
Proceedings of the Workshop on Natural Language Processing for Translation Memories (NLP4TM), pages 9–16,
Hissar, Bulgaria, Sept 2015.

Spotting false translation segments in translation memories

Eduard Barbu
Translated.net

eduard@translated.net

Abstract

The problem of spotting false translations
in the bi-segments of translation memories
can be thought of as a classification task.
We test the accuracy of various machine
learning algorithms to find segments that
are not true translations. We show that
the Church-Gale scores in two large bi-
segment sets extracted from MyMemory
can be used for finding positive and neg-
ative training examples for the machine
learning algorithms. The performance
of the winning classification algorithms,
though high, is not yet sufficient for auto-
matic cleaning of translations memories.

1 Introduction

MyMemory1 (Trombetti, 2009) is the biggest
translation memory in the world. It contains more
than 1 billion bi-segments in approximately 6000
language pairs. MyMemory is built using three
methods. The first method is to aggregate the
memories contributed by translators. The second
method is to use translation memories extracted
from corpora, glossaries or data mined from the
web. The current distribution of the automatically
acquired translation memories is given in figure
1. Approximately 50% of the distribution is oc-
cupied by the DGT-TM (Steinberger et al., 2013),
a translation memory built for 24 EU languages
from aligned parallel corpora. The glossaries are
represented by the Unified Medical Language Sys-
tem (UMLS) (Humphreys and Lindberg, 1993), a
terminology released by the National Library of
Medicine. The third method is to allow anony-
mous contributors to add source segments and
their translations through a web interface.

The quality of the translations using the first
method is high and the errors are relatively few.

1https://mymemory.translated.net/

6RXUFHV�EUHDNGRZQ
����RI�WKH�UHFRUGV�FRPH�IURP�XSORDGHG�70V�

Figure 1: The distribution of automatically ac-
quired memories in MyMemory

However the second method and especially the
third one produce a significant number of erro-
neous translations. The automatically aligned par-
allel corpora have alignment errors and the collab-
orative translation memories are spammed or have
low quality contributions.

The problem of finding bi-segments that are not
true translations can be stated as a typical classi-
fication problem. Given a bi-segment a classifier
should return yes if the segments are true transla-
tions and no otherwise. In this paper we test vari-
ous classification algorithms at this task.

The rest of the paper has the following struc-
ture. Section 2 puts our work in the larger context
of research focused on translation memories. Sec-
tion 3 explains the typical errors that the transla-
tion memories which are part of MyMemory con-
tain and show how we have built the training and
test sets. Section 4 describes the features chosen to
represent the data and briefly describes the classi-
fication algorithms employed. Section 5 presents
and discusses the results. In the final section we
draw the conclusions and plan the further devel-
opments.
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2 Related Work

The translation memory systems are extensively
used today. The main tasks they help accomplish
are localization of digital information and transla-
tion (Reinke, 2013). Because translation memo-
ries are stored in databases the principal optimiza-
tion from a technical point of view is the speed of
retrieval.

There are two not technical requirements that
the translation memories systems should fulfill
that interest the research community: the accu-
racy of retrieval and the translation memory clean-
ing. If for improving the accuracy of retrieved
segments there is a fair amount of work (e.g.
(Zhechev and van Genabith, 2010), (Koehn and
Senellart, 2010)) to the best of our knowledge the
memory cleaning is a neglected research area. To
be fair there are software tools that incorporate
basic methods of data cleaning. We would like
to mention Apsic X-Bench2. Apsic X-Bench im-
plements a series of syntactic checks for the seg-
ments. It checks for example if the opened tag is
closed, if a word is repeated or if a word is mis-
spelled. It also integrates terminological dictio-
naries and verifies if the terms are translated ac-
curately. The main assumptions behind these val-
idations seem to be that the translation memories
bi-segments contain accidental errors (e.g tags not
closed) or that the translators sometimes use inac-
curate terms that can be spotted with a bilingual
terminology. These assumptions hold for transla-
tion memories produced by professional transla-
tors but not for collaborative memories and mem-
ories derived from parallel corpora.

