system using a Hidden Markov Tree Model (HMTM). In Natural Language
Generation (NLG), an abstract representation is transformed into one or more linguistic ut-
terances. Lexical choice is a subtask of this process, in which lemmas need to be chosen to
adequately express the content of the intended utterance.

For the generation component of a deep MT-system, the challenge lies in the construction of
sentences on the basis of deep representations. The process in this setup includes two major
steps: the construction of deep structures for the sentence to be generated and the realization of
the sentence on the basis of the grammar which will ensure that the created structure conforms
to all the requirements for a complete structure with respect to the grammar formalism. The
second step entails the selection of appropriate lexical units and the application of syntactic
rules.

In a deep transfer-based MT system the problem of lexical choice also needs to be addressed.
The choice of a correct lemma is a very difficult task that depends heavily on the quality of the
dictionaries used. WordNet (Fellbaum, 1998) could be seen as such a dictionary, where each
synset has its own definition. A WordNet is a lexical semantic database containing lemmas cor-
responding to their word meanings including the most general and central part of the language.
Querying WordNet for a word returns a group of one or more synonyms called a synset. Those
synsets contain a set of words of the same class, which are roughly synonymous in one of their
This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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meanings. They are well suited for lexical choice, as they contain sets of lemmas that are syn-
onymous in specific contexts. Unfortunately, not every lemma in a synset is a full synonym of
its original word which could cause severe errors when selecting the most probable variant for
each node without considering the context. We therefore claim that lexical choice should take
into account both context and distributional information.

Consider for instance the English word “free” in example 1. In the current MT-system for
English to Dutch, this word is always translated with “vrij”. This is a satisfactory decision in
example 1 where the meaning of “not occupied” is required. In the sentence in 2, however,
“free” means “free of charge” which, in Dutch, should be translated with “gratis”. It would
therefore be useful if the input to the system would contain the meaning of a target lemma
instead of a literal translation of the source lemma, for example in the form of a WordNet
synset. This information could be used to find an appropriate lemma given its meaning.

(1) You can leave some free space in your shared folders.
→ Je kan wat vrije ruimte overlaten in je gedeelde mappen.

(2) This is free antivirus software.
→ Dit is *vrije antivirus software.

A similar error occurs in example 3 where the word “limiet” is translated with “grens”. This
translation fits in this particular context, both meaning “border”, in example 4, however, the
meaning of a quantitative limit is required. In both cases the chosen word by the system is the
most frequent option and is therefore selected in both contexts.

(3) There have to be limits to all things.
→ Overal zijn grenzen aan.

(4) Having a large number of of shared folders can occupy your space limit.
→ Als je veel gedeelde mappen hebt kan dat je ruimte *grens beperken.

.
These examples indicate that a correct translation requires a lexical choice process that can

determine which translation of a source word is most appropriate in its target context. In
transfer-based MT the task of lexical choice can be formulated as follows: given a semantic
or conceptual specification, find its best realization. We can define the process of lexical choice
as the operations of deleting, modifying or adding lexical units in order to form more natural
sentences with a correct meaning.

The problem of lexical choice in MT has not yet been investigated thoroughly, probably due
to the fact that its output is hard to evaluate. For example, when a different lemma is returned
than the one from the gold standard it might still be appropriate to the context but marked as
an error by the evaluation method. Stede (1993) was the first to recognize the need to involve
semantic context. A number of algorithms and models have been developed for lexical choice,
for example Edmonds and Hirst (2002) developed a model for choosing between words with
similar core meanings but with different connotations.

WordNet has not often been used as a dictionary for lexical choice in generation, even though
work exists on the usefulness of such a resource for NLG-related tasks such as domain adap-
tation and paraphrasing (Jing, 1998). For instance, Basile (2014) proposed an unsupervised
algorithm for lexical choice from WordNet synsets called Ksel that exploits the WordNet hier-
archy of hypernyms/hyponyms to produce the most appropriate lemma for a given synset.

Also, the use of Hidden Markov Tree models for lexical choice in Wordnet synsets is novel.
Crouse et al. (1996) introduced the adaptation of Hidden Markov Chains to tree models for
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signal processing. The corresponding adaptation of the classic Viterbi algorithm, used to re-
store the hidden state tree, was introduced by Durand et al. (2004). Previous applications of
the tree model are: image segmentation, signal classification, denoising and image document
categorization (Durand et al., 2004). The use of these models in natural language processing is
fairly new and has been applied to word alignment (Kondo et al., 2013) and Machine Transla-
tion (Žabokrtský and Popel, 2009). The latter was the first to apply HMTMs to lexical choice
using a variant of the Viterbi algorithm in the transfer phase of a deep-syntax based machine
translation system.

To tackle the problem of lexical choice we propose the mapping of a dependency structure
over synsets to a dependency structure over lemmas while taking into account both context
information as the frequency of the lemma and synset combination. A dependency tree is a
labeled tree in which nodes correspond to the words of a sentence. It contains edges that rep-
resent the grammatical relations between those words, such as nominal subject, direct object or
determiner. We map the lemma of each content word in the tree to a WordNet synset and subse-
quently find a correct substitution based on a target language synset. The goal is to improve the
output of a Machine Translation (MT) system built on deeper semantic engineering approaches.

The independence assumptions made by Markov Tree Models can be useful for modeling
syntactic trees. They fit dependency trees well, since they assume conditional dependence (in
the probabilistic sense) only along tree edges, which corresponds to intuition behind depen-
dency relations (in the linguistic sense) in dependency trees. Moreover, analogously to applica-
tions of HMMs on sequence labeling, HMTMs can be used for labeling nodes of a dependency
tree, interpreted as revealing the hidden states in the tree nodes, given another (observable)
labeling of the nodes of the same tree by use of a tree-modified Viterbi algorithm.

This paper is structured as follows. In Section 2, we introduce the HMTM model for lex-
ical choice and the modified Tree-Viterbi algorithm. Section 3 gives a brief description of
experiments that test the model. Then, section 4 discusses the obtained results and possible
improvements. Ultimately, this paper is concluded in Section 5.

2 Method

The first part of this section contains a brief description of Hidden Markov Tree Models. Then,
the tree-viterbi algorithm for lexical choice is introduced.

2.1 Hidden Markov Tree Models

HMTMs are analogous to well known Hidden Markov Models (HMM). However, instead of
a linear chain of observations and their corresponding hidden states they map over a tree of
observations. They are similar to Hidden Markov chains given the fact that they both contain
a sequence of observed states with corresponding hidden states. Furthermore, they both rely
on transition probabilities and emission probabilities. Like HMMs, HMTMs are used with two
main algorithms. Namely a smoothing algorithm that calculates the probabilities of being in
state j at node n given the observed data, and a global restoration algorithm. More information
about HMTMs can be found in Diligenti et al. (2003) and in Durand et al. (2004).

In the Markov process we use for the choice of lemmas, we assume that we are given
a directed dependency tree. The tree is defined by an observed tree containing synsets in
their nodes, W = {W (n1), ...,W (nm)}, and a hidden tree containing target lemmas, T =
{T (n1), ..., T (nm)}, isomorphic to the observed tree where m is the size of the tree. The func-
tion π : 1, ..., N → 0, ..., N , π(n) represents the unique parent of node n with 0 corresponding
to the root of the tree. Each node, except the root node, refers to a word of in the sentence.
Like HMMs, HMTMs make two independence assumptions: given T (π(n)), T (n) is condi-

75



tionally independent of other nodes and given T(n), W (n) is conditionally independent of other
nodes. From these assumptions, we obtain the following distribution on pairs (W,T ) of ob-
served synsets and target lemmas:

p(w, t) =
N∑
n=1

p
(
tn | tπ(n)

)
p (wn | tn) (1)

When using HMTM for lexical choice, the hidden states consist of actual lemmas, whereas
the observations are word senses (synsets). Analogously to regular Hidden Markov Models,
HTMTs are defined by the following parameters:

Transition probabilities:
• P (hiddenstate|hiddenstate)

Emission probabilities:
• P (observation|hiddenstate)

The transition probabilities of a lemma w given a grammatical relation rel and its parent p
can be collected from large parsed corpora. For example, if we want the probability of the
lemma “beer” given a parent “drink” in the dependency relation “obj”:

p (beer | obj1, drink) = freq(drink, obj1, beer)

freq(drink, obj)
(2)

The frequency of a lemma given its parent is the count of how often its parent appears in
relation rel and N is the total number of p as arguments of rel. For example, if “drink” occurs
40 times with an object, and in 20 cases that object is the lemma “beer”, then we estimate the
probability as 0.5.

The emission probabilities can be estimated from sense annotated corpora. We need to es-
timate the probability of an observed output (the sense), given the hidden state (the lemma).
Consider for example the chance of the hidden state “beer” given its synset:

P ({lager, beer, ale, ...}|beer) (3)

If the lemma “ale” is associated in the corpus with the “beer” sense in 89 out of a 100 cases,
then the emission probability will be estimated as 0.89.

2.2 Tree-Viterbi
Durand et al. (2004) claim that it is not possible to involve a downward recursion starting at the
root state of the tree due to the fact that this would require the results of the upward recursion.
The main difference between a tree-viterbi as opposed to its original one is therefore that it starts
at its leaf nodes and continues upwards. In every node of each state and each of its children,
a downward pointer to the optimal hidden state of the child is stored. Downward recursion is
then used along the pointers from the optimal root state in order to retrieve the most probable
hidden tree.

3 Experiments

In this section, we present the data and the systems that were used for the experiments. In the
experiments the tree-modified Viterbi algorithm for lexical choice is applied to the dependency
structures that are used for generation in a deep MT-system. Subsequently the output, containing
dependency trees, is used as input to the generator.
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3.1 Data
The system for lexical choice is implemented in a machine translation system and tested on
Batch 1 of the QTLeap Corpus Osenova et al. (2015). This IT help desk scenario contains
translations of customer data from Portuguese into each of the project languages.

3.2 Systems
The sentences are analyzed and translated from English to Dutch with Treex, a modular frame-
work for natural language processing (Popel and Žabokrtský, 2010). It contains a tree-to-tree
machine translation system whose translation process follows the analysis-transfer-synthesis
pipeline (Žabokrtský and Popel, 2009).

In the analysis phase, a source sentence is transformed into a deep syntax dependency rep-
resentation which is mapped to the target language. Isomorphism of the tree representation is
mostly assumed in both languages, translating the tree node-by-node. In the English to Dutch
pipeline, the resulting dependency trees are transferred to Dutch abstract abstract representa-
tions that are the input for the generation of Dutch sentences.

The Alpino system for Dutch (van Noord, 2006) is a collection of tools and programs for
parsing Dutch sentences into dependency structures, and for generating Dutch sentences on the
basis of an abstraction of dependency structures. Since dependency structures for generation
contain less information (such as word order and word inflection) than dependency trees, we
refer to them as Abstract Dependency Trees (ADT’s) (De Kok, 2013). ADTs model the gram-
matical relations between lexical items and categories built from lexical items. Similar to a
normal dependency tree, it contains a syntactical representation of a sentence in the form of a
tree. In the Alpino Generator (De Kok, 2013), the grammar is used in the reverse direction as
for parsing. The process starts with an abstract dependency structure and then uses the grammar
to construct one or more sentences.

3.3 Setup
Before passing the abstract dependency trees through the tree-viterbi algorithm, first the lin-
guistic parent is found for each node. Then, every lemma is matched with a synset. The model
takes abstract dependency structures over senses as input. The current system, however, does
not provide synsets for a given node. Therefore, a first step is necessary that maps abstract
dependency structures over lemmas to abstract dependency over senses.

Synonyms of frequent senses of a source lemma are more likely to provide correct substi-
tutions than synonyms of the lemmas infrequent senses. Therefore, in order to find the input
synsets for each node, the most frequent synset given a lemma in a sense tagged corpus, in this
case DutchSemCor (Vossen et al., 2012), is taken. These synsets now represent the observed
state of the nodes. For these synsets the probability of their hidden states is computed. For
example, the most frequent synset for the English lemma “dust” in sentence 5 appears with the
following lemmas in the sense tagged corpus: substantie,materie, stof . These lemmas can
be seen as the hidden states in the model. In this context the best choice would be “stof”, and
is up to the The tree-viterbi algorithm to choose this option over the other lemmas, given the
synset and its context.

