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Abstract 

When individuals lose the ability to produce their own speech, 

due to degenerative diseases such as motor neurone disease 

(MND) or Parkinson’s, they lose not only a functional means of 

communication but also a display of their individual and group 

identity. In order to build personalized synthetic voices, attempts 

have been made to capture the voice before it is lost, using a 

process known as voice banking. But, for some patients, the 

speech deterioration frequently coincides or quickly follows 

diagnosis. Using HMM-based speech synthesis, it is now 

possible to build personalized synthetic voices with minimal data 

recordings and even disordered speech. The power of this 

approach is that it is possible to use the patient’s recordings to 

adapt existing voice models pre-trained on many speakers. When 

the speech has begun to deteriorate, the adapted voice model can 

be further modified in order to compensate for the disordered 

characteristics found in the patient’s speech, we call this process 

"voice repair". In this paper we compare two methods of voice 

repair. The first method follows a trial and error approach and 

requires the expertise of a speech therapist. The second method 

is entirely automatic and based on some a priori statistical 

knowledge. A subjective evaluation shows that the automatic 

method achieves similar results than the manually controlled 

method.  

Index Terms: HTS, Speech Synthesis, Voice Banking, Voice 

Reconstruction, Voice Output Communication Aids, MND. 

1. Introduction 

Degenerative speech disorders have a variety of causes that 

include Multiple Sclerosis, Parkinson’s, and Motor Neurone 

Disease (MND) also known in the USA as Amyotrophic Lateral 

Sclerosis (ALS). MND primarily affects the motor neurones in 

the brain and spinal cord. This causes a worsening muscle 

weakness that leads to a loss of mobility and difficulties with 

swallowing, breathing and speech production. Initial symptoms 

may be limited to a reduction in speaking rate, an increase of the 

voice’s hoarseness, or an imprecise articulation. However, at 

some point in the disease progression, 80 to 95% of patients are 

unable to meet their daily communication needs using their 

speech [1]. As speech becomes difficult to understand, these 

individuals may use a voice output communication aid (VOCA). 

These devices consist of a text entry interface such as a 

keyboard, a touch screen or an eye-tracker, and a text-to-speech 

synthesizer that generates the corresponding speech. However, 

when individuals lose the ability to produce their own speech, 

they lose not only a functional means of communication but also 

a display of their individual and social identity through their 

vocal characteristics.  

 

Current VOCAs are not ideal as they are often restricted to a 

limited set of impersonal voices that are not matched to the age 

or accent of each individual. Feedback from patients, careers and 

patient societies has indicated that there is a great unmet need for 

personalized VOCAs as the provision of personalized voice is 

associated with greater dignity and improved self-identity for the 

individual and their family [2]. In order to build personalized 

VOCAs, several attempts have been made to capture the voice 

before it is lost, using a process known as voice banking. One 

example of this approach is ModelTalker [3], a free voice 

building service that can be used from any home computer in 

order to build a synthetic voice based on diphone concatenation, 

a technology developed in the 1980s. The user of this service has 

to record around 1800 utterances in order to fully cover the set of 

diphones and the naturalness of the synthetic speech is rather 

low. Cereproc [4] has provided a voice building service for 

individuals, at a relatively high cost, which uses unit selection 

synthesis, and is able to generate synthetic speech of increased 

naturalness. However, these speech synthesis techniques require 

a large amount of recorded speech in order to build a good 

quality voice. Moreover the recorded speech data must be as 

intelligible as possible, since the data recorded is used directly as 

the voice output. This requirement makes such techniques more 

problematic for those patients whose voices have started to 

deteriorate. Therefore, there is a strong motivation to improve 

the voice banking and voice building techniques, so that patients 

can use their own synthetic voices, even if their speech is already 

disordered at the time of recordings. A first approach is to try to 

separate out the disorders from the recorded speech. In this way, 

Rudzicz [5] has proposed a combination of several speech 

processing techniques. However, some disorders cannot be 

simply filtered out by signal processing techniques and a model-

based approach seems more appropriate. Kain [6] has proposed a 

voice conversion framework for the restoration of disordered 

speech. In its approach, the low-frequency spectrum of the 

voiced speech segment is modified according to a mapping 

defined by a Gaussian mixture model (GMM) learned in advance 

from a parallel dataset of disordered and target speech. The 

modified voiced segments are then concatenated with the 

original unvoiced speech segments to reconstruct the speech. 