A task somehow similar to translation memory
cleaning as envisioned in section 1 is Quality Es-
timation in Machine Translation. Quality Estima-
tion can also be modeled as a classification task
where the goal is to distinguish between accu-
rate and inaccurate translations (Li and Khudan-
pur, 2009). The difference is that the sentences
whose quality should be estimated are produced
by Machine Translations systems and not by hu-
mans. Therefore the features that help to discrimi-
nate between good and bad translations in this ap-
proach are different from those in ours.

2http://www.xbench.net

3 The data

In this section we describe the process of obtain-
ing the data for training and testing the classi-
fiers. The positive training examples are segments
where the source segment is correctly translated
by the target segment. The negative training ex-
amples are translation memory segments that are
not true translations. Before explaining how we
collected the examples it is useful to understand
what kind of errors the translation memories part
of MyMemory contain. They can be roughly clas-
sified in the four types :

1. Random Text. The Random Text errors are
cases when one or both segments is/are a ran-
dom text. They occur when a malevolent con-
tributor uses the platform to copy and paste
random texts from the web.

2. Chat. This type of errors verifies when the
translation memory contributors exchange
messages instead of providing translations.
For example the English text “How are you?”
translates in Italian as “Come stai?”. Instead
of providing the translation the contributor
answers “Bene” (“Fine”).

3. Language Error. This kind of errors oc-
curs when the languages of the source or tar-
get segments are mistaken. The contribu-
tors accidentally interchange the languages of
source and target segments. We would like to
recover from this error and pass to the clas-
sifier the correct source and target segments.
There are also cases when a different lan-
guage code is assigned to the source or target
segment. This happens when the parallel cor-
pora contain segments in multiple languages
(e.g. the English part of the corpus contains
segments in French). The aligner does not
check the language code of the aligned seg-
ments.

4. Partial Translations. This error verifies
when the contributors translate only a part of
the source segment. For example, the En-
glish source segment “Early 1980s. Muirfield
C.C.” is translated in Italian partially: “Primi
anni 1980” (“Early 1980s”).

The errors Random Text and Chat take place
in the collaborative strategy of enriching MyMem-
ory. The Language Error and Partial Transla-
tions are pervasive errors.
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It is relatively easy to find positive examples be-
cause the high majority of bi-segments are cor-
rect. Finding good negative examples is not so
easy as it requires reading a lot of translation seg-
ments. Inspecting small samples of bi-segments
corresponding to the three methods, we noticed
that the highest percentage of errors come from
the collaborative web interface. To verify that this
is indeed the case we make use of an insight first
time articulated by Church and Gale (Gale and
Church, 1993). The idea is that in a parallel cor-
pus the corresponding segments have roughly the
same length3. To quantify the difference between
the length of the source and destination segments
we use a modified Church-Gale length difference
(Tiedemann, 2011) presented in equation 1 :

CG =
ls − ld√

3.4(ls + ld)
(1)

In figures 2 and 3 we plot the distribution of the
relative frequency of Church Gale scores for two
sets of bi-segments with source segments in En-
glish and target segments in Italian. The first set,
from now on called the Matecat Set, is a set of seg-
ments extracted from the output of Matecat4. The
bi-segments of this set are produced by profes-
sional translators and have few errors. The other
bi-segment set, from now on called the Collabora-
tive Set, is a set of collaborative bi-segments.

If it is true that the sets come from different dis-
tributions then the plots should be different. This
is indeed the case. The plot for the Matecat Set is
a little bit skewed to the right but close to a normal
plot. In figure 2 we plot the Church Gale score
obtained for the bi-segments of the Matecat set
adding a normal curve over the histogram to better
visualize the difference from the gaussian curve.
For the Matecat set the Church Gale score varies
in the interval −4.18 ...4.26.

The plot for the Collaborative Set has the distri-
bution of scores concentrated in the center as can
be seen in 3 . In figure 4 we add a normal curve to
the the previous histogram. The relative frequency
of the scores away from the center is much lower
than the scores in the center. Therefore to get a
better wiew of the distribution the y axis is reduced
to the interval 0...0.1. For the Collaborative set the

3This simple idea is implemented in many sentence align-
ers.