(5) Dust makes the computer cooling more difficult.

To find the different variants of the lemmas for replacement, the Dutch WordNet, Cornetto
(Vossen et al., 2013), is used. A transition probability matrix is created from large parsed
corpora that can be queried for each lemma given its parent lemma and their relation. The
tree-viterbi algorithm is then applied on the trees to find the most probable lemmas given their
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context and the frequency of the synsets. The lemmas in the optimal hidden tree are used to
substitute the original lemma in the node. Ultimately, the trees are generated with the Alpino
generator.

4 Results

From a manual evaluation of the results, it becomes clear that the system does not substitute a
lot of lemmas. This is due to the fact that we only have counts for a limited amount of synsets
in the sense annotated corpus. Some substitutions that are made can be considered satisfactory.
For instance, the replacement of the adjective “simpel” (simple) to “eenvoudig” (simple) in
sentence 6 maintains the meaning of the original sentence. However, the output mostly contains
a lot of substitutions that are not considered correct, possibly changing the intended meaning
of the target sentence. This happens for example when the system substitutes the noun “toets”
(key) for “proef” (test) in sentence 7. Since the lemma “toets” is very common in the 1000
interactions of the corpus, it is substituted incorrectly 16 times. Other frequent words that are
replaced with a wrong synonym are, for example, “controleren” (meaning “to check” in most of
the contexts) is replaced with “beheersen” (to rule) 98 times while “raam” substitutes “venster”
(window frame) 19 times.

(6) Je kan een simpel [=> eenvoudig] programma gebruiken.
You can use a simple program.

(7) Klik op de CTRL toets [=> proef].
Click the CTRL key [=> test].

One reason that a target synonym cannot substitute a source synset in some context is if the
input synset appears in a different sense than the one in which it is synonymous with the target.
In most cases, the algorithm chooses the same lemma. However, when the lemmas in a synset
belong to the wrong sense, the system has a high chance of selection a wrong lemma.

Consider for example the lemma “menu”, that appears in two Dutch synsets:

(8) a. {menukaart:noun:1’, ’menu:noun:1’, ’spijskaart:noun:1’, ’kaart:noun:4’}
b. {’menu:noun:3’, ’keuzemenu:noun:1’}

Since the data that was used for the experiment belongs to the IT domain, the second synset,
in bold, is the preferred one. However, the first synset, with the meaning of restaurant menu is
more frequent in the sense tagged corpus, as it was created in a general domain corpus, giving
the option of substituting “menu” with “kaart” (map).

An interesting observation is that, if the target lemmas from these wrong senses are com-
pared with other lemmas in the Viterbi-algorithm, they can cause each others to be replaced
erroneously as well. This problem becomes apparent when looking at example 9.

(9) Klik op het pictogram waarop “achtergrond beeld” [→ “toneel voorstelling”] staat.
Click on the icon that says “background image” [→ “theater performance”].

In this sentence, both lemmas “achtergrond” (background) and “beeld” (performance) have
a bigger emission probability to be replaced by their original lemma. However, the combina-
tion of “theater” (which already is a doubtful synonym for “achtergrond” in any context) and
“voorstelling”, has a very frequent transition probability, causing an inaccurate substitution for
both lemmas in this sentence.

Domain clearly is a problem when choosing the right sense. The frequency distribution of
the senses of lemmas depends on the genre and domain of the text under consideration. A
possible solution to finding the right synset, without using context information, is to use Word
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Sense Disambiguation (WSD) from untagged text. This method aims to obtain, for each target
word, the sense which is predominant in the target, domain-specific, corpus. McCarthy et al.
(2004), for example, used such a corpus to construct a distributional thesaurus of related words.
Subsequently, they disambiguated each target word using pairwise similarity measures based
on WordNet, taking as pairs the target word and each of the most related words according
to the distributional thesaurus up to a certain threshold. This method would not only allow
our system to consider more lemmas for replacement, because more frequency information on
synsets would then be available, it would also have a bigger chance of starting from correct
input synsets. In future work we therefore intend to integrate this method in our pipeline.

Another problem that is highly likely to cause errors in the tree-viterbi algorithm are mistakes
in the analysis and/or the transfer phase. For example, errors in the assignment of part-of-speech
tags or dependency relations could have negative effects on the outcome since it would not be
possible to find correct transition probabilities in the transition matrix. These errors should be
solved in the analysis phase of the MT-pipeline and are therefore beyond the scope of this work.

5 Conclusion

In this work we intended to tackle the problem of lexical choice in order to improve the output
of a Machine Translation system. To solve this we proposed the use of HMTMs for lexical
choice. A dependency structure over synsets is mapped to a dependency structure over lemmas
while taking into account both information of the context and the frequency of the lemma and
synset combination. Although the obtained results contain some satisfactory substitutions, the
system makes a lot of unwanted ones as well. These wrong substitutions are mostly due to
the choice of the incorrect (most frequent) sense for a lemma in this particular domain. We
therefore proposed the use of a method that first finds the right synset for a given lemma before
applying the tree-viterbi algorithm.
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Abstract

This study explores methods for developing a large scale Quality Estimation framework for Ma-
chine Translation. We expand existing resources for Quality Estimation across related languages
by using different transfer learning methods. The transfer learning methods are: Transductive
SVM, Label Propagation and Self-taught Learning. We use transfer learning methods on the
available labelled datasets, e.g. en-es, to produce a range of Quality Estimation models for Ro-
mance languages, while also adapting for subtitling as a new domain. The Self-taught Learning
method shows the most promising results among the used techniques.

1 Introduction

A common problem with automatic metrics for Machine Translation (MT) evaluation, such as BLEU
(Papineni et al., 2002), is the need to have reference human translations. Also such metrics work best
on a corpus of sentences, while they are not informative for evaluation of individual sentences (Specia
et al., 2009). The aim of Quality Estimation (QE) is to predict a quality score for sentences output by
MT without reference translations, for example, to judge whether they provide a suitable basis for Post-
Editing by the human translator or it is better to ask the human to translate this sentence from scratch.
The QE task can be framed as a classification or a regression problem, where most of the methods for
QE rely on supervised Machine Learning (ML) algorithms.

The WMT evaluation campaigns (Bojar et al., 2014) goal is to create a framework to test the perfor-
mance of participating systems for the QE task. The WMT organizers provide the datasets for training
and testing new proposed automatic QE approaches. However, the existing training data is only available
for a limited number of languages. For example, in the WTM 2014 the available pairs were en-es and
en-de (throughout the paper we will be using the two-letter ISO codes to indicate the languages). Most
of the final MT users and projects need a wider variety of source and target languages for evaluation.

Turchi and Negri (2014) propose an automatic approach to produce training data for QE and tackle the
problem of scarce training resources. The approach is based on features across the MT output, the post
edited version and the human reference translation. The method produces a classifier for binary estima-
tion by exploiting the characteristics of good translations and their relation with the post-editing process.
The produced data is labelled with a binary quality score (i.e. god or bad translation) to overcome biases
on the annotation.

On the other hand, Birch et al. (2008) propose a large scale study on the performance of 110 European
language pairs over Europarl. The study is based on the measuring the contribution of different features
between language pairs that improve or are irrelevant to the performance of an MT system. The features
consist of complexity indicators of morphology, language relatedness given word similarity, number of
reordering between language pairs and number of reorderings over alignments. Overall, closely related
languages showed the best potential for SMT. However, this study is mainly based on standard automatic
evaluation metrics such as BLEU.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
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In this ongoing work, we propose a way to produce a number of evaluation pairs for the QE task
by utilising relatedness between languages, for example, by producing a QE evaluation for the en-pt
pair from an existing en-es training set. More specifically we will study the use of different transfer
learning methods to transfer classifiers across related languages. Our intuition is that sentences with
similar quality scores are close or share a lower-dimensional space in terms of features across related
languages. In other words, good/bad quality sentences might show similar characteristics between the
available training data (e.g. en-es) and unknown data (e.g en-pt). This makes possible the training of a
classification algorithm to predict QE by sharing information from the available dataset into unknown
datasets.

We show preliminary results on transferring training data from en-es European Parliament (Europarl)
domain to en-es, en-it and en-pt in the subtitling domain. The transfer learning method that shows
promising results is the one based on dimensionality reduction of the input. However, this method is
sensible to the distribution of classes of the training dataset, where it tends to predict the majority of the
training class. In addition, we provide further directions into transfer training data based on the similarity
of related languages for source languages that are not present in the original WMT QE datasets, but also
to tackle the unbalanced training dataset. We use a simple heuristic for assigning possible labels for the
unlabelled data based on edit distance scores between available reference translations and MT outputs.
However, this simple heuristic hurts the performance of the methods, where a more appropriate way of
adding similarity information is as an indicator for domain shift.

2 Background

Methods for QE are commonly based on computing similarity scores and information supplied by the
MT decoding process between source and machine translations. These sources of information are used
as features to train a supervised ML algorithm to predict QE scores. Specia et al. (2013) develop
the standard baseline framework for QE based on features that attempt to quantify the complexity of
a segment to be translated. Other previous works extend the baseline framework by adding complex
features between the source and machine translations. For example, syntax information of tree labels
counts (Avramidis, 2014), information to quantify the acts of translation between any two datasets with
respect to a reference in the same domain (Bicici and Way, 2014) and word alignment, word posterior
probabilities and diversity scores features (Camargo de Souza et al., 2014).

Beck et al. (2014) use multi-task learning techniques to improve QE by sharing information among
different domains. However, the QE task is only applied to certain language pairs. On the other hand,
de Souza et al. (2015) integrate QE into a CAT tool with online learning to constantly train the quality
prediction model. This method can be used to extract QE training data or prediction models for several
domains and languages.

Transfer learning aims to transfer information learned in one or more source tasks (e.g. labelled
dataset) and use it to improve learning in a related target task (e.g. unlabelled dataset) (Pan and Yang,
2010). In our case the labelled dataset comes from a QE training set for an existing language pair, while
unlabelled datasets are either for the same pair, but in a completely different domain, or for another
language pair.

2.1 Transductive Support Vector Machine

Transductive Support Vector Machine (TSVM) takes into consideration a particular test dataset and tries
to minimise errors only on those particular instances (Vapnik, 1995). The particular test dataset is added
into the training dataset without labels. The TSVM learns a large margin hyperplane classifier using
labelled training data, but at the same time it forces that hyperplane to be far from the unlabelled data.
The TSVM considers f that maps inputs x to outputs y. However, TSVM does not construct a function
f where the output of the transduction algorithm is a vector of labels, and the method transfers the
information from labelled instances to the unlabelled.
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2.2 Label Propagation
Label propagation (Zhu and Ghahramani, 2002) is based on a graph that connects similar instances. The
nodes labels (i.e. instances) propagate to neighbouring nodes given proximity. This model resembles
the k-NN nearest neighbours where closer data points tend to have similar labels. The l labelled training
examples {(x1, y1), (x2, y2)..., (xl, yl)} and the u unlabelled training examples {x1, x2, ..., xu}, where
the Y classes are known. Label propagation estimates the Yu given the training examples. The method
creates a fully connected graph where the nodes are all the labelled and unlabelled instances. The edges
are weighted based on the euclidean distance between the nodes where the closer nodes have a larger
weight value. The nodes have soft labels that are propagated thorough all the edges modifying the
unlabelled instances, and the larger the weight the easier is to propagate the label across the graph.

2.3 Self-taught Learning
Raina et al. (2007) propose a semi-supervised transfer learning method based on using labelled and un-
labelled data. However, this method does not assume that the unlabelled dataset is drawn from the same
distribution as the labelled. The unlabelled data is used to learn a lower dimensional feature representa-
tion of the inputs. With this representation new instances can be classified in the lower dimensional space.
The unlabelled data is used for dimensionality reduction of the labelled dataset, which is commonly used
with sparse high dimensional data.

The transfer learning problem algorithm is defined as:

• l training examples {(x1, y1), (x2, y2)..., (xl, yl)}, y ∈ Y;
where Y is the output.

• u unlabelled examples {x1, x2, ..., xu}.

• Learn the higher-level representation by dimensionality reduction by using sparse-coding.