This approach can be seen as a first attempt of model-based 

voice reconstruction although it relies only on a partial modeling 

of the voice components. A voice building process using the 

hidden Markov model (HMM)-based speech synthesis technique 

has been investigated to create personalized VOCAs [7-10]. This 

approach has been shown to produce high quality output and 

offers two major advantages over existing methods for voice 

banking and voice building. First, it is possible to use existing 

speaker-independent voice models pre-trained over a number of 

speakers and to adapt them towards a target speaker. This 

process known as speaker adaptation [11] requires only a very 
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small amount of speech data. The second advantage of this 

approach is that we can control and modify various components 

of the adapted voice model in order to compensate for the 

disorders found in the patient’s speech. We call this process 

“voice repair”. In this paper, we compare different strategies of 

voice repair using the HMM-based synthesis framework. The 

first method follows a trial and error approach and requires the 

expertise of a speech therapist. The second method is entirely 

automatic and based on some a priori statistical knowledge. 

2. HMM-Based Speech Synthesis 

Our voice building process is based on the state-of-the-art 

HMM-based speech synthesizer, known as HTS [12]. As 

opposed to diphone or unit-selection synthesis, the HMM-based 

speech synthesizer does not use the recorded speech data directly 

as the voice output. Instead it is based on a vocoder model of the 

speech and the acoustic parameters required to drive this vocoder 

are represented by a set of statistical models. The vocoder used 

in HTS is STRAIGHT and the statistical models are context-

dependent hidden semi-Markov models (HSMMs), which are 

HMMs with explicit state duration distributions. The state output 

distributions of the HSMMs represent three separate streams of 

acoustic parameters that correspond respectively to the 

fundamental frequency (logF0), the band aperiodicities and the 

mel-cepstrum, including their dynamics. For each stream, 

additional information is added to further describe the temporal 

trajectories of the acoustic parameters, such as their global 

variances over the learning data. Finally, separate decision trees 

are used to cluster the state durations probabilities and the state 

output probabilities using symbolic context information at the 

phoneme, syllable, word, and utterance level. In order to 

synthesize a sentence, a linguistic analyser is used to convert the 

sequence of words into a sequence of symbolic contexts and the 

trained HSMMs are invoked for each context. A parameter-

generation algorithm is then used to estimate the most likely 

trajectory of each acoustic parameter given the sequence of 

models. Finally the speech is generated by the STRAIGHT 

vocoder driven by the estimated acoustic parameters. 

3. Speaker Adaptation 

One advantage of the HMM-based speech synthesis for voice 

building is that the statistical models can be estimated from a 

very limited amount of speech data thanks to speaker adaptation. 

This method [9] starts with a speaker-independent model, or 

“average voice model”, learned over multiple speakers and uses 

model adaptation techniques drawn from speech recognition 

such as maximum likelihood linear regression (MLLR), to adapt 

the speaker independent model to a new speaker. It has been 

shown that using 100 sentences or approximately 6-7 minutes of 

speech data is sufficient to generate a speaker-adapted voice that 

sounds similar to the target speech [7]. In the following of this 

paper we refer the speaker-adapted voices as “voice clones”. 

This provides a much more practical way to build a personalized 

voices for patients. For instance, it is now possible to construct a 

synthetic voice for a patient prior to a laryngectomy operation, 

by quickly recording samples of their speech [8]. A similar 

approach can also be used for patients with neurodegenerative 

diseases such as MND. However, we do not want to reproduce 

the symptoms of a vocal problem if the speech has already been 

disordered at the time of the recording. This is the aim of the 

voice repair methods introduced in the section 5 of this paper. 

4. Database of Voice Donors 

Ideally, the average voice model used for the speaker adaptation 

should be close to the vocal identity of the patient. On the other 

hand, a minimum number of speakers are necessary to train 

robust average voice models. Therefore, we have created a 

database of more than 900 healthy voice donors with various 

accents (Scottish, Irish, Other UK). Each speaker recorded about 

one hour of speech (400 sentences). This database of healthy 

voices is first used to create the average voice models used for 

speaker adaptation. Ideally, the average voice model should be 

close to the vocal identity of the patient and it has been shown 

that gender and regional accent are the most influent factors in 

speaker similarity perception [13]. Therefore, the speakers are 

clustered according to their gender and their regional accent in 

order to train specific average voice models. A minimum of 10 

speakers is required in order to get robust average voice models. 

