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Abstract

We present a simple and effective ap-
proach to the task of grapheme-to-
phoneme conversion based on a set of
manually edited grapheme-phoneme map-
pings which drives not only the align-
ment of words and corresponding pro-
nunciations, but also the segmentation of
words during model training and applica-
tion, respectively. The actual conversion
is performed with the help of a conditional
random field model, after which a lan-
guage model selects the most likely string
of grapheme-phoneme segment pairs from
the set of hypotheses. We evaluate our
approach by comparing it to a state-of-
the-art joint sequence model with respect
to two different datasets of contemporary
German and one of contemporary English.

1 Introduction

Grapheme-to-phoneme conversion (g2p) is the
process of converting graphematic representations
of words into corresponding phonetic transcrip-
tions. The chief difficulty associated with this task
stems from the ambiguity of graphemes with re-
spect to pronunciation. In German for example,
the letter ‘e’ can be realized as stressed, closed,
long /e:/ (e.g. Met, engl. ‘mead’), as stressed,
open, short /E/ (e.g. kess, engl. ‘perky’), or as un-
stressed /@/ (e.g. Rampe, engl. ‘ramp’). In addi-
tion, ‘e’ occurs in diphthongs (e.g. eu, ei) or as a
length marker (e.g. ie) without being overtly pro-
nounced.

Automated g2p is used most prominently in
text-to-speech (TTS) systems such as that de-
scribed by Black et al. (2001), where phonetic
transcriptions are estimated from input text to
enable subsequent synthesis of a speech signal.
More recently, approaches to automatic canoni-
calization of historical writing systems have made

use of phonetic transcriptions as a normal form for
identifying spelling variants of a modern word (Ju-
rish, 2010; Porta et al., 2013).

2 Previous Work

g2p implementations can be roughly divided into
two types: systems using manually constructed
rules and systems based on some statistical model
automatically induced from training data.

2.1 Rule-based Approaches

Beginning with the well-known The Sound Pat-
tern of English (Chomsky and Halle, 1968, SPE),
phonology has been a favorite topic for grammar-
ians, resulting in a large number of phonological
descriptions based on transformational rule sys-
tems. With Johnson’s (1972) proof that rule sys-
tems such as those used in SPE are equivalent in
power to regular grammars and rewriting systems
as long as they do not require cyclic application
of rules, finite-state machines became the stan-
dard data structure for implementing phonological
grammars.

g2p converters based on a manually designed
grammar exist for many languages. They have
been successfully used in various TTS sys-
tems, including MITalk (Allen et al., 1987),
gnuspeech (Hill et al., 1995), and festival
(Taylor et al., 1998). The biggest problem with
hand-written, grammar-based g2p approaches is
the expertise and effort required for their pro-
duction and maintenance. Consider for example
TETOS (Wothke, 1993), a German g2p system
developed at IBM: its grammar consists of about
1,460 rules and the authors admit, “It may also oc-
cur that special rules will never be applied” (Hei-
necke and Wothke, 1992, p. 16).

2.2 Statistical Approaches

Statistical or data-driven approaches to g2p are
based on the assumption that regularities in the



correspondence between a word’s spelling and its
pronunciation can be automatically inferred from
a set of word+transcription pairs if sufficient ap-
propriate data are available. The main advantage
of such approaches is the fact that creating train-
ing data by (manually) transcribing word pronun-
ciations is a much simpler task than creating a for-
mal model of word pronunciation rules, and can
be performed by non-experts.

Starting with Sejnowski and Rosenberg (1987),
a great number of data-driven g2p techniques have
been proposed. The interested reader is referred to
Reichel et al. (2008) for a competitive compari-
son of various techniques. Of particular interested
in the current context are the works of Bisani and
Ney (2008), who present a joint-sequence model
which has been praised as “the gold standard in
this area” (Novak et al., 2012b, p. 1); and Jiampo-
jamarn and Kondrak (2009), who were the first to
use conditional random field models (CRFs, see
Sec. 3.2) as an underlying statistical framework.

3 Our Approach

gramophone combines a small set of manually
constructed rules with a statistical model induced
from a training set of pre-transcribed words. The
manual contribution constrains the alignment of
the grapheme and phoneme levels, with the aim
of allowing only transparent and linguistically mo-
tivated alignments by for example foregoing free
deletion of either grapheme- or phoneme-symbols
and reducing the number of errors due to inadmis-
sible alignments produced by “pure” statistical ap-
proaches.1 The remainder of the procedure is sim-
ilar to existing approaches: grapheme strings are
converted to phoneme strings and the transcription
pairs are rated according to their probabilities as
estimated from frequency distributions extracted
from the training set.