• Compute new labelled training dataset with new representation x̂l.

• Use standard classification methods with new training dataset.

3 Methodology

In this section, we describe the QE features and the transfer learning setup. We use the standard QE
baseline features and available implementations of transfer learning methods making the experiments
easy to reproduce. The QE task (Bojar et al., 2014) considers word-level, sentence-level and document-
level estimation. The types of annotation (i.e. labels) for the predicted output scores and ranks consist
in:

Post-editing effort The perceived effort of a translator to edit a sentence scored with quality labels such
as:
1 = perfect translation, no post-editing needed at all;
2 = near miss translation: translation contains maximum of 2-3 errors, and possibly additional errors
that can be easily fixed (capitalisation, punctuation);
3 = very low quality translation, cannot be easily fixed.

HTER The minimum edit distance score between the machine translation and its manually post-edited
version in [0,1].

Post-editing time The real valued estimate of the time (in milliseconds) it takes a translator to post-edit
the translation.

We focus our experiments on the sentence-level estimation with the labelling based on post-editing
effort. However, the transfer learning methods can be applied on every estimation subtask. We chose
the 3-way labelling in contrast to the binary classification given that post-editing is a common scenario
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present in our domain of interest (subtitling). We want to show to the translator sentences with good
quality but also sentences that can be saved by a small post-editing effort. In addition, we belied that
the 3-way labelling is a straight forward scheme for annotators. Our current experiments only cover the
testing of a small number language pairs with manual evaluation.

3.1 QE feature description
The baseline features for QE are defined for the source, target (i.e. MT output) and the translations
(i.e. relations between them). The QuEsT framework (Specia et al., 2013) implements different types of
features. The features can be divided on different families:

Complexity Indicators Features related to the source text of how complex to translate a sentence can
be, such as, number of tokens, language model and average number of translations.

Confidence Indicators Features related to the fluency of the MT output, such as, number of tokens,
language model, and number of occurrences of the target word within the target sentence.

Fluency Indicators Features related to the adequacy (meaning preservation) of the translation, such as,
ratios of tokens between the source and target, ratio of punctuation and syntactic similarity. The
framework also introduces features related to a specific decoding process when available, such as,
global score of the system and number of hypotheses in the n-best list.

We use the baseline setup of the framework that consists of 17 baseline features that are language
independent.

3.2 Transfer learning setup
We aim to apply transfer learning, when texts in related languages are treated as unlabelled out-of-domain
data. For example, the available en-es labelled dataset is used to transfer information into the unlabelled
en-pt to predict QE scores on that unknown language pair. The methods used in this study required as
input a small amount of labelled instances and large amounts of unlabelled instances for training. We
define three models for transfer information from labelled QE data into unlabelled data. The models are
as follows:

TSVM Model based on a Transductive Support Vector Machine.

LP Model based on Label Propagation.

STL Model based on Self-taught learning.

We use SVMlin1 for training the TSVM, given that is optimised to work with a large number of
instances. Our TSVM uses an RBF kernel with no hyper-parameter optimisation. Each instance in the
unlabelled dataset is added to the training dataset. This improved training data is used to perform testing.
For classification, we implement the one-against-one strategy, and the final decision is given by voting.

For the LP model, we use the implementation from the scikit-learn2 toolkit with the RBF kernel with
no hyper-parameter optimization.

We modify the STL MATALB implementation from the Stanford Deep learning course3. The STL
model first finds the weights b from the unlabelled xu dataset by training a sparse autoencoder. The b
weights come from the optimisation of the cost function on sparse coding, where one of the compo-
nents are the basis vectors. This is a technique for dimensionality representation of the input. Second,
the model produces a modified training dataset by using the unlabelled b weights on an second autoen-
coder. The modified training dataset is a lower-dimensional representation of the input features (i.e. QE
17 baseline features). We use the softmax regression as classifier with the default parameters and the
modified labelled training dataset.

1http://vikas.sindhwani.org/svmlin.html
2http://scikit-learn.org/dev/index.html
3https://github.com/amaas/stanford_dl_ex
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A new test dataset can be predicted by using the weights b to represent the data points into the same
lower-dimensional space. We normalize the features with the z-score. However, we do not have access
to any development datasets for tuning the xu autoencoder for our unlabelled language pairs. For the
parameter selection of the unlabelled autoenconder, as suggested in (Bergstra and Bengio, 2012), we run
a random search over a split of the modified training dataset (90% training, 10% validation) in order
to find: the size of the hidden dimension, the sparsity parameter, the weight decay parameter and the
sparsity penalty. We run the random search parameter optimisation for each unlabelled language pair,
thus learning parameters on each unlabelled language pair.

In addition, we define a model based on Logistic Regression without the aid of any transfer learning
as the baseline. The baseline is trained with an available dataset (e.g. en-es).

4 Experiments

In this section, we describe the data used to train and evaluate our transfer learning models for related
languages pairs. We show results on manual evaluation for different language pairs of the en to Romance
languages (es, pt and it). We also show cross validation results for the en-de pair.

4.1 Data description

The labelled data xl for the pair en-es come from the WMT 2014 QE shared task4, which consist of 3,816
source and target pairs. The en-es WMT data belong to the proceedings of the European Parliament
(Europarl) domain. The distribution of instances for each quality label is: 1-949, 2-2010 and 3-857. Our
objective is to score sentence-level QE for related languages for the en-target translation direction, where
we vary the target language.

The unlabelled data consist of subtitles from the Zoo corpus. Zoo is a proprietary corpus of subtitles
produced by professional translators. We split the Zoo corpus into unlabelled training xu and testing for
each one of the pairs: en-es, en-pt and en-it. We also test the pair en-de Europarl given that labelled
data is available with 600 sentences for testing, as well as, a correspondent out-of-domain data with 297
sentences. We use the Moses (Koehn et al., 2007) toolkit with a phrase-based baseline to extract the
QE features for the xl, xu, and testing. The Zoo dataset used for the SMT baseline is: 80K training
sentences, 1K sentences for tuning and 2K sentences for testing. We use the Zoo test 2K sentences for
testing our proposed methods. We use fast-align5, KenLM6 with a 3-gram language model and Moses
with the standard feature set. In addition, we run a small QE manual evaluation over a random sample
of 100 sentences from the Zoo test dataset (original 2K sentences) for the pairs: en-es, en-pt and en-it.
The annotation is performed by one professional translator for Post-editing effort at sentence level with
3-way labelling. The evaluation metric is the absolute classification accuracy for the 3-way labelling
between the QE system prediction and the test random sample.

4.2 Results

Table 1 shows the results on the validation dataset for the parameter optimisation of the STL model.

Table 1: Accuracy results for the validation dataset with the STL model.

Model
Pair

en-es en-pt en-it

STL 0.56 0.55 0.57

We run the random search for learning parameters on the modified training data x̂l for each unlabelled
dataset, where the number of iterations for each random search is 100. The labelled training set is en-es
EuroParl and the unlabelled are: es, it and pt (subtitling domain). Each unlabelled dataset consists of

4http://www.statmt.org/wmt14/quality-estimation-task.html
5https://github.com/clab/fast_align
6https://kheafield.com/code/kenlm/
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10K sentences from the Zoo training section. It is worth noticing that the learned hidden dimension for
each language pair is: en-es 15, en-pt 9, en-it 13, where the original input dimension is 17 features.

Table 2 shows the accuracy results for each transfer learning method on the test samples. The TSVM
shows a poor performance in comparison to the other techniques. A possible reason for this result is
the lack of parameter optimisation, in specific the parameter for setting the fraction of positive instances
for the unlabelled data. Our models are trained with a very unbalanced dataset. The LP results show
a similar behaviour, where we manually set a low gamma parameter in order to change the strong bias
of predicting all the instances into one class. However, we are able to optimize parameters for the STL
given that the model operates over a transformation of the labelled training dataset.

Table 2: Accuracy results for Transfer Learning models on Romance languages pairs.

Model
Pair

en-es en-pt en-it

TSVM 0.52 0.30 0.30
LP 0.49 0.26 0.31

STL 0.53 0.48 0.49
Baseline 0.50 0.38 0.33

The STL model outperforms both the baseline and other transfer techniques. The pair en-es achieves
the best results given that is an instance of domain adaptation between the same translation pairs. The
performance difference between the STL model and the baseline for en-es is narrow with the same
language pair but with different domains (i.e. WMT and subtitling). However, the other pairs achieve
lower results in comparison because they have different domains and labelled training language data.

We vary the number of training instances for the en-pt xu to test the effect over the labelled data. Table
3 shows the 10-fold cross validation and test results on the variation of unlabelled data for the en-pt pair.
The number of unlabelled data used for the variation test is as follows: 500, 1K, 10K and 20K. The
variation of unlabelled instances marginally affects the cross validation, but over the test dataset the 10K
dataset improves the results. However, the balance of labelled instances highly affects the space induced
by the autoencoder.

The labelled dataset tends to have the majority of instances into the classes 1,2, where the STL shows
a bias on the prediction for the majority of the classes 1 and 2 from the training dataset. In order to tackle
the unbalance labelled data, we use a simple heuristic of selecting the missing 3 class instances, where
the Levenshtein distance between the available reference translations and MT outputs is over a certain
threshold. The examples are tagged as 3 and added into the labelled training data. For the en-pt pair the
number of artificial examples is 161 with a threshold of 0.5. The accuracy result for the validation is
0.56 and the test accuracy is 0.37. The validation score shows a marginal improvement, but the heuristic
hurts the test accuracy. Yang and Eisenstein (2015) use features to characterise multi-domain shift by a
binary vector of which instances share a given domain. In our case the instances can share information by
computing similarity between the labelled and unlabelled datasets, as well as, the use of dimensionality
reduction.

Table 4 shows the accuracy results on en-de Europarl (1400 instances) as the labelled training and

Table 3: Accuracy results 10-fold cross validation and test dataset en-pt for unlabelled data size variation.
Unlabelled data
size (sentences)

10-fold cross validation
Training

Test

500 0.52 0.39
1K 0.54 0.37
10K 0.54 0.48
20K 0.53 0.41
50K 0.53 0.40
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en-de subtitling (10K instances) as the unlabelled dataset for the STL model. We use 10-fold cross
validation over the modified training dataset because there is no test data available for en-de subtitling.
Over the validation dataset the en-de achieves 0.61, with a hidden dimension of 15.

Table 4: Results 10-fold cross validation for STL on the en-de pair.

Model
Pair

en-de

STL 0.47
Baseline 0.48

Table 5 shows the results of the STL result for the available WMT Europarl data,WMT out-of-domain
data and the baseline.

Table 5: Accuracy results for en-de WMT data.

Model
Pair en-de

WMT Europarl
en-de

WMT out-of-domain
STL 0.51 0.49

Baseline 0.44 0.41

The distribution of classes on the labelled en-de dataset is: 1-317, 2-522 and 3-561. This labelled
dataset shows to be balanced in comparison with the en-es. The STL test results outperforms the baseline
for the Europarl and out of domain, but the results are lower for the cross validation. The STL model
assigns predictions to classes as follows: 1-14.14%, 2-43.10% and 3-42.76%.

5 Future work

We have presented work in progress for developing QE for a large number of language pairs. We use
different transfer learning mechanisms to tackle the lack of QE training data for related languages. We
show results on a small sample for the English to Romance languages directions, and we test the con-
tribution of related languages also on the en-de test dataset. The STL model shows to outperform the
other transfer methods. However, this model is sensible to the balance of the labelled training data, so
that a different balance in the unlabelled dataset affects the final performance. We tried to overcome the
unbalanced data by adding artificial instances for the under represented class, but this heuristic was not
successful.

For future work, we plan to extend the testing with various annotators in order to acquire reasonable
testing datasets for the language pairs under study. We will add extra features to the QuEst baseline based
on similarity scores as domain indicators to characterise differences and similarities between domains.
We will also expand the available labelled resources into other language families given that the STL
only requires as input a small amount of labelled data and larger amounts of unlabelled data, where
we can expand QE across related languages. Finally, we would like to try converting the QE models
for translation into related languages to a model for estimating the translation quality between these
languages, for example, using en-es and en-pt models to estimate the quality of es-pt translations.
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Rudolf Rosa, Ondřej Dušek, Michal Novák, Martin Popel
Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
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Abstract

We present an implementation of domain adaptation by translation model interpolation in the
TectoMT translation system with deep transfer. We evaluate the method on six language pairs
with a 1000-sentence in-domain parallel corpus, and obtain improvements of up to 3 BLEU
points. The interpolation weights are set uniformly, without employing any tuning.

