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Abstract

In this paper we present an approach to re-
duce data sparsity problems when translat-
ing from morphologically rich languages
into less inflected languages by selectively
stemming certain word types. We de-
velop and compare three different integra-
tion strategies: replacing words with their
stemmed form, combined input using al-
ternative lattice paths for the stemmed and
surface forms and a novel hidden combina-
tion strategy, where we replace the stems in
the stemmed phrase table by the observed
surface forms in the test data. This allows
us to apply advanced models trained on the
surface forms of the words.

We evaluate our approach by stem-
ming German adjectives in two
German→English translation scenar-
ios: a low-resource condition as well as a
large-scale state-of-the-art translation sys-
tem. We are able to improve between 0.2
and 0.4 BLEU points over our baseline and
reduce the number of out-of-vocabulary
words by up to 16.5%.

1 Introduction

Statistical machine translation (SMT) is currently
the most promising approach to automatically
translate text from one natural language into an-
other. While it has been successfully used for
a lot of languages and applications, many chal-
lenges still remain. Translating from a morpholog-
ically rich language is one such challenge where
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the translation quality of modern systems is often
still not sufficient for many applications.

Traditional SMT approaches work on a lexical
level, that is every surface form of a word is treated
as its own distinct token. This can create data spar-
sity problems for morphologically rich languages,
since the occurrences of a word are distributed over
all its different surface forms. This problem be-
comes even more apparent when translating from
an under-resourced language, where parallel train-
ing data is scarce.

When we translate from a highly inflected lan-
guage into a less morphologically rich language,
not all syntactic information encoded in the surface
forms may be needed to produce an accurate trans-
lation. For example, verbs in French must agree
with the noun in case and gender. When we trans-
late these verbs into English, case and gender in-
formation may be safely discarded.

We therefore propose an approach to overcome
these sparsity problems by stemming different
morphological variants of a word prior to transla-
tion. This allows us to not only estimate transla-
tion probabilities more reliably, but also to trans-
late previously unseen morphological variants of
a word, thus leading to a better generalization of
our models. To fully maximize the potential of our
SMT system, we looked at three different integra-
tion strategies. We evaluated hard decision stem-
ming, where all adjectives are replaced by their
stem, as well as soft integration strategies, where
we consider the words and their stemmed form as
translation alternatives.

2 Related Work

The specific challenges arising from the transla-
tion of morphologically rich languages have been
widely studied in the field of SMT. The factored
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translation model (Koehn and Hoang, 2007) en-
riches phrase-based MT with linguistic informa-
tion. By translating the stem of a word and its
morphological components separately and then ap-
plying generation rules to form the correct surface
form of the target word, it is possible to generate
translations for surface forms that have not been
seen in training.

Talbot and Osborne (2006) address lexical
redundancy by automatically clustering source
words with similar translation distributions,
whereas Yang and Kirchhoff (2006) propose
a backoff model that uses increasing levels of
morphological abstractions to translate previously
unseen word forms.

Niehues and Waibel (2011) present quasi-
morphological operations as a means to translate
out-of-vocabulary (OOV) words. The automati-
cally learned operations are able to split off po-
tentially inflected suffixes, look up the translation
for the base form using a lexicon of Wikipedia1 ti-
tles in multiple languages, and then generate the
appropriate surface form on the target side. Sim-
ilar operations were learned for compound parts
by Macherey et al. (2011).

Hardmeier et al. (2010) use morphological re-
duction in a German→English SMT system by
adding the lemmas of every word output as a by-
product of compound splitting as an alternative
edge to input lattices. A similar approach is used
by Dyer et al. (2008) and Wuebker and Ney (2012).
They used word lattices to represent different
source language alternatives for Arabic→English
and German→English respectively.

Weller et al. (2013a) employ morphological
simplification for their French→English WMT
system, including replacing inflected adjective
forms with their lemma using hand-written rules,
and their Russian→English (Weller et al., 2013b)
system, removing superfluous attributes from the
highly inflected Russian surface forms. Their sys-
tems are unable to outperform the baseline system
trained on the surface forms. Weller et al. argue
that human translators may prefer the morpholog-
ically reduced system due to better generalization
ability. Their analysis showed the Russian system
often produces an incorrect verb tense, which in-
dicates that some morphological information may
be helpful to choose the right translation even if the
information seems redundant.