4Matecat is a free web based CAT tool that can be used at
the following address: https://www.matecat.com
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Figure 2: The distribution of Church Gale Scores
in the Matecat Set
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Figure 3: The distribution of Church Gale Scores
in the Collaborative Set
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Figure 4: The normal curve added to the distri-
bution of Church Gale Scores in the Collaborative
Set

Church Gale score varies in the interval −131.51
...60.15.

To see how close the distribution of Church-
Gale scores is to a normal distribution we have
plotted these distributions against the normal dis-
tribution using the Quantile to Quantile plot in fig-
ures 5 and 6.

In the Collaborative Set the scores that have a
low probability could be a source of errors. To
build the training set we first draw random bi-
segments from the Matecat Set. As said before
the bi-segments in the Matecat Set should contain
mainly positive examples. Second, we draw ran-
dom bi-segments from the Collaborative Set bi-
asing the sampling to the bi-segments that have
scores away from the center of the distribution. In
this way we hope that we draw enough negative
segments. After manually validating the examples
we created a training set and a test set distributed
as follows :

• Training Set. It contains 1243 bi-segments
and has 373 negative example.

• Test Set. It contains 309 bi-segments and has
87 negatives examples.

The proportion of the negative examples in both
sets is approximately 30%.
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Figure 5: The Q-Q plot for the Matecat set
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Figure 6: The Q-Q plot for the Collaborative set
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4 Machine Learning

In this section we discuss the features computed
for the training and the test sets. Moreover, we
briefly present the algorithms used for classifica-
tion and the rationale for using them.

4.1 Features
The features computed for the training and test set
are the following :

• same. This feature takes two values: 0 and
1. It has value 1 if the source and target seg-
ments are equal. There are cases specifically
in the collaborative part of MyMemory when
the source segment is copied in the target seg-
ment. Of course there are perfectly legitimate
cases when the source and target segments
are the same (e.g. when the source segment
is a name entity that has the same form in the
target language), but many times the value 1
indicates a spam attempt.

• cg score. This feature is the Church-Gale
score described in the equation 1. This score
reflects the idea that the length of the source
and destination segments that are true trans-
lations is correlated. We expect that the
classifiers learn the threshold that separates
the positive and negative examples. How-
ever, relying exclusively on the Church-Gale
score is tricky because there are cases when
a high Church Gale score is perfectly legit-
imate. For example, when the acronyms in
the source language are expanded in the tar-
get language.

• has url. The value of the feature is 1 if the
source or target segments contain an URL ad-
dress, otherwise is 0.

• has tag. The value of the feature is 1 if the
source or target segments contain a tag, oth-
erwise is 0.

• has email. The value of the feature is 1 if the
source or target segments contain an email
address, otherwise is 0.

• has number. The value of the feature is 1 if
the source or target segments contain a num-
ber, otherwise is 0.

• has capital letters. The value of the feature
is 1 if the source or target segments contain

words that have at least a capital letter, other-
wise is 0.

• has words capital letters. The value of the
feature is 1 if the source or target segments
contain words that consist completely of cap-
ital letters, otherwise is 0. Unlike the pre-
vious feature, this one activates only when
there exists whole words in capital letters.

• punctuation similarity. The value of this
feature is the cosine similarity between the
source and destination segments punctuation
vectors. The intuition behind this feature is
that source and target segments should have
similar punctuation vectors if the source seg-
ment and the target segment are true transla-
tions.

• tag similarity. The value of this feature is the
cosine similarity between the source segment
and destination segment tag vectors. The rea-
son for introducing this feature is that the
source and target segments should contain
very similar tag vectors if they are true trans-
lations. This feature combines with has tag
to exhaust all possibilities (e.g., the tag exists/
does not exist and if it exists is present/is not
present in the source and the target segments)

• email similarity. The value of the fea-
ture is the cosine similarity between the
source segment and destination segment
email vectors. The reasoning for introduc-
ing this feature is the same as for the feature
tag similarity. This feature combines with
the feature has email to exhaust all possibili-
ties.

• url similarity. The value of the feature
is the cosine similarity between the source
segment and destination segment url ad-
dresses vectors. The reasoning for introduc-
ing this feature is the same as for the feature
tag similarity.