1 Introduction

Statistical machine translation (SMT) is now a well-established field of natural language processing,
with many real-world applications. The core of an SMT system is the translation model (TM), created
from parallel data. For many language pairs, especially those where one member of the pair is English,
parallel data in several domains are often abundant; typical examples are legal texts (e.g. Europarl), film
subtitles, books, and newspapers. Thus, it is usually easy to build SMT systems for these domains with
reasonable performance.

For other domains, quite the opposite is often true – the amount of in-domain parallel data is low,
which limits the accuracy of translation systems trained on such data. Therefore, the small in-domain
data are typically combined with larger available out-of-domain data. The simplest method that can be
employed is data concatenation, where all the available parallel data are merged and used to train one
TM. However, this method is not optimal (Daumé III, 2009) because the TM is usually biased towards
translations that are more frequent in the merged data, which are often translations from the larger out-
of-domain data; the effect of the small in-domain data tends to be “washed out”.

Several authors (see Section 5) have instead successfully employed the method of TM interpolation,
in which in-domain and out-of-domain TMs are created separately, and linear interpolation is then used
to obtain the final TM. As each of the TMs can be assigned a different weight, it is possible to promote
the in-domain TM, effectively biasing the decoder towards the target domain.

In our work, we successfully implement domain adaptation by TM interpolation in the TectoMT sys-
tem, a hybrid SMT system based on deep language processing and deep transfer. We apply the system
to translation of user requests and helpdesk answers in the information technologies (IT) domain, with
only 1000 in-domain parallel sentences available, in addition to large out-of-domain data. For several
reasons, we use uniform interpolation weights without any tuning (see Section 3). We show our method
to be very successful, with the interpolated model achieving improvements of several BLEU points over
the individual TMs across six translation directions: EN↔CS, EN↔ES, EN↔NL (English to and from
Czech, Spanish and Dutch).

We briefly present TectoMT in Section 2. In Section 3, we describe our implementation of domain
adaptation by model interpolation. Section 4 evaluates our method using the QTLeap IT helpdesk corpus,
Section 5 reviews related work, and Section 6 concludes the paper and presents directions for future
research.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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2 TectoMT System

TectoMT is a structural machine translation system with a tree-to-tree transfer on the deep syntax layer,
first introduced by Žabokrtský et al. (2008). It is based on the Prague “tectogrammatics” theory of Sgall
et al. (1986). The system uses two layers of structural description with dependency trees: surface syntax
(a-layer, a-trees) and deep syntax (t-layer, t-trees).

The analysis phase is two-step and proceeds from plain text over a-layer to t-layer (see Section 2.1).
The transfer phase of the system is based on maximum entropy context-sensitive translation models
(Mareček et al., 2010) and Hidden Markov Tree Models (Žabokrtský and Popel, 2009) (see Section 2.2).
The subsequent generation phase consists of rule-based components that gradually change the deep target
language representation into a shallow one, which is then converted to text (see Section 2.3).

2.1 Analysis
The analysis phase consists of a pipeline of standard NLP tools that perform the analysis to the a-layer,
followed by a rule-based conversion to t-layer.

In the analysis pipeline, the input is first segmented into sentences and tokenized using rule-based
modules from the Treex toolkit1 (Popel and Žabokrtský, 2010). A statistical part-of-speech tagger and
dependency parser are applied to the tokenized sentences and conclude the a-layer analysis part.2 The
a-trees contain one node for each token of the sentence with its surface word form and the lemma (base
form), its part-of-speech/morphology, and its surface dependency label.

A t-tree is a dependency tree where only content words (nouns, full verbs, adjectives, adverbs) and
coordinating conjunctions have their own nodes; grammatical words such as prepositions or auxiliary
verbs are hidden. Each node has the following attributes:

• t-lemma – deep lemma,

• functor – a deep-syntactic/semantic role label,

• formeme – a concise description of its morpho-syntactic surface form (Dušek et al., 2012), e.g.,
v:fin for a finite verb or n:in+X for a noun in prepositional phrase with the preposition in,

• grammatemes – a set of deep grammatical attributes, covering properties such as tense, gender,
number, person, or modality.

T-trees are created from a-trees using a set of rules which collapse auxiliaries and assign all the required
attributes to each t-node.

2.2 Transfer
In the transfer phase, an initial target t-tree is obtained as a copy of the source t-tree. Target t-lemmas
and formemes of the t-nodes are suggested by a set of TMs, and the other attributes are transferred by a
set of rules.

For both t-lemmas and formemes, we use two separate TMs:

• MaxEnt TM – a discriminative model whose prediction is based on features extracted from the
source tree. The discriminative TM (Mareček et al., 2010) is in fact an ensemble of maximum en-
tropy (MaxEnt) models (Berger et al., 1996), each trained for one specific source t-lemma/formeme.
However, as the number of types observed in the parallel treebank may be too large, infrequent
source t-lemmas/formemes are not covered by this type of TM.

• Static TM – this is only a dictionary of possible translations with relative frequencies (no contextual
features are taken into account). This model is available for most source t-lemmas/formemes seen
in training data.3

1http://ufal.mff.cuni.cz/treex and https://github.com/ufal/treex
2The modules used for the analysis in the individual languages vary, but all of them follow the same structure. For instance,

the English pipeline uses the Morče tagger (Spoustová et al., 2007) and the MST parser (McDonald et al., 2005).
3Both the MaxEnt and the Static TM are subject to pruning during training, with a higher threshold used for MaxEnt; see

Section 4.2 for more details.
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When performing the transfer, the two TMs are combined via interpolation. Each of the models is
assigned an interpolation weight – the translation probabilities emitted by the model are multiplied by
the model’s weight, and weights of both models are normalized to sum up to 1.

After the TMs are applied, each t-tree node contains a list of possible formemes and a list of possible
t-lemmas, along with their estimated probabilities. There are two possible ways of combining the lists:

1. Just using the first item of both lists (the simplest way, but its performance may not be ideal since
incompatible combinations are sometimes produced).

2. Using a Hidden Markov Tree Model (Žabokrtský and Popel, 2009), where a Viterbi search is used
to find the best t-lemma/formeme combinations globally over the whole tree.

In the current TectoMT version, HMTM is only used in EN→CS translation. HMTM for the remaining
languages will be added in the near future.

2.3 Synthesis
The synthesis is a pipeline of rule-based modules (Žabokrtský et al., 2008; Dušek et al., 2015) that
gradually change the translated t-tree into an a-tree (surface dependency tree), adding auxiliary words
and punctuation and resolving morphological attributes. Some basic word-order rules are also applied.

The individual a-tree nodes/words are then inflected using a morphological dictionary (Straková et al.,
2014) or a statistical tool trained on an annotated corpus (Dušek and Jurčíček, 2013). The resulting tree
is then simply linearized into the output sentence.

3 Domain Adaptation by Model Interpolation

The general approach of domain adaptation by model interpolation is rather simple:

1. Train a TM on out-of-domain data,

2. Train a TM on in-domain data,

3. Interpolate the TMs,

4. Translate using the interpolated TM.

As mentioned in Section 2.2, TectoMT uses four TMs by default – a Static formeme TM, a MaxEnt
formeme TM, a Static t-lemma TM, and a MaxEnt t-lemma TM. Therefore, we train this set of four
models on each of the datasets.

Even in the original TectoMT pipeline, TM interpolation is used to combine a Static model with a
MaxEnt model; however, it only supported interpolation of one Static model with one MaxEnt model.
Therefore, we extended the pipeline to allow interpolation of multiple TMs; for each model, one must
specify the model file, the type of the model (Static/MaxEnt), and its interpolation weight.

In our setup, we use the default MaxEnt–Static interpolation weights as defined in TectoMT, and we
use the same weights for in-domain TMs and out-of-domain TMs. This has a similar effect to training
the TMs on concatenated out-of-domain and in-domain data with the in-domain data duplicated as many
times as to have the same size as the out-of-domain data (modulo some hard thresholds).

The standard approach, as applied in phrase-based SMT systems, would be to use tuning on an in-
domain development set to find a well-performing set of weights, by employing an optimizer such as
MERT or PRO. However, we do not apply tuning in our setup our in-domain training dataset is very
small (1000 sentences only) and we do not want to further divide it into training and development parts
and we had not enough time to apply cross-validation. Still, we believe to be able to perform weight
tuning in future, which may lead to additional performance gains.

4 Evaluation

We evaluate our implementation on a task for the QTLeap project. We first describe the datasets used for
training and testing our system (in Section 4.1), then list the settings used for training (in Section 4.2),
and finally discuss the results we obtained (Section 4.3).
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4.1 Dataset

In-domain

Our in-domain data set comes from the QTLeap corpus,4 which is a set of IT-related user requests
(“questions”) and helpdesk responses (“answers”) in English, translated into Basque, Bulgarian, Czech,
Dutch, German, Portuguese, and Spanish. In this paper, we only evaluate using Czech, Dutch, and
Spanish.

Currently, two 1000-sentence batches are available to us, Batch1 as a development and training set,
and Batch2 as a test set (this division is given by the QTLeap project setup). Moreover, the data are
not divided into the batches randomly, but sequentially, so they all come from the same domain, but
the topics in Batch1 and Batch2 are somewhat different (i.e., the similarity of Batch1 sentences to other
Batch1 sentences is greater than the similarity of Batch1 sentences to Batch2 sentences).

For translations into English, we use Batch1q (user requests) as the in-domain training data. For
translations from English, we use Batch1a (helpdesk answers) as the in-domain training data. This
reflects the inteded purpose of the MT systems and the final application of translating user questions into
English and helpdesk answers back to the original language (Czech, Dutch, Spanish).

Out-of-domain

We use the following corpora to train our out-of-domain models (each language contains parallel texts
with English):

• Czech – CzEng 1.0 (Bojar et al., 2012), with 15.2 million parallel sentences, containing a variety of
domains, including fiction books, news texts, EU legislation, and technical documentation.

• Dutch – A combination of Europarl (Koehn, 2005), Dutch Parallel Corpus (Macken et al., 2007),
and KDE technical documentation; 2.2 million parallel sentences in total.

• Spanish – Europarl, containing 2 million parallel sentences.

Monolingual

For Czech as the target language, we used the WMT News Crawl monolingual training data (2007–
2012, 26 million sentences in total) to train the HMTM.5 Other target languages do not use an HMTM
(see Sections 2.2 and 4.2).

4.2 Setup

We use the QTLeap TM training makefile6 to train a Static and a MaxEnt TM on both in-domain and
out-of-domain data. As discussed in Section 3, we do not use tuning on development data to set TM
pruning thresholds and interpolation weights.

Two thresholds are used to prune the TMs:

• MinInst – the minimum number of instances required to train a model for a single source t-
lemma/formeme,

• MinPerClass – the minimum number of instances for the same target class (translation variant of a
t-lemma/formeme) so that this class is included in the classification.

The MaxEnt TM thresholds for the out-of-domain are set higher since much more data (and noise)
is available. We used MinInst=100 and MinPerClass=5 for out-of-domain TMs and MinInst=2 and
MinPerClass=1 for in-domain TM. The Static TM thresholds are MinInst=2 and MinPerClass=1.

For TM interpolation, we use an identical set of weights for the out-of-domain TM and for the in-
domain TM; these are listed in Table 1.
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TM TM type
for Static Maxent

Formemes 1.0 0.5
T-lemmas 0.5 1.0

Table 1: Weights of TMs in interpolation; the same set used both for out-of-domain TMs and in-domain
TMs in all translation directions.