3.1 Alignment

Usually, phonetic transcriptions in corresponding
data sets are associated with entire words instead
of being explicitly aligned at the grapheme (sub-
string) level. Grapheme-phoneme alignment is
therefore a fundamental preprocessing step for
training a g2p system. The relation between the
grapheme- and phoneme-levels is of type n : m

1The influence of alignment on the overall performance
of g2p systems has been investigated for example by Lehnen
et al. (2011).

with n,m ∈ N. Many automatic alignment pro-
cedures make use of some Levenshtein-like mech-
anism (Levenshtein, 1966) to simplify the afore-
mentioned relation to the more tractable case of
n,m ∈ {0, 1} (Reichel, 2012; Novak et al.,
2012a). Alternatively, string-to-string alignment
estimation algorithms have been proposed (Ji-
ampojamarn et al., 2007; Bisani and Ney, 2008).

The alignment scheme proposed here is inspired
by Black et al. (1998), and may be described as
constraint-based alignment: given a grapheme al-
phabet ΣG, a phoneme alphabet ΣP, and a finite
set M ⊂ (Σ+

G × Σ+
P ) relating grapheme sub-

strings and their potential phonemic realizations,
(a) words and their transcriptions are aligned for
subsequent model training, and (b) admissible seg-
mentations of words into grapheme-substrings are
generated for runtime transcription. The align-
ment step is implemented using finite-state trans-
ducers (FSTs). An FST is a labeled directed graph
T = 〈Q,Σ,Γ, q0, F, δ〉 with a set of states Q, the
input alphabet Σ, the output alphabet Γ, the initial
state q0, a set of final states F , and a transition re-
lation δ ⊆ Q×Q× Σ ∪ {ε} × Γ ∪ {ε}. Given δ,
we may define an extended transition relation δ∗

such that δ ⊆ δ∗, ∀q ∈ Q((q, q, ε, ε) ∈ δ∗) and
∀q, r, s ∈ Q ∀x, y ∈ Σ∗ ∀a, b ∈ Σ((q, r, x, y) ∈
δ∗ ∧ (r, s, a, b) ∈ δ) → (q, s, xa, yb) ∈ δ∗). Ele-
ments from δ∗ are called paths in T .

Starting from the given set of admissible map-
pings M , we create an FST E, which we hence-
forth call the editor for M . For each mapping
(g, p) ∈ M , a path (q0, q0, g · |, p · _) is added
to E with q0 serving as the initial as well as the
only final state of E. ‘|’ and ‘_’ are reserved de-
limiter symbols. Next, we construct FSTs IG and
IP which insert the respective delimiter symbol
between grapheme and phoneme segments from
M into words and phonetic transcriptions, respec-
tively. IG contains a path (q0, q0, g, g · |) for every
g in the domain of M . It generates all admissible
segmentations by inserting the delimiter symbol at
the appropriate location(s) on its output tape. Here
again, q0 is the initial as well as the only final state.
IP is defined analogously, and contains a path for
every element in the codomain of M . Finally, we
construct simple letter FSTs W for a word and T
for its phonetic transcription. The alignmentAW,T

is then the result of a series of composition opera-



(a) M =
{

p : /p/, h : /h/, ph : /f/, ö : /ø:/, ö : /œ/
n : /n/, i : /I/, k : /k/, s : /s/, x : /ks/

}
(b) Grapheme Segmentations = { p|h|ö|n|i|x|, ph|ö|n|i|x| }

(c) Phoneme Segmentations = { f ø: n I ks , f ø: n I k s }

(d)
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(e) Alignment = { ph|ö|n|i|x| : f ø: n I ks }

Figure 1: gramophone alignment sketch for Phönix (engl. ‘phoenix’), pronounced /fø:nIks/. Phone-
mic symbols on the output tape are quoted with slashes ‘/’. (a) grapheme-to-phoneme segment mapping,
(b) grapheme segmentations generated by composition with IG, (c) phoneme segmentations generated by
composition with IP, (d) grapheme-to-phoneme segment mapping editor E, and (e) resulting alignment.

tions:2

AW,T = π2(W ◦ IG) ◦ E ◦ π2(T ◦ IP) (1)

If multiple admissible alignments were possible –
if AW,T contains more than one successful path
– then a unique alignment path was chosen ran-
domly.

2The expression π2(X) in Equations 1 and 2 denotes the
2nd projection (output tape) of the transducer X . We assume
that the returned acceptors are treated as identity-transducers
in the subsequent compositions.

To generate the admissible segmentations S of
a word for subsequent transcription during the
application stage, we make use of the first sub-
expression of Equation 1, repeated below as Equa-
tion 2:

S = π2(W ◦ IG) (2)

A simple example of a g2p editor is sketched in
Figure 1e.



3.2 Transcription

We treat the transcription stage as an instance
of a label assignment task: from the set of
known phoneme segments (labels) from M , se-
lect for each grapheme segment in an admissible
word segmentation (observation) the most likely
phoneme segment in the given context. In our
case, labeling is performed using a CRF (Lafferty
et al., 2001). Such models have become extremely
popular in natural language processing (NLP) and
have for example been applied to morphological
analysis, tokenization, and part-of-speech tagging,
in addition to g2p. CRFs can be considered a gen-
eralization of probabilistic finite-state automata in
the sense that they relax the requirement that each
label (state) may depend only on a fixed number of
previous labels (states) and the current observation
(Rabiner, 1989). In contrast to modeling the joint
probability of a state and an observation sequence,
the conditional probability of a state given an ob-
servation sequence is modeled (Wallach, 2004).

