
Evaluating Neural Machine Translation in English-Japanese Task

Zhongyuan Zhu
Weblio Inc.

chugen.shu@weblio.co.jp

Abstract

In this paper, we evaluate Neural
Machine Translation (NMT) models
in English-Japanese translation task.
Various network architectures with dif-
ferent recurrent units are tested. Addi-
tionally, we examine the effect of us-
ing pre-reordered data for the train-
ing. Our experiments show that even
simple NMT models can produce bet-
ter translations compared with all SMT
baselines. For NMT models, recovering
unknown words is another key to ob-
taining good translations. We describe
a simple workaround to find miss-
ing translations with a back-off sys-
tem. To our surprise, performing pre-
reordering on the training data hurts
the model performance. Finally, we
provide a qualitative analysis demon-
strates a specific error pattern in NMT
translations which omits some informa-
tion and thus fail to preserve the com-
plete meaning.

1 Introduction

In the last two decades, Statistical Machine
Translation (SMT) with log-linear models in
the core has shown promising results in the
field. However, as stated in (Duh and Kirch-
hoff, 2008), log-linear models may suffer from
the underfitting problem and thus give poor
performance. While for recurrent neural net-
works (RNNs), as demonstrated in (Mikolov et
al., 2010), they brought significant improve-
ment in Natural Language Processing tasks.
In their research, RNNs are shown to be capa-
ble of giving more prediction power compared
with conventional language models when large
training data is given. Using these neural lan-

guage models to rescore SMT outputs gener-
ally gives better translation results (Auli and
Gao, 2014). Other approaches rescore with
RNNs that predict the next word by taking the
word in current step and S as inputs (Kalch-
brenner and Blunsom, 2013; Cho, Merrien-
boer, et al., 2014). Here, S is a vector rep-
resentation summarizes the whole input sen-
tence.

Neural machine translation is a brand-new
approach that samples translation results di-
rectly from RNNs. Most published models in-
volve an encoder and a decoder in the net-
work architecture (Sutskever, Vinyals, and Le,
2014), called Encoder-Decoder approach. Fig-
ure 1 gives a general overview of this approach.
In Figure 1, the vector output S of the encoder
RNN represents the whole input sentence.
Hence, S contains all information required to
produce the translation. In order to boost up
the performance, (Sutskever, Vinyals, and Le,
2014) used stacked Long Short-Term Memory
(LSTM) units for both encoder and decoder,
their ensembled models outperformed phrase-
based SMT baseline in English-French trans-
lation task.

Figure 1: Basic neural network architecture in
Encoder-Decoder approach

Recently, by scaling up neural network mod-
els and incorporating some techniques during
the training, the performance of NMT models
have already achieved the state-of-the-art in
English-French translation task (Luong et al.,
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2015) and English-German translation task
(Jean et al., 2015).

In this paper, we describe our works on ap-
plying NMT to English-Japanese translation
task. The main contributions of this work are
detailed as follows:

• We examined the effect of using different
network architecture and recurrent units
for English-Japanese translation

• We empirically evaluated NMT models
trained on pre-reordered data

• We demonstrate a simple solution to re-
cover unknown words in the translation
results with a back-off system

• We provide a qualitative analysis on the
translation results of NMT models

2 Recurrent neural networks

Recurrent neural network is the solution for
modeling temporal data with neural networks.
The framework of widely used modern RNN is
introduced by Elman (Elman, 1990), it is also
known as Elman Network or Simple Recurrent
Network. At each time step, RNN updates its
internal state ht based on a new input xt and
the previous state ht−1, produces an output
yt. Generally, they are computed recursively
by applying following operations:

ht = f(Wixt + Whht−1 + bh) (1)

yt = f(Woht + bo) (2)

Where f is an element-wise non-linearity,
such as sigmoid or tanh. Figures 2 illustrates
the computational graph of a RNN. Solid lines
in the figure mark out the Affine transfor-
mations followed with a non-linear activation.
Dashed lines indicate that the result of previ-
ous computation is just a parameter of next
operation. The bias term bh is omitted in the
illustration.

