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Abstract

Articulatory data have gained increasing interest in speech

recognition with or without acoustic data. Electromagnetic ar-

ticulograph (EMA) is one of the affordable, currently used tech-

niques for tracking the movement of flesh points on articula-

tors (e.g., tongue) during speech. Determining an optimal set

of sensors is important for optimizing the clinical applications

of EMA data, due to the inconvenience of attaching sensors on

tongue and other intraoral articulators, particularly for patients

with neurological diseases. A recent study found an optimal set

(tongue tip and body back, upper and lower lips) on tongue and

lips for isolated phoneme, word, or short phrase classification

from articulatory movement data. This four-sensor set, how-

ever, has not been verified in continuous silent speech recogni-

tion. In this paper, we investigated the use of data from sen-

sor combinations in continuous speech recognition to verify

the finding using a publicly available data set MOCHA-TIMIT.

The long-standing speech recognition approach Gaussian mix-

ture model (GMM)-hidden Markov model (HMM) and a re-

cently available approach deep neural network (DNN)-HMM

were used as the recognizers. Experimental results confirmed

that the four-sensor set is optimal out of the full set of sensors

on tongue, lips, and jaw. Adding upper incisor and/or velum

data further improved the recognition performance slightly.

Index Terms: silent speech recognition, deep neural network,

hidden Markov model, electromagnetic articulograph, articula-

tion, dysarthria

1. Introduction

With the availability of affordable devices for tongue move-

ment data collection, articulatory data have obtained interest

not only in speech science [1, 2, 3, 4] but also in speech tech-

nology (i.e., automatic speech recognition) [5, 6]. First, articu-

latory data have been successfully used to improve the speech

recognition accuracy [5]. Articulatory data are particularly use-

ful when speech signals are noisy or low quality [7] for rec-

ognizing dysarthric speech [8, 9]. Second, when acoustic data

is not available, a silent speech interface (SSI) based on ar-

ticulatory data has potential clinical applications [10, 11]. An

SSI recognizes speech from articulatory data only (without us-

ing audio data) [12, 13] and then drives a text-to-speech syn-

thesizer for sound playback [14, 15]. For example, SSIs can

be used to assist the oral communication for patients with se-

vere voice disorders or without the ability to produce speech

sounds (e.g., due to laryngectomy, a surgical removal of larynx

due to treatment of laryngeal cancer) [16]. There are currently

limited options to assist speech communication for those in-

dividuals (e.g., esophageal speech, tracheo-esophageal speech

or tracheo-esophageal puncture (TEP) speech, and electrolar-

ynx). These approaches, however, produce an abnormal sound-

ing voice [17, 18], which impacts the quality of life of laryngec-

tomees. Current text-to-speech technologies have been able to

produce speech with natural sounding voice for SSIs [19]. One

of the current challenges of SSI development is silent speech

recognition algorithms (without using audio data) [10, 20] or

mapping articulatory information to speech [21, 22, 23].

Electromagnetic motion tracking is one of the affordable,

currently used technologies for tracking tongue movement dur-

ing speech [19, 24, 25]. There are currently two commercially

available devices, EMA AG series (by Carstens) and Wave sys-

tem (by NDI, Inc.) [26]. Tongue tracking using electromag-

netic devices is accomplished through attaching small sensors

on the surface of tongue and other articulators. In prior work,

the number of tongue sensors and their locations have been jus-

tified based on long-standing assumptions about tongue move-

ment patterns in classic phonetics [27], or the specific purpose

of the study. Other techniques that have been used to record

non-audio articulatory information include ultrasound [28, 29],

and surface electromyography (EMG) [30, 31].

Determining an optimal set of tongue sensors for speech

production is significant for both science and technology. Sci-

entifically, determining an optimal set of sensors can improve

the understanding of the coordination of articulators for speech

production [32]. Technologically, it can be helpful for clinical

applications including (1) silent speech interfaces, (2) speech

recognition with articulatory information [5, 33], and (3) speech

training using real-time visual feedback of tongue movements

[34, 35]. In literature, three or four EMA sensors on the tongue

have been commonly used (e.g., [1, 3, 4, 5, 36, 37]). The use of

more sensors than necessary comes at a cost for both researchers

and subjects; the procedure for attaching sensors to the tongue

is time intensive and can cause discomfort and therefore may

limit the scope of EMA for practical use, particularly for per-

sons with neurological diseases (e.g., Parkinson’s disease [38]

and amyotrophic lateral sclerosis [39]).