1http://www.wikipedia.org

3 Stemming

In order to address the sparsity problem, we try
to cluster words that have the same translation
probability distribution, leading to higher occur-
rence counts and therefore more reliable transla-
tion statistics. Because of the respective morpho-
logical properties of our source and target lan-
guage, word stems pose a promising type of clus-
ter. Moreover, stemming alleviates the OOV prob-
lem for unseen morphological variants. Because of
these benefits, we chose stem clustering in this pa-
per, however, our approach can work on different
types of clusters, e.g. synonyms.

Morphological stemming prior to translation has
to be done carefully, as we are actively discarding
information. Indiscriminately stemming the whole
source corpus hurts translation performance, since
stemming algorithms make mistakes and often too
much information is lost.

Adding the stem of every word as an alterna-
tive to our source sentence greatly increases our
search space. Arguably the majority of the time
we need the surface form of a word to make an in-
formed translation decision. We therefore propose
to keep the search space small by only stemming
selected word classes which have a high diversity
in inflections and whose additional morphological
information content can be safely disregarded.

For our use case of translating from German to
English, we chose to focus only on stemming ad-
jectives. Adjectives in German can have five dif-
ferent suffixes, depending on the gender, number
and case of the corresponding noun, whereas in
English adjectives are only rarely inflected. We
can therefore discard the information encoded in
the suffix of a German adjective without losing any
vital information for translation.

3.1 Degrees of Comparison

While we want to remove gender, number and case
information from the German adjective, we want
to preserve its comparative or superlative nature.
In addition to its base form (e.g. schön [pretty]),
a German adjective can have one of five suffixes
(-e, -em, -en, -er, -es). However, we cannot sim-
ply remove all suffixes using fixed rules, because
the comparative base form of an adjective is identi-
cal to the inflected masculine, nominative, singular
form of an attributive adjective.

For example, the inflected form schöner of the
adjective schön is used as an attributive adjective in
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the phrase schöner Mann [handsome man] and as
a comparative in the phrase schöner wird es nicht
[won’t get prettier]. We can stem the adjective in
the attributive case to its base form without any
confusion (schön Mann), as we generate a form
that does not exist in proper German. However,
were we to apply the same stemming to the com-
parative case, we would lose the degree of com-
parison and still generate a valid German sentence
(schön wird es nicht [won’t be pretty]) with a dif-
ferent meaning than our original sentence. In or-
der to differentiate between cases in which stem-
ming is desirable and where we would lose infor-
mation, a detailed morphological analysis of the
source text prior to stemming is vital.

3.2 Implementation

We used readily available part-of-speech (POS)
taggers, namely the TreeTagger (Schmid, 1994)
and RFTagger (Schmid and Laws, 2008), for mor-
phological analysis and stemming. In order to
achieve accurate results, we performed standard
machine translation preprocessing on our corpora
before tagging. We discarded exceedingly long
sentences and sentence pairs with a large length
difference from the training data. Special dates,
numbers and symbols were normalized and we
smart-cased the first letter of every sentence. Typi-
cally preprocessing for German also includes split-
ting up compounds into their separate parts. How-
ever, this would confuse the POS taggers, which
have been trained on German text with proper
compounds. Furthermore, our compound splitting
algorithm might benefit from a stemmed corpus,
providing higher occurrence counts for individual
word components. We therefore refrain from com-
pound splitting before tagging and stemming.

We only stemmed words tagged as attributive
adjectives, since only they are inflected in Ger-
man. Predicative adjectives are not inflected and
therefore were left untouched. Since we want to
retain the degree of comparison, we used the fine-
grained tags of the RFTagger to decide when and
how to stem. Adjectives tagged as comparative or
superlative were stemmed through the use of fixed
rules. For all others, we used the lemma output by
the TreeTagger, since it is the same as the stem and
was already available in our system.

Finally, our usual compound splitting (Koehn
and Knight, 2003) was trained and performed on
the stemmed corpus.

4 Integration

After clustering the words into groups that can be
translated in the same or at least in a similar way,
there are different possibilities to use them in the
translation system. A naive strategy is to replace
each word by its cluster representative, called hard
decision stemming. However, this carries the risk
of discarding vital information. Therefore we in-
vestigated techniques to integrate both, the surface
forms as well as the word stems, into the transla-
tion system. In the combined input, we add the
stemmed adjectives as translation alternatives to
the preordering lattices. Since this poses problems
for the application of more advanced translation
models during decoding, we propose the novel hid-
den combination technique.

4.1 Hard Decision Stemming

Assuming that the translation probabilities of the
word stems can be estimated more reliably than
those of the surface forms, the most intuitive strat-
egy is to consequently replace each surface form
by its stem. In our case, we replaced all adjec-
tives with their stems. This has the advantage that
afterwards the whole training pipeline can be per-
formed in exactly the same manner as it is done
in the baseline system. For tuning and testing,
the adjectives in the development and test data are
stemmed and replaced in the same manner as in the
training data.