Translation Out-of-domain In-domain Interpolation Improvement
EN→CS 30.60 28.41 31.27 +0.67
CS→EN 27.11 21.51 28.25 +1.14
EN→ES 20.35 23.28 26.48 +3.20
ES→EN 18.50 18.54 20.44 +1.90
EN→NL 23.03 21.37 24.29 +1.26
NL→EN 37.03 33.68 38.93 +1.90

Table 2: Automatic evaluation in terms of BLEU on QTLeap corpus Batch2. Results obtained using out-
of-domain TMs only, in-domain TMs only, and the interpolation of both in-domain and out-of-domain
TMs. Improvement in BLEU is relative to the better of the Out-of-domain and In-domain results.

4.3 Results and Discussion
The results of our experiments on QTLeap corpus Batch2 are summarized in Table 2 (Batch2q for trans-
lations into English, Batch2a for translations from English). They show that for all translation directions,
using the interpolation of out-of-domain TMs with in-domain TMs performs better than using any of the
two TM types individually. The improvements range from 0.67 BLEU for EN→CS to 3.20 BLEU for
EN→ES. We do not have a conclusive explanation for the variation in the amount of the improvement
achieved.

In most cases, using (only) the in-domain TM leads to worse results than using (only) the out-of-
domain TM. This is to be expected, as the in-domain data are extremely small. Interestingly, for EN→ES,
the in-domain TM beats the large out-of-domain TM by nearly 3 BLEU points; in the other direction,
the results of the two setups are comparable. We are unsure about the reason behind that.

5 Related Work

A seminal work on domain adaptation by Daumé III (2009) lists eight approaches:

• SRCONLY, TRGONLY, LININT – these correspond to our experiments (using out-of-domain model
only, in-domain-model only, and a linear interpolation of both, respectively), but the linear interpo-
lation constant is tuned on a development set.

• ALL – concatenation of training data.

• WEIGHT – as ALL, but the out-of-domain training examples are downweighted so the in-domain
examples (which are typically much fewer) have bigger effect on the resulting model. The weight
is chosen by cross-validation.

• PRED – the prediction of the out-of-domain model is used as an additional feature for training the
final model on the in-domain data.

• PRIOR – out-of-domain weights are used as a prior (via the regularization term) when training the
final model on the in-domain data (Chelba and Acero, 2004).

4http://metashare.metanet4u.eu/go2/qtleapcorpus
5http://www.statmt.org/wmt13/translation-task.html
6See cuni_train/Makefile in https://github.com/ufal/qtleap.
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• EASYADAPT (called AUGMENT in the original paper, sometimes referred to as the “Frustratingly
Easy Domain Adaptation”) – create three variants of each feature: general, in-specific and out-
specific; train on concatenation of in- and out-of-domain data, where on in-domain data, the general
and in-specific features are active and on the out-of-domain data, the general and out-specific fea-
tures are active.

Daumé III (2009) showed that EASYADAPT outperforms the other methods (on a variety of NLP
tasks, but not including MT) in the cases when TRGONLY outperforms SRCONLY.7 Otherwise, LININT,
PRED and WEIGHT were the most successful methods. In a follow-up work (Daumé III et al., 2010),
EASYADAPT was improved to exploit also additional unlabeled in-domain data.

In MT, many different approaches to domain adaptation have been attempted. Similarly to our ex-
periments, authors combine the predictions of two separate (in-domain and general-domain) translation
models (Langlais, 2002; Nakov, 2008; Sanchis-Trilles and Casacuberta, 2010; Bisazza et al., 2011) or
language models (Koehn and Schroeder, 2007) in phrase-based statistical MT. Others concentrate on ac-
quiring larger in-domain training corpora for statistical MT by selecting data from large general-domain
corpora that resemble the properties of in-domain data (e.g., using cross-entropy), thus building a larger
pseudo-in-domain training corpus. This technique has been used to adapt language models (Eck et al.,
2004; Moore and Lewis, 2010) as well as translation models (Hildebrand et al., 2005; Axelrod et al.,
2011) or their combination (Mansour et al., 2011; Dušek et al., 2014).

6 Conclusion and Future Work

In this paper, we presented our implementation of machine translation domain adaptation by translation
model interpolation in the TectoMT system. We evaluated the method using large out-of-domain parallel
data and small in-domain parallel data (1000 sentences) in the domain of computer helpdesk requests and
responses, using 6 translation directions. The evaluation showed our method to perform well, achieving
improvements up to 3.2 BLEU over using only a single training dataset.

In the coming year, we will obtain additional in-domain data, which will allow us to use a portion of
the data for tuning the interpolation weights. We are therefore planning to implement an interpolation
weights optimizer for TectoMT and try different domain-adaptation techniques (EASYADAPT, PRED and
WEIGHT).
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Abstract

In this paper, we present some preliminary results on Statistical Machine Translation from
Bulgarian-to-English and English-to-Bulgarian. Linguistic knowledge has been added gradu-
ally as factors in the MOSES system. The tests were performed on the QTLeap corpus data in
IT domain for Pilot 1. The training was done on news parallel data as well as on IT domain
data. The BLEU scores show that the addition of linguistic knowledge improves the Machine
Translation.

1 Introduction

In the recent years, machine translation (MT) has achieved significant improvement in terms of transla-
tion quality (Koehn, 2010). Both data-driven approaches (e.g., statistical MT (SMT)) and knowledge-
based (e.g., rule-based MT (RBMT)) have achieved comparable results shown in the evaluation cam-
paigns (Callison-Burch et al., 2011). However, according to the human evaluation, the final outputs of
the MT systems are still far from satisfactory. For that reason, we explore an approach that incrementally
incorporates linguistic knowledge into an SMT system.

There has not been much study on the language pair Bulgarian – English, mainly due to the lack of
resources, including corpora, preprocessors, etc. There was a system published by Koehn et al. (2009),
which was trained and tested on the European Union law data, but not on other domains like news. They
reported a very high BLEU score (Papineni et al., 2002) on the Bulgarian – English translation direction
(61.3). The direction from English to Bulgarian was even less explored.

In the QTLeap project1 linguistic knowledge is gradually added to SMT systems with the aim to
achieve better translation in both directions: EN-to-X language and X language-to-English. The incre-
mental process is organized in several pilots. Pilot 0 sets the baseline, which means that no linguistic
knowledge is added. Pilot 1 introduces some initial linguistic knowledge through the incorporation of
some features such as part-of-speech, lemma, etc. In the setting that involved Bulgarian, we also added
some general information on the ontological type of the word: referent or event. Pilots 2 and 3 will
integrate further knowledge, such as lexicons, semantic annotations, etc.

In this paper, we focus on the Bulgarian-to-English and English-to-Bulgarian translation, and mainly
explore the approach of building on the SMT baseline, which is already augmented with linguistic fea-
tures. More precisely, we explore the impact of the bilingual morphological lexicons in the translation
process.

These are the motivations behind our approach: 1) the SMT baseline trained on a decent amount of
parallel corpora already proved to be a good direction to go. Thus, more knowledge has to be added

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1http://qtleap.eu/
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for further lines of improvement; 2) the MT system can profit from the incorporation of knowledge
additional to the common linguistic factors. Such additions include lexicons, gazetteers, etc.

The rest of the paper is organized as follows: Section 2 mentions some related approaches. Section 3
presents information on preparation of the data and Section 4 describes the preprocessing of the data and
introduces our factor-based SMT model which allows us to incorporate various linguistic features into
an SMT baseline, including some semantic features. We show our experiments in Section 5 as well as
some preliminary evaluation of the results. The conclusions and future work are presented in Section 6.

2 Related Work

Our work is closely connected to the transfer-based MT models. Ideally, given the availability of two
deep grammars for some language pair, we would be able to translate through the transfer of the deep
representations.

One such setting was developed in the framework of the Head-driven Phrase Structure Grammar
(HPSG) within the DELPH-IN community2. The deep representation is delivered by the Minimal Re-
cursion Semantics (MRS) analyses. They are usually delivered together with the syntactic analyses of
the text. There already exist quite extensive implemented formal HPSG grammars for English (Copes-
take and Flickinger, 2000), Spanish (Marimon, 2010), German (Müller and Kasper, 2000), and Japanese
(Siegel, 2000; Siegel and Bender, 2002). All grammars are harmonized with a Grammar Matrix (Ben-
der et al., 2002). At the moment, precise and linguistically motivated grammars, customized on the
base of the Grammar Matrix, have been or are being developed for Norwegian, French, Korean, Italian,
Modern Greek, Spanish, Portuguese, Chinese, etc. There also exists a Bulgarian Resource Grammar –
BURGER3.

The transfer in this setting is usually implemented in the form of rewriting rules. For instance, in
the Norwegian LOGON project (Oepen et al., 2004), the transfer rules were hand-written (Bond et al.,
2005; Oepen et al., 2007), which involved a large amount of manual work. Graham and van Genabith
(2008) and Graham et al. (2009) explored the automatic rule induction approach in a transfer-based MT
setting two Lexical Functional Grammars (LFGs), which was still restricted by the performance of both
– the parser and the generator. Lack of robustness for target side generation is one of the main issues,
when various ill-formed or fragmented structures come out after transfer. Oepen et al. (2007) use their
generator to generate text fragments instead of full sentences, in order to increase the robustness.

However, since a real large-scale grammar for Bulgarian is still not available, we take an SMT system
as our ‘backbone’ which robustly delivers some translation for any given input. Then, we incrementally
augment SMT with deep linguistic knowledge. In general, what we are doing is still along the lines
of previous work utilizing deep grammars, but we build a more ‘light-weighted’ transfer model over
dependency parses.

One of the MRS-related semantic formalisms is the Abstract Meaning Representation (AMR4), which
also aims at achieving whole-sentence deep semantics instead of addressing various isolated holders
of semantic information (such as NER, coreferences, temporal anchors, etc.). AMR also builds on the
available syntactic trees, thus contributing to the efforts on sembanking.

Another stream of research is related to the TectoMT approach (Žabokrtský et al., 2008). The Prague
Dependency Treebank (PDT)5 is a Czech treebank, annotated in accordance to the linguistic theory of
Functional Generative Description (P. Sgall and Panevova, 1986). The tectogrammatical layer6 is the
third layer of the PDT. It represents the syntactic-semantic interface, adding the functional dimension
and collapsing the structural information, thus aiming at a more language-independent level of abstrac-
tion. The other two layers are the morphological and analytical ones. The morphological layer operates
over tokens, assigning to them POS and lemma tags. The analytical layer reflects the surface sentence
structure.

2http://www.delph-in.net/wiki/index.php/Home
3http://www.bultreebank.org/BURGER/index.html
4http://www.isi.edu/natural-language/amr/a.pdf
5https://ufal.mff.cuni.cz/pdt2.0/
6https://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/t-layer/html/ch01.html
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The tectogrammatical annotation builds on the analytical level. It presents the deep semantic structure
of the sentence. At the tectogrammatical level, each sentence has at least one representation unambigu-
ously characterizing the meaning of the sentence. The tectogrammatical level representation contains
all the information necessary for translating the tectogrammatical representation into the lower levels, as
well as for its interpretation in the sense of intentional semantics.

In contrast to the analytical level, which follows the surface sentence structure and encodes analytical
functions (in particular, grammatical relations like Subject, Object, Predicate, Attribute, etc.), while
preserving the word order, the tectogrammatical level highlights the functional dimension (such as the
semantic roles Actor, Patient, Addressee, etc.). Additionally, it abstracts away from the synsemantic
(functional) parts-of-speech (prepositions, conjunctions, etc.) in the dependency trees, thus focusing
on the autosemantic (content) words (nouns, verbs, etc.). The structural information is not lost, but
just “collapsed” into the content words representations. In this way, a more abstract level of language
representation is achieved, which then is used for the transfer step within the MT systems. The result on
the tectogrammatical level heavily depends on the results from the processed analytical level.

In the future, we plan to have transfer architectures for Bulgarian and English in both directions in both
approaches – MRS and TectoMT. However, since these endeavors require more work, for the moment
we test our ideas in the already built-in setting of the factored-based MOSES system. Thus, we build on
the previous language model translation experience described in (Wang et al., 2012a) and (Wang et al.,
2012b). However, while in the above-mentioned publications only Bulgarian-to-English translation was
explored, in this paper also the English-to-Bulgarian direction is presented.

3 Data Preparation

Two types of data are used in our experiments. The first type includes parallel news data. It is the training
data. The second type includes parallel QTLeap data in the IT domain. It is the training and test data.