Furthermore, the database is also used to select a reference donor 

for the voice repair procedures described in section 5. The voice 

repair is most successful when the reference donor is as close as 

possible to the patient in terms of vocal identity. 

5. Voice Repair 

 Some individuals with neurodegenerative disease may already 

have speech symptoms at the time of the recording. In that case, 

the speaker adaptation process will also replicate these 

symptoms in the speaker-adapted voice. Therefore we need to 

remove speech disorders from the synthetic voice, so that it 

sounds more natural and more intelligible. Repairing synthetic 

voices is conceptually similar to the restoration of disordered 

speech mentioned in Section 1, but we can now exploit the 

acoustic models learned during the training and the adaptation 

processes in order to control and modify various speech features. 

This is the second major advantage of using HMM-based speech 

synthesis. In particular, HTS has statistically independent models 

for duration, log-F0, band aperiodicity and mel-cepstrum. This 

allows the substitution of some models in the patient's speaker-

adapted voice by that of a well-matched healthy voice or an 

average of multiple healthy voices. For example, patients with 

MND often have a disordered speaking rate, contributing to a 

loss of the speech intelligibility. The substitution of the state 

duration models enables the timing disruptions to be regulated at 

the phoneme, word, and utterance levels. Furthermore, MND 

speakers often have breathy or hoarse speech, in which excessive 

breath through the glottis produces unwanted turbulent noise. In 

such cases, we can substitute the band aperiodicity models to 

produce a less breathy or hoarse output. In the following part of 

this section, we present two different methods of model 

substitution. The first one is manually controlled whereas the 
second one is automatic. 

5.1. Manual voice repair 

In the manual approach, a speech therapist first selects a 

reference voice among all the available voices with same accent, 

gender and age range than the patient. Then the models of this 

reference voice are used to correct some of the patient’s voice 

models. This correction is based on mean and variance 

interpolation between models. A graphical interface allows the 

speech therapist to control the amount of interpolation between 

the patient’s voice models and the reference voice models as 

illustrated in Figure 1. 
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Figure 1: Graphical interface for model interpolation. 

 

The following models and information can be interpolated: 

• Duration  

• Dynamics coefficients of the log-F0  

• Dynamics coefficients of the mel-cepstrum  

• Low-order coefficients of the mel-cepstrum  

• High-order coefficients of the mel-cepstrum  

The voiced/unvoiced weights and aperiodicity models are simply 

substituted since their impact on voice identity is rather limited 

and their replacement of will fix the breathiness disorders. The 

interpolation of the high order static coefficients and the 

dynamics coefficients of the mel-cepstrum will help to reduce 

the articulation disorders without altering the timbre. The 

interpolation of the dynamics coefficients of the log-F0 will help 

to regulate the prosodic disorders such as monotonic F0. Finally 

the global variances of all the parameters are also simply 

substituted. We will refer to this method as the manual repair. 

5.2. Automatic voice repair 

The manual voice repair requires a lot of expertise from the 

speech therapist, as it is a trial and error approach. Therefore, we 

aim to replace it by a fully automated voice repair procedure. We 

measure the Kullback-Leibler distance (KLD) between the 

models of the patient voice and the models of the reference voice 

as illustrated in Figure 2. Then the likelihood of each of the 

measured distance is evaluated given the statistical distribution 

of KLD distances between healthy voice models of similar 

accent, gender and age band. The likelihood values are used to 

control the interpolation between the patient and reference voice 

models. For instance, if the likelihood of the KLD distance for a 

given model of the patient voice is very low, the corresponding 

model of the reference voice is used to replace it in the patient 

voice. The reference voice model is also selected automatically 

as the one that maximizes the likelihood of the patient recording 

data.  

6. Experiment 

The manual and automatic voice repair methods presented in 

Section 5 were evaluated for the case of a MND patient. This 

patient was a 45 years old Scottish male that we recorded twice. 

A first recording of one hour (500 sentences) has been made just 

after diagnosis when he was at the very onset of the disease.  

 
 

Figure 2: Graphical interface for model interpolation. 

 

At that time, his voice did not show any disorders and could still 

be considered as “healthy”. A second recording of 15 minutes 

(50 sentences) has been made 10 months later. He has then 

acquired some speech disorders typically associated with MND, 

such as excessive hoarseness and breathiness, disruption of 

speech fluency, reduced articulation and monotonic prosody. 