4.2 Combined Input

Mistakes made during hard decision stemming
cannot be recovered. Soft integration techniques
avoid this pitfall by deferring the decision whether
to use the stem or surface form of a word until de-
coding. We enable our system to choose by com-
bining both the surface form based (default) phrase
table and the word stem based (stemmed) phrase
table log-linearly. The weights of the phrase scores
are then learned during optimization.

In order to be able to apply both phrase tables
at the same time, we need to modify the input of
the decoder. Our baseline system already uses pre-
ordering lattices, which encode different reorder-
ing possibilities of the source sentence. We re-
placed every edge in the lattice containing an ad-
jective by two edges: one containing the surface
form and the other the word stem. This allows the
decoder to choose which word form to use depend-
ing on the word and its context.
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Figure 1: Workflow for unstemming the PT.

4.3 Hidden Combination

While we are able to modify our phrase table to
use both surface forms and stems in the last strat-
egy, other models in our log-linear system suffer
from the different types of source input. For ex-
ample, the bilingual language model (Niehues et
al., 2011) is based on tokens of target words and
their aligned source words. In training, we can use
either the stemmed corpus or the original one, but
during decoding a mixture of stems and surface
forms occurs. For the unknown word forms the
scores will not be accurate and the performance
of our model will suffer. Similar problems occur
when using other translation models such as neu-
ral network based translation models.

We therefore developed a novel strategy to in-
tegrate the word stems into the translation system.
Instead of stemming the input to fit the stemmed
phrase table, we modified the stemmed phrase ta-
ble so that it can be applied to the surface forms.
The workflow is illustrated in Figure 1. We ex-
tracted all the stem mappings from the develop-
ment and test data and compiled a stem lexicon.
This maps the surface forms observed in the dev
and test data to their corresponding stems. We
then applied this lexicon in reverse to our stemmed
phrase table, in effect duplicating every entry con-
taining a stemmed adjective with the inflected form
replacing the stem. Afterwards this “unstemmed”
phrase table is log-linearly combined with the de-
fault phrase table and used for translation.

This allows us to retain our generalization won
by using word clusters to estimate phrase proba-
bilities, and still use all models trained on the sur-

face forms. Using the hidden combination strat-
egy, stemming can easily be implemented into cur-
rent state-of-the-art SMT systems without the need
to change any of the advanced models beyond the
phrase table. This makes our approach highly ver-
satile and easy to implement for any number of
system architectures and languages.

5 Experiments

Since we expect stemming to have a larger impact
in cases where training data is scarce, we evalu-
ated the three presented strategies on two different
scenarios: a low-resource condition and a state-of-
the-art large-scale system. In both scenarios we
stemmed German adjectives and translated from
German to English.

In our low-resource condition, we trained an
SMT system using only training data from the
TED corpus (Cettolo et al., 2012). TED trans-
lations are currently available for 107 languages2

and are being continuously expanded. Therefore,
there is a high chance that a small parallel corpus
of translated TED talks will be available in the cho-
sen language.

In the second scenario, we used a large-scale
state-of-the-art German→English translation sys-
tem. This system was trained on significantly more
data than available in the low-resource condition
and incorporates several additional models.

5.1 System Description

The low-resource system was trained only on the
TED corpus provided by the IWSLT 2014 machine
translation campaign, consisting of 172k lines. As
monolingual training data we used the target side
of the TED corpus.

The large-scale system was trained on the Euro-
pean Parliament Proceedings, News Commentary,
TED and Common Crawl corpora provided for the
IWSLT 2014 machine translation campaign (Cet-
tolo et al., 2014), encompassing 4.69M lines. For
the monolingual training data we used the target
side of all bilingual corpora as well as the News
Shuffle and the Gigaword corpus.

Before training and translation, the data is pre-
processed as described in Section 3.2. The noisy
Common Crawl corpus was filtered with an SVM
classifier as described by Mediani et al. (2011).
After preprocessing, the parallel corpora are word-
aligned with the GIZA++ toolkit (Gao and Vo-
2http://www.ted.com/participate/translate
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gel, 2008) in both directions. The resulting align-
ments are combined using the grow-diag-final-and
heuristic. The Moses toolkit (Koehn et al., 2007)
is used for phrase extraction. For the large-scale
system, phrase table adaptation combining an in-
domain and out-of-domain phrase table is per-
formed (Niehues and Waibel, 2012). All transla-
tions are generated by our in-house phrase-based
decoder (Vogel, 2003).