Here, optimal set means a sensor set that contains the least

number of sensors that performs no worse than other sets with

more sensors. There may be more than one optimal set with the

same number of sensors.
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Until recently, a study found two tongue sensors (Tongue

Tip and Tongue Body Back) and two lip sensors (Upper Lip

and Lower Lip) are optimal for isolated phoneme (vowels and

consonants), word, and short phrase classification [32, 40]. The

classification results based on data using the optimal set were

not significantly different from these based on data from the

full set with four tongue sensors (Tongue Tip, Tongue Blade,

Tongue Body Front, and Tongue Body Back) plus the two lip

sensors [32]. However, this set has not been verified in contin-

uous silent speech recognition or speech recognition from both

acoustic and articulatory data. If the two-tongue-sensor set can

be confirmed for continuous speech recognition, it would be

beneficial for future collection of a larger articulatory data set.

Other studies compared the whole tongue and lips (e.g., [41]

using ultrasound and optical data), but not on flesh points.

In this paper, we investigated the optimal set of tongue sen-

sors for speaker-dependent continuous silent speech recogni-

tion (using articulatory data only) and speech recognition (us-

ing combined acoustic and articulatory data). The goals were

(1) to confirm if more than two tongue sensors are unnecessary

for continuous silent speech recognition and speech recogni-

tion using both acoustic and articulatory data when only tongue

and lips are used, and (2) to provide a reference for choosing

the number of sensors and their locations on the tongue, lips,

jaw and other articulators for future studies. However, due to

the space limitation, this paper did not verify if the hypothe-

sized optimal four-sensor set is unique. The articulatory and

acoustic data in the MOCHA-TIMIT data set [42] were used

in this experiment. The MOCHA-TIMIT data set is appropri-

ate for this study because it contains data collected from sen-

sors attached on multiple articulators, including three sensors

on the tongue, two on the lips, two on the incisors, and one on

the velum. In addition, both MOCHA-TIMIT and the data set

in [32] have tongue tip and body back (or dorsum). Thus the

first goal of this paper became to verify if the tongue blade sen-

sor is unnecessary in addition to the hypothesized optimal set

[32, 40]. The traditional speech recognition approach Gaussian

mixture model (GMM)-hidden Markov model (HMM) [5] and a

recently available and promising approach deep neural network

(DNN)-HMM [43, 44] were used.

2. Method

2.1. Data set

MOCHA (Multi-CHannel Articulatory)-TIMIT data set con-

sists of simultaneous recordings of speech, articulatory move-

ment, and other forms of data collected from 2 British English

speakers (1 male - MSAK0 and 1 female - FSEW0) [42]. There

are 920 sentences (extracted from TIMIT database) in total. In-

dividual phonemes and silences within each sentence have been

labeled.

The articulatory and acoustic data in MOCHA-TIMIT

were collected using an Electromagnetic Articulograph (EMA,

Carstens Medizinelektronik GmbH, Germany) by attaching

sensors to upper lip (UL), lower lip (LL), upper incisor (UI),

lower incisor (LI), tongue tip (TT), tongue blade (TB), tongue

dorsum (TD), and velum (V) with 500 Hz sampling rate. Each

sensor had x (front-back) and y (vertical) trajectories. There-

fore, the acoustic data and the 16-dimensional x and y motion

data obtained from UI, LI, V, UL, LL, TT, TB, and TD were

used.

TT was 5-10 mm to the tongue apex; TB was 2-3 cm from

TT; TD was 2-3 cm from TB [42]. This roughly matched with

the tongue tip sensor in [32, 40], which was also 5-10 mm to

tongue apex, and the tongue body back in [32, 40], which was

about 40 mm from tongue tip. Thus, as mentioned earlier, the

goal (1) in this paper became to verify if the middle tongue sen-

sor (TB) was unnecessary.

2.2. Recognizers

A long-standing approach GMM-HMM and a promising ap-

proach DNN-HMM were used as the recognizers in this exper-

iment.

2.2.1. Gaussian Mixture Model-Hidden Markov Model

GMM-HMM has been used in speech recognition for decades

[45]. The core idea of GMM is compact representation of distri-

bution using means and variances. GMM is a generative model

and trained to represent as closely as possible the distribution

(e.g., using means and variances) of training data. In many

applications, the number of mixtures for GMMs is adjusted to

avoid overfitting.