These two recordings were used separately as adaptation data in 

order to create two speaker-adapted voices from the same male-

Scottish average voice model. The synthetic voice created from 

the first recording of the patient (“healthy” speech) was used as 

the reference voice for the subjective evaluations. This choice of 

a synthetic voice as reference instead of the natural recordings 

was done to avoid any bias due to the loss of quality inherent to 

the synthesis. Two different reconstructed voices were created 

from the second recording of the patient (“impaired” speech) 

using the manual and the automatic voice repair methods 

respectively. In order to evaluate the voice repair methods, two 

subjective tests were conducted. The first one assesses the 

intelligibility of the reconstructed voices whereas the second one 

measures their similarity with synthetic voice created from 

“healthy” speech of the patient. We also included the synthetic 

voices of the donors selected for the manual and the automatic 

voice repair in the similarity test. All the synthetic voices used in 

the experiment are summarized in Table 1. 

 

Voice Description 

MD Voice of donor used in manual voice repair  

AD Voice of donor used in automatic voice repair 

HC Voice clone of the “healthy” speech (1
st
 recording)  

IC Voice clone of the “impaired” speech  (2
nd

 recording) 

IR_v1 Reconstructed voice using manual voice repair 

IR_v2 Reconstructed voice using automatic voice repair 

 Table 1: Voices compared in the evaluation tests. 

 

6.1. Listening Intelligibility Test  

The same 50 semantically unpredictable sentences were 

synthesized for each of the voices created from the patient’s 

recordings (see Table 1). The resulting 200 synthesized samples 

were divided into 4 groups such that each voice is represented by 

10 samples in a group. A total of 40 native English participants 
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were asked to transcribe the synthesized samples, with 10 

participants for each group. Within each group, the samples were 

presented in random order for each participant. The participants 

performed the test with headphones. The transcriptions were 

evaluated by measuring the word error rate (WER). 

 
Figure 3: Word Error Rate (mean and standard deviation) 

 

6.2. Speaker Similarity Test  

The same test sentence “People look, but no one ever finds it.” 

was synthesized for each of the voices in Table 1. Participants 

were asked to listen alternatively to the reference voice (HC) and 

to the same sentence synthesized with one of the other voices. 

The presentation order of the voice samples was randomized. 

The participants have been asked to rate the similarity in terms of 

speaker identity between the tested voice and the reference (HC) 

on a 5-point scale (1: Very dissimilar, 2: Dissimilar, 3: Quite 

Similar, 4: Very similar; and 5: Identical). A total of 40 native 

English speakers performed the test using headphones.  

 
Figure 4: Similarity to the reference voice HC on a MOS-scale 

 (mean and standard deviation) 

7. Results and Discussion 

The resulting average WERs for the intelligibility test are shown 

in Figure 2. We are not interested here in the absolute values of 

the WER but in their relative values compared to the healthy 

voice HC. As expected, the synthetic voice IC created from the 

“impaired” speech has a high WER. Both manual and automatic 

voice repair succeeds in removing some articulation disorders 

from the synthetic speech as we can see a significant decrease of 

WER. The manual voice repair yields to slightly lower WER 

than the automatic voice repair although the difference is not 

significant. The results of the similarity test are shown in Figure 

3. The first important result is that the reconstructed voices are 

still considered more similar to the patient’s voice than the 

closest voice donors (MD and AD) used for the voice repair. 

This means that both voice repair methods manage to preserve 

the voice identity to a certain extent. The manual voice repair is 

performing slightly better than the automatic method but the 

difference is not significant (p-value ~ 1.e-2).  

8. Conclusions 

HMM-based speech synthesis has two clear advantages for the 

creation of personalized voices for people with disordered 

speech: speaker adaptation and improved control. Speaker 

adaptation allows the creation of a voice clone with a limited 

amount of data. Then the structure of the acoustic models can be 

modified to repair the synthetic speech. We have presented here 

two different strategies for voice reconstruction. The first one is 

manual and requires the expertise of a speech therapist whereas 

the second one is fully automated. The evaluation of these 

methods demonstrates that: a) it is possible to improve the 

intelligibility of a disordered synthetic speech while retaining its 

vocal identity; b) the automatic voice repair performs almost as 

well as the manual voice repair. The reconstruction strategies 

presented here have been designed for MND patients, but their 

principle could be easily generalized to any other degenerative or 

acquired speech disorder. 
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