We used 4-gram language models (LMs) with
modified Kneser-Ney smoothing, trained with the
SRILM toolkit (Stolcke, 2002) and scored in the
decoding process with KenLM (Heafield, 2011).

All our systems include a reordering model
which automatically learns reordering rules based
on part-of-speech sequences and, in case of
the large-scale system, syntactic parse tree con-
stituents to better match the target language word
order (Rottmann and Vogel, 2007; Niehues and
Kolss, 2009; Herrmann et al., 2013). The resulting
reordering possibilities for each source sentence
are encoded in a lattice.

For the low-resource scenario, we built two sys-
tems. One small baseline with only one phrase ta-
ble and language model, as well as aforementioned
POS-based preordering model, and an advanced
system using an extended feature set of models
that are also used in the large-scale system. The
extended low-resource and the large-scale system
include the following additional models.

A bilingual LM (Niehues et al., 2011) is used
to increase the bilingual context during transla-
tion beyond phrase boundaries. It is built on to-
kens consisting of a target word and all its aligned
source words. We also used a 9-gram cluster LM
built on 100 automatically clustered word classes
using the MKCLS algorithm (Och, 1999).

The large-scale system also uses an in-domain
LM trained on the TED corpus and a word-based
model trained on 10M sentences chosen through
data selection (Moore and Lewis, 2010).

In addition to the lattice preordering, a lexical-
ized reordering model (Koehn et al., 2005) which
stores reordering probabilities for each phrase pair
is included in both extended systems.

We tune all our systems using MERT (Venu-
gopal et al., 2005) against the BLEU score. Since
the systems have a varying amount of features, we
reoptimized the weights for every experiment.

For the low-resource system, we used IWSLT
test 2012 as a development set and IWSLT test

System Dev Test

Baseline 28.91 30.25
Hard Decision 29.01 30.30
Combined Input 29.13 30.47
Hidden Combination 29.25 30.62

Table 1: TED low-resource small systems results.

2011 as test data. For the large-scale system, we
used IWSLT test 2011 as development data and
IWSLT test 2012 as test data.

All results are reported as case-sensitive BLEU
scores calculated with one reference translation.

5.2 Low-resource Condition

The results for the systems built only on the TED
corpus are summarized in Table 1 for the small sys-
tem and Table 2 for the extended system. The base-
line systems reach a BLEU score on the test set of
30.25 and 31.33 respectively.

In the small system we could slightly improve
to 30.30 using only stemmed adjectives. However,
in the extended system the hard decision strategy
could not outperform the baseline. This indicates
that for words with sufficient data it might be better
to translate the surface forms.

Adding the stemmed forms as alternatives to the
preordering lattice leads to an improvement of 0.2
BLEU points over the small baseline system. In
the larger system with the extended features set,
the combined input performed better than the hard
decision stemming, but is still 0.1 BLEU points be-
low the baseline. With this strategy we do not tap
the full potential of our extended system, as there
is still a mismatch between the combined input and
the training data of the advanced models.

The hidden combination strategy rectifies this
problem, which is reflected in the results. Using
the hidden combination we could achieve our best
BLEU score for both systems. We could improve
by almost 0.4 BLEU points over the small baseline
system and 0.3 BLEU points on the system using
extended features.

System Dev Test

Baseline 29.73 31.33
Hard Decision 29.74 30.84
Combined Input 29.97 31.22
Hidden Combination 29.87 31.61

Table 2: TED extended features systems results.
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System Dev Test

Baseline 38.30 30.89
Hard Decision 38.25 30.82
Combined Input 38.65 31.10
Hidden Combination 38.40 31.08

Table 3: IWSLT large-scale systems results.

5.3 Large-scale System

In order to assess the impact of our stemming on
a state-of-the-art system, we tested our techniques
on a large-scale system using training data from
several domains. The results of these experiments
are summarized in Table 3. The baseline system
achieved a BLEU score of 30.89 on the test set.

As in the low-resource condition, the hard deci-
sion to use only the stems causes a slight drop in
performance. Given the large amount of training
data, the problem of having seen a word few times
is much less severe than before.

When we combine the inputs, we can improve
the translation quality to our best score of 31.10
BLEU points. The hidden combination performs
similarly. By using combined input or hidden com-
bination, we achieved a gain of 0.2 BLEU points
over the baseline.