The parallel news data comprises the following sources:

1. SETIMES parallel corpus, which is part of the OPUS parallel corpus7.

2. EuroParl parallel corpus8.

3. LibreOffice Document Foundation.

The data in SETIMES corpus was aligned automatically. We first checked the consistency of the
automatic alignments. It turned out that more than 25% of the sentence alignments were not correct. We
corrected manually more than 25.000 sentence alignments. (The the rest of the data set includes around
135,000 sentences. The whole data set is about 160,000 sentences.) Then, two actions were taken:

1. Improving the tokenization of the Bulgarian part. The observations from the manual check of
the set of 25,000 sentences showed systematic errors in the tokenized text. Hence, these cases have
been detected and fixed semi-automatically.

2. Correcting and removing the suspicious alignments. Initially, the ratio of the lengths of the En-
glish and Bulgarian sentences was calculated in the set of the 25,000 manually annotated sentences.
As a rule, the Bulgarian sentences are longer than the English ones. The ratio is 1.34. Then we
calculated the ratio for each pair of sentences. After this, the optimal interval was manually deter-
mined, such that if the ratio for a given pair of sentences is within the interval, then we assume that
the pair is a good one. The interval for these experiments is set to [0.7; 1.8]. All the pairs with ratio
outside of the interval have been deleted.

The test dataset was the Bulgarian-English parallel part from the QTLeap multilingual corpus. The
QTLeap corpus is composed of 4 000 pairs of questions and respective answers in the domain of ICT

7OPUS–an open source parallel corpus, http://opus.lingfil.uu.se/
8http://www.statmt.org/europarl/
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troubleshooting for both hardware and software. This material was collected using a real-life commercial
online support service via chat. The corpus is thus composed of naturally occurring utterances produced
by users while interacting with that service. The support system, denominated PcWizard, aims to be the
first point of contact for troubleshooting trying to offer a rapid reply and solution to not too complex
questions from the users. For more information see9.

4 Linguistic Preprocessing and Factor-based SMT Model

For the current experiments the data in the training datasets was analyzed at two levels – POS tagging
and Lemmatization: POS tagging: POS tagging was performed by a pipe of several modules. First, we
applied a morphological lexicon and a set of rules. The lexicon added all the possible tags for the known
words. The rules reduced the ambiguity for some of the sure cases. The result of this step was a tagged
text with some ambiguities unresolved. The next step was the application of the GTagger (see (Georgiev
et al., 2012)). It was trained on ambiguous data and thus selected the most appropriate tags from the
suggested ones. The accuracy of the whole pipeline is 97.83%. Lemmatization: The lemmatization
module is based on the same morphological lexicon that was used in the tagger. From the lexicon we
extracted functions which convert each word form into its lemma.

Then we built our approach on top of the factor-based SMT model proposed by Koehn and Hoang
(2007a), as an extension of the traditional phrase-based SMT framework. Instead of using only the word
form of the text, it allows the system to take a vector of factors to represent each token, both for the source
and target languages. The vector of factors can be used for different levels of linguistic annotations, like
lemma or part-of-speech. Furthermore, this extension actually allows us to incorporate various kinds of
features if they can be (somehow) represented as annotations of the tokens.

The process is quite similar to supertagging (Bangalore and Joshi, 1999), which assigns “rich de-
scriptions (supertags) that impose complex constraints in a local context”. In our case, all the linguistic
features (factors) associated with each token form a supertag to that token. Singh and Bandyopadhyay
(2010) had a similar idea of incorporating linguistic features, while they worked on Manipuri – English
bidirectional translation. Our approach is slightly different from (Birch et al., 2007) and (Hassan et al.,
2007), who mainly used the supertags on the target language side, English. We experiment with both
sides.

In particular, we consider the following morphosyntactic factors for both languages:

• WF - word form, which is the original text token.

• LEMMA is the lexical invariant of the original word form.

• POS - part-of-speech of the word.

• LING - other linguistic features derived from the POS tag in the BulTreeBank tagset.

In comparison to the experiments described in ((Wang et al., 2012a), (Wang et al., 2012b)) the number
of the linguistic factors were reduced in comparison to the ones that contributed best to the improvement
of the translation results. Thus, we have excluded all the factors based on dependency parsing of the
data.

Our work on Minimal Recursion Semantic analysis of Bulgarian text is inspired by the work on MRS
and RMRS (Robust Minimal Recursion Semantic) (see (Copestake, 2003) and (Copestake, 2007)) and
the previous work on transfer of dependency analyses into RMRS structures described in (Spreyer and
Frank, 2005) and (Jakob et al., 2010).

MRS is introduced as an underspecified semantic formalism (Copestake et al., 2005). It is used to
support semantic analyses in the English HPSG grammar ERG (Copestake and Flickinger, 2000), but
also in other grammar formalisms like LFG. The main idea is that it avoids spelling out the complete set
of readings resulting from the interaction of scope bearing operators and quantifiers, instead providing a
single underspecified representation from which the complete set of readings can be constructed. Here

9http://qtleap.eu/wp-content/uploads/2015/05/QTLEAP-2015-D2.51.pdf
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we will present only basic definitions from (Copestake et al., 2005). An MRS structure is a tuple 〈 GT ,
R, C 〉, where GT is the top handle, R is a bag of EPs (elementary predicates) and C is a bag of handle
constraints, such that there is no handle h that outscopes GT . Each elementary predication contains
exactly four components: (1) a handle which is the label of the EP; (2) a relation; (3) a list of zero or
more ordinary variable arguments of the relation; and (4) a list of zero or more handles corresponding to
scopal arguments of the relation (i.e., holes). RMRS is introduced as a modification of MRS which to
capture the semantics resulting from the shallow analysis. Here an assumption is made that the shallow
processor does not have access to a lexicon. Thus it does not have access to the arity of the relations in
EPs. Therefore, the representation has to be underspecified with respect to the number of arguments of
the relations. The names of relations are constructed on the basis of the lemma for each word form in
the text. This main argument could be of two types: referential index (v) for nouns and event (e) for the
other parts of speech. In our implementation we extend the types of the main argument of the elementary
predicates. Especially for the event arguments we introduce a new type10 “ef” for adverbs and “ec” for
subordinators, because they modify other events and thus they are special type of events. In Bulgarian
some parts of speech can have main attribute of both types: “v” and “e”. For them we introduce a new
type “e-v”.

Similarly to our previous experiments, here we use only the RMRS relation and the type of the main
argument as features to the translation model. We will skip here the explanation of the full structure of
RMRS structures and how they are constructed. Thus, we firstly do a match between the surface tokens
and the MRS elementary predicates (EPs) and then extract the following features as extra factors:

• EP – the name of the elementary predicate, which usually indicates an event or an entity from a
semantic point of view.

• EOV – indicates the current EP as either an event, a reference variable or their subtypes.

Notice that we do not take all the information provided by the MRS, e.g., we throw away the scopal
information and the other arguments of the relations. This kind of information is not straightforward to
be represented in such ‘tagging’-style models, but it will be tackled in the future.

All these factors encoded within the corpus provide us with a rich selection of factors for various
experiments.

5 Experiments

For our entry level deep machine translation system (Pilot 1) we make use of the Moses open source
toolkit to build a factored SMT model (Koehn and Hoang, 2007b). As it was mentioned above in the
analysis stage, we create a representation of the text which encodes various levels of linguistic informa-
tion as factors. These include morphological, syntactic and semantic abstractions in the source and target
language.

We have experimented with several combinations of factors derived from the preprocessing with the
Bulgarian and English analysis pipelines, together with semantic factors based on Minimal Recursion
Semantics (see Table 1 for a subset of the results).

The following are some examples of factors for this model: word form, lemma, and morphosyntactic
tags, factors modeling the parent word (lemma of the parent word, part of speech of the parent word) as
well as the type of dependency relation (syntactic factors), and MRS-based factors (elementary predicate
and variable type).

We contributed mainly in two directions: better analysis with an improved pipeline for Bulgarian,
and different more complex types of factored models to explore successful factor combinations. We
have experimented with a number of combinations of the listed factors, language model types (word and
POS), translation and generation steps. The best performing model featuring a semantic factor for the
direction BG→EN includes four factors: word form, lemma, POS and variable type; a word and POS-
based language model. In the transfer step, two alternative approaches are used. If possible a mapping

10In fact these types are subtypes of the basic ones.
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Factors LM Translation Generation Decoding BLEU
BG→EN EN→BG

WF, EP, EOV 0 0,1,2-0 – – 31.53 24.00
WF, POS, EOV 0 0,1,2-0 – – 32.07 24.13
WF, LEMMA, EP, EOV 0 1-1+2-2+3-3 1,2,3-0 – 23.94 13.69
WF, LEMMA, POS 0,2 0-0,2+1-0,2 – t0:t1 32.59 22.86
WF, LEMMA, POS, LING 0,2 1-1+3-2+0-0,2 1-2+1,2-0 t0,g0,t1,g1:t2 32.78 22.73
WF, LEMMA, POS, EOV 0,2 0,3-0,2+1,3-0,2 – t0:t1 32.59 22.77

Table 1: A subset of the results from the factored experiments, evaluated on the second half of the
QTLeap data set.

is performed between the source word form and the variable type and the target word form candidates
and POS candidates. However, if the source word form has not been seen during the training phase, the
source lemma together with the variable type is used instead.

For the translation direction EN→BG the model includes three factors: word form, part of speech,
and variable type. In the translation step, the source word, POS, and variable type are translated into the
target word form.

The automatic evaluation for both directions is described in D2.4 of the QTLeap project.
The BG-to-EN direction was evaluated on questions. Here are the numbers for Pilot 0 and Pilot 1 per

metric:

1. BLEU Pilot 0 (29.7); Pilot 1 (27.7)

2. wordF Pilot 0 (22.8); Pilot 1 (22.4)

3. chartF Pilot 0 (46.7); Pilot 1 (47.4)

The EN-to-BG direction was evaluated on the answers:

1. BLEU Pilot 0 (25.3); Pilot 1 (24.5)

2. wordF Pilot 0 (25.6); Pilot 1 (25.0)

3. chartF Pilot 0 (46.7); Pilot 1 (46.6)

The results from the two pilots are comparable. More linguistic knowledge is needed for the translation
improvement. The only small improvement was noted in BG-to-EN direction in chartF. Since up to now
this translation direction was the focus, more effort is needed for improvement in the other direction as
well.

5.1 Preliminary Experiments with a Parallel Morphological Lexicon
One of the main problems in the translation in both directions are the so-called out-of-training word
forms. These are word form pairs of translations that do not appear in the parallel corpora used for the
training. For example, in Bulgarian each adjective has 9 forms. For many adjectives many of these
forms are not present in the parallel corpora. In order to solve this problem we decided to add a parallel
Bulgarian-English morphological lexicon to the parallel corpora.

The lexicon was constructed by exploiting the following resources: BTB-Morphological lexicon con-
taining all wordforms for more than 110 000 Bulgarian lemmas; BTB-bilingual Bulgarian-English lex-
icons (with about 8000 entries); English Wiktionary. From it the English wordforms were extracted for
the English lemmas. Then we mapped the wordform lexicons for both languages to the corresponding
part of the bilingual lexicon. Afterwards, the corresponding wordforms were aligned on the basis of their
morphological features like number (singular, plural); degree (comparative, superlative); definiteness
(definite, indefinite), etc.
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Bulgarian English
visok|visok|a a|a|d high|high|g
visok|visok|a high|high|g
visok|visok|a a|a|d tall|tall|g
visok|visok|a tall|tall|g

— —
naj-visokata|visok|a highest|highest|g
naj-visokata|visok|a the|the|d highest|highest|g
naj-visokata|visok|a tallest|tallest|g
naj-visokata|visok|a the|the|d tallest|tallest|g

Table 2: Wordform aligned parallel lexicon. It shows the Bulgarian adjective “visok” with its two trans-
lations in English: “high” and “tall”. The table represents the encoding of singular, masculine, indefinite
forms and superlative, singular, feminine, definite forms. Each triple represents wf|lm|pos, where wf
is the wordform, lm is the lemma and pos is the part-of-speech. For example, the triple a|a|d means:
wordform “a”; lemma “a” and part-of-speech “determiner”.