RNN can be trained with Backpropagation
Through Time (BPTT), which is a gradient-
based technique that unfolds the network
through time so as to compute the actual gra-
dients of parameters in each time step.

Figure 2: An illustration of the computational
graph of a RNN

2.1 Long short-term memory

For RNN, as the internal state ht is completely
changed in each time step, BPTT algorithm
dilutes error information after each step of
computation. Hence, RNN suffers from the
problem that it is difficult to capture long-
term dependencies.

Long short-term memory units (Hochre-
iter and Schmidhuber, 1997) incorporate some
gates to control the information flow. In ad-
dition to the hidden units in RNN, memory
cells are used to store long-term information,
which is updated linearly. Empirically, LSTM
can preserve information for arbitrarily long
periods of time.

Figure 3 gives an illustration of the compu-
tational graph of a basic LSTM unit. In which,
input gate it, forget gate ft and output gate
ot are marked with rhombuses. “×” and “+”
are element-wise multiplication and element-
wise addition respectively. The computational
steps follows (Graves, 2013), 11 weight pa-
rameters are involved in this model, compared
with only 2 weight parameters in RNN. We
can see from Figure 3 that the memory cells
ct can keep unchanged when ft outputs 1 and
it outputs 0.

Figure 3: An illustration of a basic LSTM unit
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2.2 Gated recurrent unit
Gated recurrent unit (GRU) is originally pro-
posed in (Cho, Merrienboer, et al., 2014).
Similarly to LSTM unit, GRU also has gating
units to control the information flow. While
LSTM unit has a separate memory cell, GRU
unit only maintains one kind of internal states,
thus reduces computational complexity. The
computational graph of a GRU unit is demon-
strated in Figure 4. As shown in the figure, 6
weight parameters are involved.

Figure 4: An illustration of a GRU unit

3 Network architectures of Neural
Machine Translation

A basic architecture of NMT is called Encoder-
Decoder approach (Sutskever, Vinyals, and
Le, 2014), which encodes the input sequence
into a vector representation, then unrolls it to
generate the output sequence. Then softmax
function is applied to the output layer in or-
der to compute cross-entropy. Instead of using
one-hot embeddings for the tokens in the vo-
cabulary, trainable word embeddings are used.

As a pre-processing step, “<eos>” token is
appended to the end of each sequence. When
translating, the token with the highest proba-
bility in the output layer is sampled and input
back to the neural network to get next output.
This is done recursively until “<eos>” is ob-
served. Figure 5 gives a detailed illustration
of this architecture when using stacked multi-
layer recurrent units.

3.1 Soft-attention models in NMT
As stated in (Cho, Merriënboer, et al., 2014),
two critical drawbacks exist in the basic
Encoder-Decoder approach: (1) the perfor-
mance degrades when the input sentence gets
longer, (2) the vocabulary size in the target

Figure 5: Illustration of a basic neural network
architecture for NMT with stacked multi-layer
recurrent units.

size is limited.
Attentional models are first proposed in the

field of computer vision, which allows the re-
current network to focus on a small portion in
the image at each step. The internal state is
updated only depends on this glimpse. Soft-
attention first evaluates the weights for all pos-
sible positions to attend, then make a weighted
summarization of all hidden states in the en-
coder. The summarized vector is finally used
to update the internal state of the decoder.
Contrary to hard-attention mechanism which
selects only one location at each step and thus
has to be trained with reinforce learning tech-
niques, soft-attention mechanism makes the
computational graph differentiable and thus
able to be trained with standard backpropa-
gation.