2.2.2. Deep Neural Network-Hidden Markov Model

DNN-HMM recently attracted the interests of speech recogni-

tion researchers because it showed a significant performance

improvement compared with GMM-HMM when replacing

GMM to DNN in (acoustic) speech recognition [44, 46]. We

adopted the DNN training approach based on restricted Boltz-

mann machines (RBMs) [47].

The DNN (stacked RBMs) were subsequently fine-tuned

using the backpropagation algorithm. A detailed explanation

and discussion of the DNN can be found in [47, 48].

2.3. Experimental setup

Data from individual sensors or combinations of sensors were

used in speech recognition experiments (from articulatory data

only or from combined acoustic and articulatory data). The

recognition performances obtained from individual sensors or

their combinations were compared to determine (1) if Tongue

Blade was unnecessary in addition to the other two tongue sen-

sors and lips (Tongue Tip, Tongue Dorsum, Upper Lip, and

Lower Lip), and (2) if the performance improved when more

sensor’s data (e.g., upper incisor and velum) were added.

In each experiment, a 5-fold cross validation strategy with

a jackknife procedure was performed to set training and test

sets in the experiment [42, 49]. In each of the five execu-

tions, a group of 92 sentences were selected for test with the

remaining 368 sentences for training. Due to the high de-

gree of variation in the articulation across speakers and there

were only two speakers in MOCHA-TIMIT, speaker-dependent

recognition was conducted. The average training data length

for each cross validation became 21.3 mins (368 sentences) for

the female speaker and 20.6 mins (368 sentences) for the male

speaker. The average test data length along 5 cross validations

was 5.3 mins (92 sentences) for the female speaker and 5.2 mins

(92 sentences) for the male speaker, respectively.

Articulatory features were extracted from the corpus using

EMAtools [50]. The original articulatory features and their

first and second derivatives were concatenated to build vari-

ous dimensional feature vectors for each set of sensors. The

“breath” segments were merged with “silence” for both train-

ing and testing [49]. The input features in DNN were a con-

catenation of articulatory feature vectors (number of sensors ×
2-dimension articulatory movement data + ∆ + ∆∆) with 9
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Table 1: Experimental setup.

Articulatory Feature

Low pass filtering 40 Hz cutoff, 5th order Butterworth

Sampling rate 100 Hz (downsampled from 500 Hz)

Feature vector articulatory movement vector + ∆
+ ∆∆ (e.g., 6 dim. for 1 sensor,

48 dim. for 8 sensors)

Acoustic Feature

Sampling rate 16 kHz

Feature vector MFCC vector (13 dim.) + ∆
+ ∆∆ (39 dim.)

Frame size 25 ms

Common

Frame rate 10 ms

Mean normalization Applied

GMM-HMM topology

Monophone context-independent

137 states (44 phones × 3 states,

5 states for silence), ≈ 14 mixtures

3-state left to right HMM

Training method Maximum likelihood estimation

DNN-HMM topology

Monophone context-independent

input layer dimension varies based

on the set of sensors (e.g.,

54 for 1 sensor, 432 for 8 sensors)

137 output layer dimension

(including 5 outputs for silence)

1,024 nodes for each hidden layer

1 to 6-depth hidden layers

Training method RBM pre-training, back-propagation

Language model bi-gram phoneme language model

frames (4 preceding, current, and 4 succeeding frames). As it

concatenates multiple feature vectors in the time domain, DNN

has time-dependent context information which HMM takes us-

ing multiple states [43, 51]. Mel-frequency cepstral coefficients

(MFCCs) were extracted from the acoustic data and used as the

acoustic features in the recognition experiments.

The GMM-HMM system was trained using maximum

likelihood estimation (MLE) without using segment informa-

tion provided in MOCHA-TIMIT corpus (flat initialization).

The DNN-HMM system was pre-trained using contrastive-

divergence algorithm on RBMs and fine-tuned using back-

propagation algorithm. A bi-gram phoneme language model

was trained using all 44 phonemes provided in label files of the

corpus.

Table 1 lists the details of the experimental setup and major

parameters in GMM-HMM and DNN-HMM. The training and

decoding were performed using the Kaldi speech recognition

toolkit [52].

A phoneme error rate (PER) was used as a performance

measure, which is the ratio of the sum of the number of errors

over the total number of phonemes. The PER is represented by

PER = (S +D + I)/N (1)

where S represents the number of substitution errors, D is the

number of deletion errors, I stands for the number of insertion

errors, and N is the total number of phonemes in the test set.

For DNN, we conducted experiments using 1 to 6 hidden layers

and the best performance was reported. Finally, the PERs from

each test group in the 5-fold cross validation were averaged as

the overall PER.