In this preliminary experiment we used only the noun and the adjective parts-of-speech from the
wordform aligned bilingual lexicon. Bulgarian language encodes definiteness as an ending to the nouns
and adjectives in contrast to English which encodes it as a separate determiner in front of the noun or
adjective. For this reason we also encode the English definite and indefinite articles for the English
wordforms. Since in some contexts the English articles are not obligatory, the English wordforms were
encoded with or without them. In addition, we also represented factors for each wordform (in the example
below we encode the lemma and POS). Tab. 2 shows an example from the resulting lexicon.

The lexicon represents more than 70 000 aligned wordforms. It was added to the training data. Each
aligned pair of word forms is added as a pair of sentences with length one or two depending on determin-
ers. We got the results presented in Tab. 3. They show a positive impact of the aligned wordform parallel
lexicon on the translation in both directions. The table shows also that the addition of the definite forms
for English does not change the result.

without lexicon with lexicon; with only indefinite forms with lexicon; with all forms
BG→EN 32.59 33.02 32.88
EN→BG 22.86 23.91 22.97

Table 3: Preliminary experiments with parallel morphological lexicons.

Although the reported here experiments are only preliminary they demonstrate a possible direction
of improving of the training corpus for solving the “out-of-training-wordforms” problem. There is still
room for improvements which include the incorporation also of other parts-of-speech, compositional and
multiword phrases, etc.

6 Conclusions and Future Work

In this paper, we reported our initial work towards building deep statistical machine translation models
between Bulgarian and English in both directions. Based on previous experiments, in Pilot 1 we extended
the semantic factors with new types of main arguments for MRS elementary predicates, which improved
the results in English-to-Bulgarian direction and shows promising results for the Bulgarian-to-English
direction. The paper also showed that the addition of a wordform aligned parallel lexicon improved the
results in both translation directions.

In our future work we plan to incorporate more linguistic knowledge from the lexicon. Also we will
aim at improving the incorporation of deep factors within the translation models.
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Abstract

In this paper, we address the problem of machine translation (MT) of domain-specific texts for
which large amounts of parallel data for training are not available. We focus on the IT domain
and on English to Portuguese machine translation, and compare different strategies for improving
system performance over two baselines, the first using only large dataset of out-of-domain data,
and the second using only a small dataset of in-domain data. Our results indicate that adding a
domain-specific bilingual lexicon to the training dataset significantly improves the performance
of both a hybrid MT system and a PBSMT system, while adding out-of-domain sentence pairs
to the training dataset only improves the performance of a hybrid MT system. Furthermore, we
perform a human evaluation of the sentences generated by the hybrid MT system and the standard
PBSMT system built using the same training datasets. The results indicate some significant
differences between those two MT approaches in this specific task.

1 Introduction

Although the problem of machine translation has been extensively studied in the last 30 years and is
one of the main topics of the natural language processing (NLP), English to Portuguese MT is rarely
addressed.

Our work aims to fill that gap by addressing the problem of English to Portuguese MT for a specialised
domain (the IT domain) using two MT approaches: the standard PBSMT system and a hybrid MT
system based on deep translation approach. We focus on translation from English to Portuguese of short
sentences taken from real-usage scenarios, where user questions are followed by answers from an IT
technician. The data was gathered in a continuous way during user interaction with a technical support
team via chat. We explore three different strategies for enlarging the training dataset: (1) adding an in-
domain bilingual terminology; (2) adding a certain portion of the out-of-domain corpus; and (3) adding
both an in-domain bilingual terminology and a certain portion of the out-of-domain corpus. Our objective
is to explore which of the three strategies leads to greater improvements in the system performance for
each of the two MT approaches (PBSMT and hybrid MT). In order to gain a better insight into strengths
and weaknesses of both MT systems, we also conduct a human evaluation and error analysis of their
output sentences.

The remainder of the paper is organised as follows: Section 2 introduces studies that are relevant
to our work; Section 3 describes the corpora, MT systems, experimental setup, goals and evaluation
procedures; Section 4 presents and discusses the results of both automatic and human evaluation; and
Section 5 summarises the findings of this study and gives directions for future work.

2 Related Work

The rule-based machine translation (MT) systems, such as Systran (Toma, 1977), ETAP-3 (Boguslavsky,
1995), and Lucy (Alonso and Thurmair, 2003), required linguistic expertise to operate and were difficult

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
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to adapt to different languages. The emergence of the word-based IBM models (Brown et al., 1988;
Brown et al., 1990; Brown et al., 1993) heralded a new approach to MT – statistical machine translation
(SMT) systems. Later, the word-based SMT models were replaced by better-performing phrase-based
(Koehn et al., 2007) or hierarchical phrase-based (Li et al., 2009) SMT systems. However, it was noticed
that those shallow SMT approaches which do not use any deeper linguistic information or syntax are not
able to capture long-distance dependences and may lead to problems with word order and grammatical
and semantic cohesion (Fishel et al., 2012). Shallow syntax-based SMT systems tried to address those is-
sues using three different approaches: a tree-to-string translation, where linguistic information is applied
only on the source side (Huang et al., 2006); a string-to-tree translation, where linguistic information is
applied only on the target side (Galley et al., 2004), and a tree-to-tree translation, where linguistic infor-
mation is applied on both source and target side (Eisner, 2003). However, for the majority of language
pairs, phrase-based SMT systems still produce better results.

The main limitation of SMT systems is that they require large amounts of parallel (or at least com-
parable) training data, which is hard to obtain for language pairs not covered by the Europarl corpora
(Koehn, 2005). Even if Europarl contains data for a particular language pair, another problem arises if
the SMT system is needed for a different domain, as the training data may not cover the specific vocab-
ulary or sentence constructions present in the targeted domain. In order to address this problem, many
domain-adaptation techniques for SMT have been proposed, ranging from simply adding out-of-domain
data to the small amount of in-domain data for training (Foster and Kuhn, 2007) to more sophisticated
techniques, such as selecting only particular sentences from the out-of-domain data which are most sim-
ilar to the in-domain data (Axelrod et al., 2011) or are similar to the sentences with the lowest translation
quality (Banerjee et al., 2015).

Hybrid MT systems, in turn, aim to exploit the best of both SMT and rule-based approaches, usually ei-
ther by combining rule-based transfer with statistical language models in the synthesis phase (Habash and
Dorr, 2002), or by combining rule-based with statistical approaches at different points of the Vauquois
triangle, as the TectoMT system (Žabokrtský et al., 2008) that we use in this study.

2.1 English-Portuguese MT
The English-Portuguese translation model built using the standard PBSMT system in the Moses toolkit
(Koehn et al., 2007), trained on the largest existing parallel corpora for this language pair (the JRC-
Acquis corpus (Steinberger et al., 2006)) achieves a BLEU score (Papineni et al., 2002) of 55% (Koehn et
al., 2009). The standard PBSMT system in the Moses toolkit trained on the Fapesp-v2 corpus of English-
Brazilian Portuguese texts from the Brazilian scientific news magazine Revista Pesquisa FAPESP1 (Aziz
and Specia, 2011) achieves 46.28% BLEU score (Salton et al., 2014).

To the best of our knowledge, there have been no studies reporting performances of English to Por-
tuguese MT systems for any domain-specific tasks, neither have there been any studies comparing dif-
ferent MT approaches for this language pair.

3 Methodology

The next four subsections describe the corpora (Section 3.1), MT systems (Section 3.2), experimental
setup and the main goal of the translation experiments (Section 3.3), as well as the human evaluation
procedure (Section 3.4).

3.1 Corpora
We used four corpora in this study:

1. EP – Europarl corpus (Koehn, 2005) with English on the source side and Portuguese on the target
side (1,960,407 sentence pairs) was used as the large out-of-domain corpus.

2. IT1 – An in-domain IT corpus with 2,000 sentence pairs (1,000 questions and 1,000 answers)
compiled under the QTLeap project2.

1http://revistapesquisa.fapesp.br/
2http://qtleap.eu/
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Corpora Source (EN) Target (PT)

TERM
arrow key tecla de seta
gatekeeper controlador de chamadas
Planning System Database Base de Dados do Sistema de Planeamento

IT1

If your disc is not recognized, try changing
the USB port.

Se o disco não está a ser reconhecido, tente
trocar de entrada USB.

Which antivirus should I keep, MSE or
AVG?

Qual antivrus devo manter, MSE ou AVG?

IT2

In the Insert menu, select Picture. No menu inserir selecione Imagem.
In the taskbar there is an icon shaped like
binoculars, click and type in what you want
to search.

Na barra de Tarefas há um ı́cone em forma
de binóculos, clique e escreva o que pretende
procurar.

EP

Please rise, then, for this minute’s silence. Convido-os a levantarem-se para um minuto
de silêncio.

You have requested a debate on this subject
in the course of the next few days, during
this part-session.

Os senhores manifestaram o desejo de se
proceder a um debate sobre o assunto nos
próximos dias, durante este perı́odo de
sessões.

Table 1: Examples from the corpora

3. IT2 – Another in-domain IT corpus, with 1,000 sentence pairs (answers only) compiled under the
QTLeap project, and comparable with the IT1 corpus.3

4. TERM – A parallel corpus of IT terminology (unigrams or multiword expressions), which con-
sists of the Microsoft Terminology Collection4 (13,030 terms) and a small portion of LibreOffice
terminology5 (995 terms).

Examples from each corpora are presented in Table 1.

3.2 Systems

This section describes the two MT systems used for the experiments.

3.2.1 TectoMT
TectoMT (Žabokrtský et al., 2008) is a structural MT system which uses two layers of structural de-
scription, the shallow a-layer and the deep t-layer, performing the transfer on the t-layer (Figure 1). It
encompasses three phases along the Vauquois triangle: analysis (which transforms the input sentence
into the a-layer and t-layer in a two-step process), transfer (at the t-layer), and synthesis (which converts
the translated t-layer representation to the a-layer and then to the output surface string). The analysis
and synthesis phases are hybrid, while the transfer phase is mostly statistical, based on the Maximum
Entropy context-sensitive translation models (Mareček et al., 2010).

In the analysis stage, all tokens from the input English sentence are first transformed into nodes in
a labeled dependency tree (a-tree) to form a surface syntax layer (analytical layer or a-layer). This is
achieved using various NLP tools that perform sentence splitting, tokenisation, morphological tagging,
and dependency parsing. We follow the annotation pipeline used for the CzEng 1.0 parallel corpus
(Bojar et al., 2012), using the Morče tagger (Spoustová et al., 2007) and the Maximum Spanning Tree
parser (McDonald et al., 2005) trained on the CoNLL-2007 conversion of Penn Treebank (Nilsson et al.,
2007). Dependencies are further transformed by the rule-based blocks into the a-layer which contains

3The decision to test the systems only on the answers is the result of the nature of the task in the QTLeap project.
4https://www.microsoft.com/Language/en-US/Terminology.aspx
5We would like to thank Eleftherios Avramidis and Lukas Poustka for making the LibreOffice corpus available to us.
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Figure 1: Schema of the TectoMT system

the corresponding word forms, lemmas, morphological tags and afun labels (which denote syntactic
functions such as subject, predicate, object and attribute).

The next step in the analysis stage is performed using another rule-based block that converts a-trees
into t-trees (tectogrammatical layer or t-layer). The t-layer describes the input sentence according to the
Functional Generative Description (GFD), and unlike the a-layer (which contains all input tokens), the
t-layer only contains content words as nodes (t-nodes). Auxiliary words, such as prepositions, subordi-
nating conjunctions or auxiliary verbs, become attributes of the t-nodes. This is illustrated in an example
of the a-layers and t-layers in Figure 2. The t-layer can also introduce new nodes (which did not ex-
ist in the a-layer), as for example, in the case of pro-dropped subject personal pronouns which do not
correspond to any token in the input sentence.

Figure 2: An example of the a-trees and t-trees in the TectoMT system (the input EN sentence: “Try
pressing the F11 key.” translated into the output PT sentence: “Tente carregar na tecla f11.”)
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After the transfer of the English t-trees into Portuguese t-trees, the synthesis phase constructs a flat
surface form of the sentence from the Portuguese t-tree. This is achieved using additional rule-based
blocks which take care of word reordering, insertion of negations, prepositions, conjuctions, correct
agreement, compound verb forms, etc. The synthesis stage for Portuguese uses the LX-Suite (Branco
and Silva, 2006) to perform such tasks.