• number similarity. The value of the feature
is the cosine similarity between the source
segment and destination segment number
vectors. The reasoning for introducing
this feature is the same as for the feature
tag similarity.
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• bisegment similarity. The value of the fea-
ture is the cosine similarity between the desti-
nation segment and the source segment trans-
lation in the destination language. It formal-
izes the idea that if the target segment is a
true translation of the source segment then
a machine translation of the source segment
should be similar to the target segment.

• capital letters word difference. The value of
the feature is the ratio between the difference
of the number of words containing at least a
capital letter in the source segment and the
target segment and the sum of the capital let-
ter words in the bi-segment. It is complemen-
tary to the feature has capital letters.

• only capletters dif. The value of the feature
is the ratio between the difference of the num-
ber of words containing only capital letters in
the source segment and the target segments
and the sum of the only capital letter words
in the bi-segment. It is complementary to the
feature has words capital letters.

• lang dif. The value of the feature is calcu-
lated from the language codes declared in the
segment and the language codes detected by
a language detector. For example, if we ex-
pect the source segment language code to be
”en” and the target segment language code to
be ”it” and the language detector detects ”en”
and ”it”, then the value of the feature is 0 (en-
en,it-it). If instead the language detector de-
tects ”en” and ”fr” then the value of the fea-
ture is 1 (en-en,it-fr) and if it detects ”de” and
”fr” (en-de,it-fr) then the value is 2.

All feature values are normalized between 0
and 1. The most important features are biseg-
ment similarity and lang dif. The other features
are either sparse (e.g. relatively few bi-segments
contain URLs, emails or tags) or they do not
describe the translation process very accurately.
For example, we assumed that the punctuation in
the source and target segments should be similar,
which is true for many bi-segments. However,
there are also many bi-segments where the trans-
lation of the source segment in the target language
lacks punctuation.

The translation of the source English segment to
Italian is performed with the Bing API. The com-
putation of the language codes for the bi-segment

is done with the highly accurate language detector
Cybozu5.

4.2 Algorithms
As we showed in section 3 there are cases when
the contributors mistake the language codes of the
source and target segments. Nevertheless, the seg-
ments might be true translations. Therefore, be-
fore applying the machine learning algorithms, we
first invert the source and target segments if the
above situation verifies. We tested the following
classification algorithms from the package scikit-
learn (Pedregosa et al., 2011):

• Decision Tree. The decision trees are one
of the oldest classification algorithms. Even
if they are known to overfit the training data
they have the advantage that the rules inferred
are readable by humans. This means that we
can tamper with the automatically inferred
rules and at least theoretically create a better
decision tree.

• Random Forest. Random forests are ensem-
ble classifiers that consist of multiple deci-
sion trees. The final prediction is the mode of
individual tree predictions. The Random For-
est has a lower probability to overfit the data
than the Decision Trees.

• Logistic Regression. The Logistic Regres-
sion works particularly well when the fea-
tures are linearly separable. In addition, the
classifier is robust to noise, avoids overfitting
and its output can be interpreted as probabil-
ity scores.

• Support Vector Machines with the linear
kernel. Support Vector Machines are one of
the most used classification algorithms.

• Gaussian Naive Bayes. If the conditional
independence that the naive Bayes class of
algorithm postulates holds, the training con-
verges faster than logistic regression and the
algorithm needs less training instances.

• K-Nearst Neighbors. This algorithm classi-
fies a new instance based on the distance it
has to k training instances. The prediction
output is the label that classifies the majority.
Because it is a non-parametric method, it can

5https://github.com/shuyo/language-
detection/blob/wiki/ProjectHome.md
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give good results in classification problems
where the decision boundary is irregular.

5 Results and discussion

We performed two evaluations of the machine
learning algorithms presented in the previous sec-
tion. The first evaluation is a three-fold stratified
classification on the training set. The algorithms
are evaluated against two baselines. The first base-
line it is called Baseline Uniform and it gener-
ates predictions randomly. The second baseline
is called Baseline Stratified and generates predic-
tions by respecting the training set class distribu-
tion. The results of the first evaluation are given in
table 1 :

Algorithm Precision Recall F1
Random Forest 0.95 0.97 0.96
Decision Tree 0.98 0.97 0.97
SVM 0.94 0.98 0.96
K-Nearst
Neighbors 0.94 0.98 0.96
Logistic
Regression 0.92 0.98 0.95
Gaussian
Naive Bayes 0.86 0.96 0.91
Baseline
Uniform 0.69 0.53 0.60
Baseline
Stratified 0.70 0.73 0.71

Table 1: The results of the three-fold stratified
classification.