3. Results and Discussion

Experimental results are shown in Figures 1 to 4 and discussed

below. Figures 1 and 2 show the silent speech recognition per-

formance on individual or combinations of sensors for both

speakers using GMM-HMM or DNN-HMM, respectively. Fig-

ures 3 and 4 give the speech recognition from MFCCs plus indi-

vidual or combinations of sensors’ data using GMM-HMM and

DNN-HMM, respectively.

3.1. General observations

First, the recognition performances obtained from individual

sensor’s data had consistently lower performance (higher PERs)

than from the combinations of sensors (Figures 1 to 4). Al-

though it seems intuitive, to our knowledge, this is the first

time the individual EMA sensor’s performance were examined

in continuous silent speech recognition or speech recognition

from combined acoustic and articulatory data.

Second, when the performances obtained using data from

individual sensors were compared, upper incisor (UI) and

velum (V) had the worst performance; the three individual

tongue sensors had a similar performance and were the best

among all sensors; lip sensors were between the tongue sen-

sors (TT, TB, TD) and UI and velum (V). This finding is highly

consistent with the descriptive knowledge in classic phonetics

that tongue is the primary articulator [27].

3.2. {TT, TD, UL, LL} and other combinations

Silent speech recognition performance substantially degraded

if any of the sensor in previously found optimal four-sensor set

(i.e., TT, TD, UL, and LL, marked bold in Figures 1 and 2) was

not used [32]. The optimal set of sensors using GMM-HMM

and articulatory data yielded a PER of 42.0% and 40.9% for the

female and male speakers, respectively. DNN-HMM with this

optimal set yielded a PER of 38.2% and 36.5% for the female

and male speakers, respectively.

As TB, UI, LI (jaw), or all of the three sensors’ data were

added on top of the four-sensor set, there was no improve-

ment using GMM-HMM, but a slight improvement using DNN-

HMM. When using all sensors’ (including V) data together,

a substantial improvement was obtained using either GMM-

HMM or DNN-HMM.

These results suggest the four-sensor set ({TT, TD, UL,

LL}) was an optimal set for silent speech recognition out of

the full set of sensors on the tongue, lips, and jaw. However,

adding extra data source (e.g., UI and V) could still improve the

performance.

Speech recognition from combined acoustic and articula-

tory data (Figures 3 and 4) also substantially degraded if any of

the sensor in {TT, TD, UL, and LL} was missing, for recog-

nizers. However, GMM-HMM and DNN-HMM results showed

different patterns when adding more sensors data to {TT, TD,

UL, LL}. GMM-HMM showed no improvement to the optimal

set (23.0% for female and 22.6% for male) when adding more

sensor’s data (22.7% for female and 22.8% for male); while

DNN-HMM (19.7% for female and 19.5% for male) showed

significant error reduction compared to the optimal set (20.4%

for female and 20.3% for male). This observation suggests

DNN has more potential than GMM to incorporate more data

sources to further improve the recognition performance.
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Figure 1: Phoneme Error Rates (PER; %) obtained using GMM-HMM and articulatory features.
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Figure 2: Phoneme Error Rates (PER; %) obtained using DNN-HMM and articulatory features.
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Figure 3: Phoneme Error Rates (PER; %) obtained using GMM-HMM and combined articulatory and acoustic features.
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Figure 4: Phoneme Error Rates (PER; %) obtained using DNN-HMM and combined articulatory and acoustic features.

The most important conclusion from the results above may

be, for future studies in which data are collected only from

tongue, lips, or jaw (i.e. not from velum), {TT, TD, UL, LL}
is an optimal set for silent speech recognition or speech recog-

nition from combined acoustic and articulatory data. However,

adding upper incisor and/or velum data can still further improve

the performance slightly.

3.3. {TT, TD, UL, LL} vs {TT, TB, TD, UL, LL}

Table 2 lists the results obtained from {TT, TD, UL, LL} and

{TT, TB, TD, UL, LL} to provide a close-up performance

comparison of the two sets, which further confirms adding TB
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Table 2: Phoneme Error Rates (PER; %) obtained from sensor combination {TT, TD, UL, LL} and {TT, TB, TD, UL, LL}.