Figure 6: The recurrent network using soft-
attention mechanism to predict next output.
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The application of soft-attention mechanism
in machine translation is firstly described in
(Bahdanau, Cho, and Bengio, 2014), which is
referred as “RNNsearch” in this paper. The
computational graph of a soft-attention NMT
model is illustrated in Figure 6. In which, the
encoder is replaced by a bi-directional RNN,
the hidden states of two RNNs is finally con-
catenated in each input position. At each
time step of decoding, an alignment weight
ai is computed based on the previous state
of the decoder and the concatenated hidden
state of position i in the encoder. The align-
ment weights are finally normalized by soft-
max function. The weighted summarization
of the hidden states in the encoder is then fed
into the decoder. Hence, the internal state of
the decoder is updated based on 3 inputs: the
previous state, weighted summarization of the
encoder and the target-side input token.

The empirical results in (Bahdanau, Cho,
and Bengio, 2014) show that the performance
of RNNsearch does not degrade severely like
normal Encoder-Decoder approach.

4 Solutions of unknown words

A critical practical problem of NMT is the
fixed vocabulary size in the output layer. As
the output layer uses dense connections, en-
larging it will significantly increase the com-
putational complexity and thus slow down the
training.

According to existing publications, two
kinds of approaches are used to tackle
this problem: model-specific and translation-
specific approach. Well known model-
specific approaches are noise-contrastive train-
ing (Mnih and Kavukcuoglu, 2013) and class-
based models (Mikolov et al., 2010). In (Jean
et al., 2015), another model-specific solution
is proposed by using only a small set of tar-
get vocabulary at each update. By using a
very large target vocabulary, they were able
to outperform the state-of-the-art system in
English-German translation task.

Solutions of Translation-specific approach
usually take advantage of the alignment of to-
kens in both sides. For examples, the proposed
method in (Luong et al., 2015) annotates the
unknown target words with “unkposi” instead
of “unk”. Where the subscript i is the position

of the aligned source word for the unknown
target word. The alignments can be obtained
by conventional aligners. The purpose of this
processing step put some cues for recovering
missing words into the output. By applying
this approach, they were able to surpass the
state-of-the-art SMT system in English-French
translation task.

5 Experiments
5.1 Experiment setup
In our experiments, we are curious to see how
NMT models work in English-Japanese trans-
lation and how well the existing approaches
for unknown words fit into this setting. As
Japanese language drastically differs from En-
glish in terms of word order and grammar
structure. NMT models must capture the se-
mantics of long-range dependencies in a sen-
tence in order to translate it well.

We use Japanese-English Scientific Paper
Abstract Corpus (ASPEC-JE) as training
data and focus on evaluating the models for
English-Japanese translation task. In order to
make the training time-efficient, we pick 1.5M
sentences according to similarity score then fil-
ter out long sentences with more than 40 words
in either English or Japanese side. This pro-
cessing step gives 1.1M sentences for training.
We randomly separate out 1,280 sentences as
valid data.

As almost zero pre-knowledge of NMT ex-
periments in English-Japanese translation can
be found in publications, our purpose is to con-
duct a thorough experiment so that we can
evaluate and compare different model archi-
tectures and recurrent units. However, the
limitation of computational resource and time
disallows us to massively test various models,
training schemes, and hyper-parameters.

In our experiments, we evaluated four kinds
of models as follow:

• LSTM Search: Soft-attention model
with LSTM recurrent units

• pre-reordered LSTM Search: Same
as LSTM Search, but the model is trained
on pre-reordered corpus

• GRU Search: Soft-attention model with
GRU recurrent units
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• LSTM Encoder-Decoder: Basic
Encoder-Decoder model with 4 stacked
LSTM layers

Most of the details of these models are com-
mon. The recurrent layers of all the models
contain 1024 neurons each. The size of word
embedding is 1000. We truncate the source-
side and target-side vocabulary sizes to 80k
and 40k respectively. For all models, we in-
sert a dense layer contains 600 neurons imme-
diately before the output layer. We basically
use SGD with learning rate decay as optimiza-
tion method, the batch size is 60 and initial
learning rate is 1. The gradients are clipped
to ensure L2 norm lower than 3. Although we
sort the training data according to the input
length, the order of batches is shuffled before
training. For LSTM units, we set the bias of
forget gate to 1 before training (Jozefowicz,
Zaremba, and Sutskever, 2015). During the
translation, we set beam size to 20, if no valid
translation is obtained, then another trail with
beam size of 1000 will be performed.