The expected advantage of the TectoMT system over the standard PBSMT system is that the Tec-
toMT translates t-tree nodes (and not the inflected forms) and should thus be able to generalise over
the unseen morphological forms. This is particularly important for translation into morphologically rich
languages (such as Portuguese) where data sparseness presents a problem for a purely statistically driven
MT systems.

3.2.2 PBSMT
In all experiments, we use the same PBSMT model (Koehn et al., 2007), GIZA++ implementation of the
IBM word alignment model 4 (Och and Ney, 2003), and the refinement and phrase-extraction heuristics
as described by Koehn et al. (2003). We tune the systems using MERT (Minimum Error Rate Training
(Och, 2003)) and build a 5-gram language model with Kneser-Ney smoothing trained with SRILM (Stol-
cke, 2002) on the whole target side (Portuguese) of the English to Portuguese Europarl corpus (Koehn,
2005), which contains 1,960,407 sentences.

3.3 Experiments

In all experiments, the PBSMT system uses the in-domain IT1 corpus for tuning, and the language model
(LM) is trained on all sentences in the Portuguese side of the Europarl corpus (EP)6. All experiments (in
both TectoMT and PBSMT systems) are evaluated on the same test dataset (IT2). In order to obtain two
baselines for each MT approach (TectoMT and PBSMT) we train both systems on: (1) the full Europarl
corpus (EP) as the out-of-domain large corpus (BaselineEP), and (2) the IT1 as the in-domain small
corpus (BaselineIT).

In the next four experiments (IT+TERM, IT+EP1, IT+EP10, IT+EP10+TERM), we use the in-domain
IT1 corpus as the basis for the training. As this corpus is very small (2,000 sentence pairs only), we
explore three different strategies for enlarging the training dataset:

(S1) Adding an in-domain bilingual terminology (the TERM corpus in the IT+TERM experiment);

(S2) Adding a certain portion of the out-of-domain EP corpus (1,000 sentence pairs in the IT+EP1
experiment, and 10,000 sentence pairs in the IT+EP10 experiment);

(S3) Adding both an in-domain bilingual terminology and a certain portion of the out-of-domain EP
corpus (10,000 sentence pairs from the EP corpus and the TERM corpus in the IT+EP10+TERM
experiment)

3.4 Human Evaluation

In order to better assess strengths and weaknesses of both approaches (TectoMT and PBSMT), we also
conduct a human evaluation of the sentences generated by both systems for 100 sentence pairs from the
test set for the IT+TERM experiments (which led to the highest BLEU score for the PBSMT approach
and the second highest BLEU score for the TectoMT approach).

3.4.1 Fluency and Adequacy
We ask two native speakers of Portuguese (both employed as linguists) to evaluate the fluency and ade-
quacy of the machine translation obtained by the TectoMT and PBSMT systems trained on the IT+TERM
dataset. We follow the TAUS guidelines7, which suggest a 1–4 scale for both aspects.

6Note that TectoMT does not need a development dataset and language model.
7https://www.taus.net/think-tank/best-practices/evaluate-best-practices/

adequacy-fluency-guidelines
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Fluency rates “the extent to which the translation is well-formed grammatically, contains correct
spellings, adheres to common use of terms, titles and names, is intuitively acceptable and can be sensibly
interpreted by a native speaker”:

4 – Flawless
3 – Good
2 – Disfluent
1 – Incomprehensible

Adequacy rates “how much of the meaning expressed in the source is also expressed in the target
translation”:

4 – Everything
3 – Most
2 – Little
1 – None

3.4.2 Error Analysis

Following the error classification proposed by Costa-jussà and Farrús (2015) for evaluation of MT from
Spanish to Catalan, we asked human evaluators to classify errors of each sentence into four classes:

1. Orthographic: punctuation marks, accents, upper- and lowercase, letters, joined/split words, extra
spaces, apostrophe;

2. Morphologic: gender concord, number concord, verbal morphology (tense, aspect), lexical mor-
phology (POS);

3. Semantic: polysemy, homonymy, incorrect meaning, untranslated words (left in the source lan-
guage), missing words;

4. Syntactic: prepositions, relative pronouns, verbal periphrasis, clitics, articles, reorderings.

4 Results

The next two subsections present the results of the automatic evaluation of all experiments (Section 4.1),
and the human evaluation and error analysis of the selected pair of experiments (Section 4.2).

4.1 Automatic Evaluation

The experimental setup for each experiment (the type and the size of the corpora used) and the obtained
BLEU scores on the whole test set are presented in Table 2.

All four experiments (IT+TERM, IT+EP1, IT+EP10, and IT+EP10+TERM) of the TectoMT sys-
tem significantly outperformed both baselines indicating that in the TectoMT approach both strategies
(adding different portions of the out-of-domain corpus, and adding bilingual terminology) lead to signif-
icant improvements over the BaselineIT. The combination of both strategies (IT+EP10+TERM) resulted
in the highest achieved BLEU score (significantly better than all others for the TectoMT system).

For the PBSMT approach, the only two experiments which significantly outperformed the BaselineIT
were those trained on the IT+TERM and on the IT+EP10+TERM corpora. This suggests that, for a
PBSMT system, adding terminology has a greater impact than adding the out-of-domain corpus. In fact,
adding a small portion of out-of-domain corpus (1,000 sentence pairs from EP) to the training dataset
negatively influenced the system’s performance, resulting in a BLEU score significantly lower than the
BaselineIT. Adding a larger portion of the out-of-domain corpus (10,000 sentence pairs from EP) seems
not to influence the system’s performance significantly.
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Experiment
Training Dev. Test Results (BLEU score)

EP TERM IT1 IT1 IT2 TectoMT PBSMT
BaselineEP all / / 2,000 1,000 19.34 18.99
BaselineIT / / 2,000 2,000 1,000 20.77 21.55
IT+TERM / 14,025 2,000 2,000 1,000 21.89 22.73
IT+EP1 1,000 / 2,000 2,000 1,000 20.97 *21.08
IT+EP10 10,000 / 2,000 2,000 1,000 21.16 21.66
IT+EP10+TERM 10,000 14,025 2,000 2,000 1,000 22.20 22.16

Table 2: Translation experiments setup – type and the size of the corpora used (the number of sentence
pairs for the IT1, IT2, and EP corpora, and the number of unigram or multiword expression pairs in
the case of the TERM corpus), and the results of the automatic evaluation (the results of the systems
which significantly outperformed both baselines are shown in bold; the ‘*’ marks the result which is
significantly lower than the result for the BaselineIT; statistical significance is calculated using paired
bootstrap resampling (Koehn, 2004))

4.2 Human Evaluation Results
The results of our human evaluation of the fluency and adequacy of the output are presented in Table 3.
For each sentence we additionally calculate the Total score (for each annotator separately) as the rounded
arithmetic mean of its Fluency and Adequacy scores. The TectoMT system achieved significantly higher
adequacy score and total score than the PBSMT system. The mean and median value of the fluency
score in the TectoMT system was higher than in the PBSMT system, but the reported difference was not
statistically significant (at a 0.05 level of significance using the marginal homogeneity test).

Aspect
Mean Median Mode

Sign. IAA
TectoMT PBSMT TectoMT PBSMT TectoMT PBSMT

Fluency 1.78 1.74 2 1.5 2 2 0.054 0.52
Adequacy 2.28 2.24 2 2 2 2 0.047 0.55
Total 2.27 2.23 2 2 2 2 0.048 0.55

Table 3: Results of the human evaluation of the fluency and adequacy on a 1–4 scale where higher score
denotes better output (IAA is calculated as the squared Cohen’s κ, and the statistical significance is
calculated in SPSS using the marginal homogeneity test which represent the extension of McNemar test
from binary to multinominal response for two related samples)

Errors
Mean Median Mode

Sign. IAA
TectoMT PBSMT TectoMT PBSMT TectoMT PBSMT

Orthographic 1.15 0.95 1.25 1 1.5 1 0.001 0.50
Morphologic 0.97 0.74 1 0.5 1 0 0.000 0.54
Syntactic 1.31 1.26 1.5 1.5 1.5 1.5 0.045 0.49
Semantic 1.37 1.5 1.5 1.5 2 2 0.009 0.53

Table 4: Results of the error analysis on a 0–2 scale where 0 – no errors, 1 – one error, and 2 – two or
more errors (IAA is calculated as the squared Cohen’s κ, and the statistical significance is calculated in
SPSS using the marginal homogeneity test which represent the extension of McNemar test from binary
to multinominal response for two related samples)

The results of the error analysis of the output sentences are presented in Table 4. The number of
orthographic, morphologic, and syntactic errors was found to be significantly higher in the output of the
TectoMT system than in the output of the PBSMT system, while the number of semantic errors was
significantly higher in the PBSMT system.
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Comparison
Scores Number of errors

Fluency Adequacy Total Ortho. Morpho. Synt. Sem.
TectoMT>PBSMT 47 55 55 69 81 58 98
TectoMT=PBSMT 117 96 96 96 77 85 102
TectoMT<PBSMT 36 49 49 35 42 57 60

Table 5: Comparison of the outputs of the TectoMT and PBSMT systems on a sentence level
(TectoMT>PBSMT for Scores signifies better output of the TectoMT than PBSMT system, while
TectoMT>PBSMT for Number of errors signifies worse output of the TectoMT than PBSMT system)

In order to achieve sentence-to-sentence comparison between the two systems, we calculate:

1. How many times was the output of the TectoMT system rated as better (TectoMT>PBSMT), equal
(TectoMT=PBSMT), or worse (TectoMT<PBSMT) than the output of the PBSMT system; and

2. How many times did the output of the TectoMT system contain more (TectoMT>PBSMT), equal
number (TectoMT=PBSMT), or less (TectoMT<PBSMT) errors of each of the four types (ortho-
graphic, morphologic, semantic, and syntactic) than the output of the PBSMT system.

In this calculation, we compare the outputs of the TectoMT and PBSMT for each original sentence and
each annotator separately, a total of 200 comparisons. The results are presented in Table 5. It seems that
the sentences generated by the TectoMT system tend to represent more fluent and adequate translation
than those generated by the standard PBSMT system. However, the results also show that the number
of cases in which the output of the TectoMT system contains more errors than the output of the PBSMT
system is greater than the number of cases in which the output of the PBSMT system contains more
errors than the output of the TectoMT system. These results indicate that either: (1) the fluency of a
sentence cannot be well captured by counting its orthographic, morphological, and syntactic errors, and
the adequacy of a sentence cannot be well captured by counting its semantic errors, or (2) the errors
produced by the TectoMT system are not as severe as the errors produced by the standard PBSMT
system, and thus were, not as severely penalised in terms of fluency and adequacy scores.

5 Conclusions and Future Work

The experiments presented in this paper address the problem of English to Portuguese machine trans-
lation of the domain-specific texts (text of the IT domain in this particular case), and report on results
obtained using three different techniques to enlarge the training datasets for two MT approaches: the
standard PBSMT approach, and the hybrid deep MT approach employed in the TectoMT system.

Our results indicate that adding in-domain bilingual terminology, as well as adding a combination
of in-domain bilingual terminology and out-of-domain sentence pairs, significantly improves the per-
formance of both systems. Adding only some portion of out-of-domain sentence pairs, however, only
improves the performance of the TectoMT system, while it either impairs or does not significantly change
the performance of the standard PBSMT system.

A human evaluation of the output generated by the PBSMT and TectoMT systems revealed better
meaning preservation (adequacy score) in the TectoMT system. However, the error analysis showed that
the TectoMT system led to a higher number of sentences that had a greater number of orthographic,
morphological, syntactic and semantic errors.

We acknowledge that both systems have room for improvement, and thus this work should only be
regarded as preliminary. We used only the basic domain-adaptation technique for the PBSMT system,
and no domain-adaptation techniques for the TectoMT. In future, the focus will be on implementing
the state-of-the-art domain-adaptation techniques for the PBSMT system, as well as on exploring the
possibilities of domain adaptation in the TectoMT.
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