Combination of Sensors Performance

Speaker Model Feature TT,TD,UL,LL TT,TB,TD,UL,LL Difference

Female

GMM-HMM
EMA 42.04 40.60 +1.44

MFCC + EMA 23.04 23.34 -0.30

DNN-HMM
EMA 38.24 35.20 +3.04

MFCC + EMA 20.40 20.42 -0.02

Male

GMM-HMM
EMA 40.88 41.48 -0.60

MFCC + EMA 22.56 23.02 -0.46

DNN-HMM
EMA 36.46 34.74 +1.72

MFCC + EMA 20.32 20.24 +0.08

Average +0.61

(Tongue Blade) did not significantly improve the speech recog-

nition performance in addition to {TT, TD, UL, LL}. The

right-most column of Table 2 lists the performance difference

between {TT, TD, UL, LL} and {TT, TB, TD, UL, LL} (posi-

tive means a better performance with TB; negative means worse

performance). The average performance difference of the two

sensor sets in all eight configurations (female vs male speaker,

GMM vs DNN, with or without MFCC) was +0.61, which

means adding TB reduced only 0.61% of PER.

3.4. {TT, TD, UL, LL} may not be the only four-sensor op-

timal set

The four-sensor set ({TT, TD, UL, LL}) may be just one of

the possible optimal four-sensor sets, because of the high cou-

pling of adjacent parts [3]. Figures 1 to 4 also show the three

tongue sensors, TT (Tongue Tip), TD (Tongue Dorsum) and

TB (Tongue Blade) have no significant differences in perfor-

mance when used individually, which may suggest they are in-

terchangeable. In other words, any two tongue sensors may

achieve no significant difference in recognition performance

with {TT, TD}. A further analysis using data from all tongue

sensor pairs is needed to test this hypothesis.

Nevertheless, we still suggest {TT, TD} as the optimal

tongue sensor pair, since TT and TD are anatomically farther

apart from each other than other tongue sensor pairs, thus TT

and TD may be more independent and have less redundant in-

formation. In addition, from the user’s (subject) perspective, the

sensor location on the tongue may not matter, as long as they are

in the comfortable zone (from tongue tip to tongue body back).

3.5. Velum sensor

Adding velum (V) data in addition to other sensors always im-

proved the speech recognition performance, although velum in

isolation achieved the worse performance. Velum is the primary

articulator for controlling nasal sounds in English (e.g., /m/ and

/n/). Velum provides unique information that other articulators

do not. However, we still do not think attaching sensors on

the velum is suitable for practical use of EMA, considering the

trade-off of the discomfort of attaching velum sensor on sub-

jects and the slight improvement of recognition performance.

3.6. DNN-HMM outperformed GMM-HMM

DNN-HMM outperformed GMM-HMM in all experimental

configurations (Figures 1 to 4). Although the focus of this paper

was not comparing GMM-HMM and DNN-HMM, the results

indicate the DNN-HMM outperformed GMM-HMM in both

silent speech recognition and speech recognition from com-

bined acoustic and articulatory data. This finding is consis-

tent with the recent literature in silent speech recognition [53],

acoustic speech recognition [44, 48], and speech recognition

from combined acoustic and articulatory data [46, 54]. We ex-

pect DNN-HMM has potential to further improve the recog-

nition performance from articulatory data or from combined

acoustic and articulatory data with a better structure or when

combined with other approaches (e.g., speaker adaptation [55]).

4. Conclusions and Future Work

In this paper, we have confirmed a previously found optimal set

of sensors on the tongue and lips (Tongue Tip, Tongue Dorsum,

Upper Lip and Lower Lip) [32] through experiments with con-

tinuous silent speech recognition and speech recognition from

combined acoustic and articulatory data, when only tongue,

lips, upper incisor, and lower incisor data are available (i.e., no

velum data). Although velum data can further (slightly) im-

prove the recognition performance on top of the four-sensor set,

it is not recommended for practical use because it causes dis-

comfort for subjects. In addition, the four-sensor set may not be

unique, since the individual tongue sensors have no significant

accuracy difference. Finally, DNN-HMM outperformed GMM-

HMM in both silent speech recognition and speech recognition

from combined acoustic and articulatory data.

These findings provide a reference for future relevant stud-

ies on choosing the number of sensors and their locations on

the tongue. However, as mentioned earlier, determining an ap-

propriate set of sensors may depend on the specific purpose of

the study. For example, a sensor on the side of the tongue may

be used in studies that focus on lateral tongue curvature during

speech production [56, 57].

Future work includes (1) verifying if TT, TB, and TD are

interchangeable, or determining if {TT, TD, UL, LL} is the

unique four-sensor optimal set, and (2) sensor combinations

in speaker-independent silent speech recognition experiments

[58, 59, 54].
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