5.2 Evaluating models by perplexity
For our in-house experiments, the evaluation
of our models mainly relies on the perplexity
measured on valid data, as a strong correla-
tion between perplexity and translation per-
formance is observed in many existing publi-
cations (Luong et al., 2015). The changing
perplexities of the models described in Section
5.1 are visualized in Figure 7.
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Figure 7: Visualization of the training for dif-
ferent models.

In Figure 7, we can see that soft-attention

models with LSTM unit constantly outper-
forms the muti-layer Encoder-Decoder model.
This matches our expectation as the alignment
between English and Japanese is too compli-
cated thus it is difficult for simple Encoder-
Decoder models to capture it correctly. An-
other observation is that the performance of
the soft-attention model with GRU unit is sig-
nificantly lower than that with LSTM unit.
As this is conflict with the results reported in
other publications (Jozefowicz, Zaremba, and
Sutskever, 2015), one possible explanation is
that some implementation issues exist and fur-
ther investigation is required.

One surprising observation is that using pre-
reordered data to train soft-attention models
does not benefit the perplexity, but degrades
the performance by a small margin. We show
that the same conclusion can be drawn by
measuring translation performance directly in
latter sections.

5.3 Replacing unknown words
Initially, we adapt the solution described in
(Luong et al., 2015), which annotate the un-
known words with “unkposi”, where i is the
position of aligned source word. We find this
require source-side and target-side sentences
roughly aligned. When testing on the soft-
attention model with pre-reordered training
data, we found this method can correctly point
out the rough aligned position of a missing
word. This allows us to recover the missing
output words with a dictionary or SMT sys-
tems.

However, for the training data in natural
order, the position of aligned words in two
languages differs drastically. The solution de-
scribed above can hardly be applied as it an-
notates the unknown words with relative po-
sitions.

Figure 8: Illustration of replacing unknown
words with a back-off system.

Here, we propose a simple workaround for
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recovering the unknown words with a back-off
system. We translate the input sentence using
both a NMT system and a baseline SMT sys-
tem. Assume the translation results are simi-
lar, then if we observe an unknown word in the
result of the NMT system, then it is reason-
able to infer that the rarest word in the base-
line result which is missing in the NMT result
should be this unknown translation. This is
demonstrated in Figure 8, the rarest word in
the baseline result is picked out to replace the
unknown word in the NMT result. Practically,
the assumption will not be true, the results
of NMT systems and conventional SMT sys-
tems differ tremendously. Hence, some incor-
rect word replacements are introduced. This
method can be generalized to recover multiple
unknown words by selecting the rarest word in
a near position.

5.4 Evaluating translation
performance

In this section, we describe our submitted sys-
tems and report the evaluation results in the
English-Japanese translation task of The 2nd
Workshop on Asian Translation 1 (Nakazawa
et al., 2015). We train these models with
AdaDelta for 5 epochs. Then, we fine-tune the
model with AdaGrad using an enlarged train-
ing data, that each sentence contains no more
than 50 words. With this fine-tuning step, we
are able to achieve perplexity of 1.76 in valid
data.

The automatic evaluation results are shown
in Table 1. Three SMT baselines are picked
for comparison. In the middle of the table,
we list two single soft-attention NMT models
with LSTM unit. The results show that train-
ing models on pre-reordered corpus leads to
degrading of translation performance, where
the pre-reordering step is done using the model
described in (Zhu, 2014).