5.4 Further Analysis

In this work we have focused on selectively stem-
ming only a small subset of our input text, namely
adjectives. We therefore do not expect to see a
large difference in BLEU score in our systems and
indeed the improvements, while existent, are mod-
erate. It is a well known shortcoming of automatic
metrics that they cannot differentiate between ac-
ceptable translation alternatives and errors. Since
time and monetary constraints did not allow us to
perform a full-scale human evaluation, we use the
OOV rate and manual inspection to demonstrate
the benefits of our approach.

For a monolingual user of machine translation
systems, even an imperfect translation will be bet-

ter than no translation at all. We therefore looked at
the out-of-vocabulary (OOV) rate of our systems.

477 OOV words occurred in the test set of the
low-resource baseline. This means of the 1433
lines in our test set, on average every third con-
tained an untranslated word. With stemming we
were able to translate 79 of those words and re-
duce the number of OOV words by 16.5%. Even in
the large-scale system, which is trained on a large
amount of data and therefore has an already low
OOV rate, we achieved a decrease of 4%. Figure 2
shows an example sentence where we managed to
translate two previously OOV words using the hid-
den combination strategy. Furthermore, stemming
can also improve our word choices as shown in the
example in Figure 3.

SRC Aber es war sehr traurig .
REF But it was very sad .

BASE But it was really upset .
H.C. But it was very sad .

Figure 3: Example of improved word choice.

Stemming certain words in a corpus not only af-
fects the translation of that word, but the whole
system. For example, stemming changes the oc-
currence statistics of the stemmed words, and
therefore the output of empirical algorithms such
as compound splitting and word alignment is sub-
ject to change. By combining the stemmed and de-
fault phrase tables, we gave our decoder the chance
to use a phrase from the stemmed phrase table
even if the phrase contains no stemmed words.
A manual evaluation of the output of the hidden
combination system compared to the hard decision
stemmed system showed that the difference was
largely in word order as exemplified in Figure 4.

6 Conclusion

In this paper we addressed the problem of translat-
ing from morphologically rich languages into less
inflected languages. The problem of low occur-

SRC Während Schimpansen von großen , furchteinflößenden Kerlen geführt werden ,
wird die Bonobo - Gesellschaft von ermächtigten Weibchen geführt .

REF While chimpanzees are dominated by big , scary guys , bonobo society is run by empowered females .
BASE As chimpanzees by large , fear einflößenden guys are , the Bonobo-society led by ermächtigten females .

H.C. During the chimpanzees of big , scary guys are , the Bonobo is society of empowered females .

Figure 2: Example translations of the baseline and hidden combination low-resource systems. OOV
phrases have been marked in bold.
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SRC Nun ja , eine Erleuchtung ist für gewöhnlich etwas , dass man findet weil man es irgendwo fallen gelassen hat .
REF And you know , an epiphany is usually something you find that you dropped someplace .
H.D. Well , there is an epiphany usually , something that you can find because it has somewhere dropped .
H.C. Well , an epiphany is usually something that you can find because it has dropped somewhere .

Figure 4: Example of improved word order of the hidden combination over the hard decision system.

rence counts for surface forms and high out-of-
vocabulary rates for unobserved surface forms can
be alleviated by stemming words.

We showed that stemming has to be done care-
fully, since SMT systems are highly sensitive to
lost information. Given our use case of German
to English translation, we chose to only stem ad-
jectives, which can have five suffixes depending
on gender, number and case of the corresponding
noun. We took special care to ensure comparative
and superlative adjectives retained their degree of
comparison after stemming.

As an alternative to the hard decision strategy,
where every word is replaced by its stem, we
proposed two soft integration techniques incorpo-
rating the stems and surface forms as alternative
translation paths in the preordering lattices. State-
of-the-art SMT systems consist of a log-linear
combination of many advanced models. Combin-
ing the surface forms and word stems posed prob-
lems for models relying on source side tokens. We
therefore developed a novel hidden combination
technique, where the word stems in the phrase ta-
ble are replaced by the observed surface forms in
the test data. This allowed us to use the more reli-
ably estimated translation probabilities calculated
on the word stems in the decoder while simultane-
ously applying all our other models to the surface
forms of the words.

We evaluated our approach on
German→English translation in two scenar-
ios, one low-resource condition and a large-scale
state-of-the-art SMT system. Given the low-
resource condition, we evaluated a small, basic
system as well as a more sophisticated system
using an extended feature set. Using the hidden
combination strategy, we were able to outperform
the baseline systems in all three experiments by
0.2 up to 0.4 BLEU points. While these improve-
ments may seem moderate, they were achieved
solely through the modification of adjectives.
We were also able to show that our systems
generalized better than the baseline as evidenced
by the OOV rate, which could be decreased by
16.5% in the low-resource condition.
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