Excepts for the Gaussian Naive Bayes all other
algorithms have excellent results. All algorithms
beat the baselines by a significant margin (at least
20 points).

The second evaluation is performed against the
test set. The baselines are the same as in three-fold
evaluation above and the results are in table 2.

The results for the second evaluation are worse
than the results for the first evaluation. For exam-
ple, the difference between the F1-scores of the
best performing algorithm: SVM and the strati-
fied baseline is of 10%: twice lower than the dif-
ference between the best performing classification
algorithm and the same baseline for the first eval-
uation. This fact might be explained partially by
the great variety of the bi-segments in the Matecat
and Web Sets. Obviously this variety is not fully
captured by the training set.

Algorithm Precision Recall F1
Random Forest 0.85 0.63 0.72
Decision Tree 0.82 0.69 0.75
SVM 0.82 0.81 0.81
K-Nearst
Neighbors 0.83 0.66 0.74
Logistic
Regression 0.80 0.80 0.80
Gaussian
Naive Bayes 0.76 0.61 0.68
Baseline
Uniform 0.71 0.72 0.71
Baseline
Stratified 0.70 0.51 0.59

Table 2: The results of the classification on the test
set.

Unlike in the first evaluation, in the second one
we have two clear winners: Support Vector Ma-
chines (with the linear kernel) and Logistic Re-
gression. They produce F1-scores around 0.8. The
results might seem impressive, but they are insuf-
ficient for automatically cleaning MyMemory. To
understand why this is the case we inspect the re-
sults of the confusion table for the SVM algorithm.
From the 309 examples in the test set 175 are true
positives, 42 false positives, 32 false negatives and
60 true negatives. This means that around 10% of
all examples corresponding to the false negatives
will be thrown away. Applying this method to the
MyMemory database would result in the elimina-
tion of many good bi-segments. We should there-
fore search for better methods of cleaning where
the precision is increased even if the recall drops.
We make some suggestions in the next section.

6 Conclusions and further work

In this paper we studied the performance of vari-
ous classification algorithms for identifying false
bi-segments in translation memories. We have
shown that the distribution of the Church-Gale
scores in two sets of bi-segments that contain dif-
ferent proportion of positive and negative exam-
ples is dissimilar. This distribution is closer to the
normal distribution for the MateCat set and more
sparse for Collective Set. The best performing
classification algorithms are Support Vector Ma-
chines (with the linear kernel) and Logistic Re-
gression. Both algorithms produce a significant
number of false negative examples. In this case the
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performance of finding the true negative examples
does not offset the cost of deleting the false nega-
tives from the database.

There are two potential solutions to this prob-
lem. The first solution is to improve the perfor-
mance of the classifiers. In the future we will study
ensemble classifiers that can potentially boost the
performance of the classification task. The idea
behind the ensemble classifiers is that with differ-
ently behaving classifiers one classifier can com-
pensate for the errors of other classifiers. If this
solution does not give the expected results we will
focus on a subset of bi-segments for which the
classification precision is more than 90%. For ex-
ample, the Logistic Regression classification out-
put can be interpreted as probability. Our hope is
that the probabilities scores can be ranked and that
higher scores correlate with the confidence that a
bi-segment is positive or negative.

Another improvement will be the substitution
of the machine translation module with a simpler
translation system based on bilingual dictionaries.
The machine translation module works well with
an average numbers of bi-segments. For exam-
ple, the machine translation system we employ can
handle 40000 bi-segments per day. However, this
system is not scalable, it costs too much and it can-
not handle the entire MyMemory database. Unlike
a machine translation system, a dictionary is rela-
tively easy to build using an aligner. Moreover, a
system based on an indexed bilingual dictionary
should be much faster than a machine translation
system.
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