Our submitted systems are basically an en-
semble of two LSTM Search models trained
on natural-order data, as shown in the bot-
tom of Table 1. After we replaced unknown
words with the technique described in 5.3, we
gained 0.8 BLEU on test data. This is our first
submitted system, marked with “S1”.

We also found it is useful to perform a sys-
1Our team ID is “WEBLIO MT”

Table 1: Automatic evaluation results in
WAT2015

Model BLEU RIBES
PB basline 29.80 0.691

HPB baseline 32.56 0.746
T2S baseline 33.44 0.758

Single LSTM Search 32.19 0.797
Pre-reordered LSTM Search 30.97 0.779
Ensemble of 2 LSTM Search 33.38 0.800

+ UNK replacing (S1) 34.19 0.802
+ System combination 35.97 0.807

+ 3 pre-reordered ensembles (S2) 36.21 0.809

tem combination based on perplexity scores.
We evaluate the perplexity for all outputs pro-
duced by a baseline system and the NMT
model. These two sets of perplexity score
are normalized by mean and standard devi-
ation respectively. Then for each NMT result,
we rescore it with the difference of perplexity
against the baseline system. Intuitively, if the
NMT result is better than the baseline result,
the new score shall be a positive number. In
our experiment, we pick the system described
in (Zhu, 2014) as baseline system. We pick
top-1000 results from NMT and the rest from
the baseline system, this gives us a gain of 1.8
in BLEU.

Table 2: Human evaluation results for submit-
ted system in WAT2015

Model HUMAN
T2S baseline 30.000

Submitted system 1 (S1) 43.500
Submitted system 2 (S2) 53.750

Finally, we added 3 pre-reordered LSTM
Search models to the ensemble, results in a 5-
model ensemble. During the translation, these
three models receive pre-reordered input, an-
other two LSTM Search models receive input
in natural order. We gain 0.24 BLEU with
this setting, and this is the second submit-
ted system, marked with “S2”. Human eval-
uation results of our submitted systems are
shown in Table 2. As we already know that
pre-reordering does not help improving trans-
lation performance, a natural choice is to train
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more normal LSTM Search models and put
into the ensemble. We failed to do it because
of insufficient time.

5.5 Qualitative analysis
To find some insights in the translation re-
sults of NMT systems, we performed qualita-
tive analysis on a proportion of held-out devel-
opment data. During the inspection, we found
many errors share the same pattern. It turns
out that NMT model tends to make a perfect
translation by omitting some information dur-
ing the translation. In this case, the output
tends to be a valid sentence, but the mean-
ing is partially lost. One example of this phe-
nomenon is shown in the following snippet:
Input: this paper discusses some systematic

uncertainties including casimir force ,
false force due to electric force , and
various factors for irregular
uncertainties due to patch field and
detector noise .

NMT result: ここ で は ， Ｃａｓｉｍｉｒ 力 を
考慮 し た いく つ か の 系統 的 不 確実 性
に つ い て 論 じ た 。

Reference: Ｃａｓｉｍｉｒ 力 や 電気 力 に よ
る 偽 の 力 ， パッチ 場 や 検出 器 雑音 に
よ る 不 規則 な 不確か さ の 種々 の 要因
を 含め ， 幾 つ か の 系統 的 不確か さ
を 論 じ た 。

6 Conclusion
In this paper, we performed a systematic eval-
uation of various kinds for NMT models in the
setting of English-Japanese translation. Based
on the empirical evaluation results, we found
soft-attention NMT models can already make
good translation results in English-Japanese
translation task. Their performance surpasses
all SMT baselines by a substantial margin ac-
cording to RIBES scores. We also found that
NMT models can work well without extra data
processing steps such as pre-reordering. Fi-
nally, we described a simple workaround to
recover unknown words with a back-off sys-
tem.

However, a sophisticated solution for deal-
ing with unknown words is still an open ques-
tion in the English-Japanese setting. As some
patterns of mistakes can be observed from the
translation results, there exists some space for
further improvements.
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