The CRF is inferred from aligned “gra-
phone” strings – strings of (grapheme-substring,
phoneme-substring) pairs – given a set of features.
These features can be understood as random vari-
ables expressing the characteristics of an observa-
tion. The selection of useful features is a non-
trivial task. In the present case, we chose to rely
only on the (observable) grapheme context. We
treat the size of the available context as a free pa-
rameter N , which we refer to as the “order” of
the resulting gramophone model. Each position
i in the input grapheme string o = o1 . . . on ∈
Σ∗
G is assigned a feature for each substring of

o of length m ≤ N within a context window
of N − 1 characters relative to position i. For-
mally, a gramophone model of order N has
2N2 −

∑N
m=1m distinct feature functions fkj ,

where −N < j ≤ k < N and k − j < N , with
fkj (oi) = oi+joi+j+1 · · · oi+k−1oi+k.

The training process is essentially the optimiza-
tion of the influence (i.e. weights) of the features
by maximum likelihood learning. During runtime
application, the labeling by the CRF selects the b
most probable transcription(s) for each admissible
segmentation.

3.3 Rating

The segmented and labeled transcription candi-
dates returned by the CRF transcription phase are
then rated using anN -gram language model to de-

termine a univocal “best” transcription for each in-
put word. The model is defined over strings of
grapheme-phoneme segment pairs (“graphones”),
defining a joint probability for each such string as
a product of conditional probabilities under the ap-
propriate Markov independence assumptions. N -
gram language models are a standard tool in NLP
and can be implemented with (weighted) finite-
state techniques (Pereira and Riley, 1997).

The conditional probabilities of the graphone
segment N -grams are determined by simply
counting graphone substrings of length N and
computing their relative frequencies. To amelio-
rate sparse data problems, some smoothing tech-
nique has to be applied. In the present case, we
use interpolation (Jelinek and Mercer, 1980) of all
k-gram distributions with 1 ≤ k ≤ N in combi-
nation with Kneser-Ney discounting (Kneser and
Ney, 1995) for treatment of out-of-vocabulary
items. Effectively, the rating step selects the most
probable word-transcription pair from the set of all
previously generated candidates for a given word,
as estimated by the graphone N -gram model in-
duced from the training set.

4 Evaluation

We evaluated the system described above on the
task of grapheme-to-phoneme conversion for con-
temporary German and English. German has
a rich morphology in terms of word formation
processes which are also applicable to foreign
words and named entities (e.g. Versaillesdiktat
/vEKzaI

“
dIkta:t/, engl. ‘Versailles diktat’). Ele-

ments of German and foreign pronunciation may
thus occur within a single word, which causes
finite list-based exception strategies for handling
such material to fail. We report the influence of
model order on both word and phoneme error rates
(WER and PER, respectively) for gramophone
in comparison to sequitur,3 a freely available
implementation of Bisani and Ney’s (2008) ap-
proach.

4.1 Implementation

Alignment and segmentation procedures were im-
plemented with the help of OpenFST (Allauzen
et al., 2007). For training and run-time application
of CRFs we used the wapiti toolkit (Lavergne et
al., 2010), employing only unigram feature tem-

3http://www-i6.informatik.rwth-aachen.
de/web/Software/g2p.html



plates as described in Section 3.2 and allowing
the CRF labeling phase to generate b = 3 can-
didate transcriptions for each admissible segmen-
tation. The final rating of candidate hypotheses
was performed using the OpenGRM N -gram li-
brary (Roark et al., 2012).

4.2 Data

We employ three different data sets for the
comparative evaluation of gramophone and
sequitur. The first is the Bielefeld Lexi-
con Database VM-II (Gibbon and Lüngen, 2000,
“LexDb”), which contains 76,936 entries. We
converted all words to lowercase, removed dupli-
cates and in cases of multiple pronunciation vari-
ants for a word selected the first record. 71,481
words and their corresponding phonological rep-
resentations remained for evaluation purposes.4

The second dataset we used for evaluation is
based on the pronunciations provided by the Ger-
man part of the wiktionary project.5 These pro-
nunciations were created manually using common
guidelines,6 and are encoded using the Interna-
tional Phonetic Alphabet (International Phonetic
Association, 1999, “IPA”). From the wiktionary
XML dump retrieved on 23rd April, 2014, we ex-
tracted 148,279 entries which were flagged as Ger-
man and include a phonetic transcription. Af-
ter conversion to lower-case, removal of dupli-
cates, and exclusion of incomplete pronunciations
(e.g. when only an inflectional suffix was tran-
scribed), 147,359 entries remained. Again, we se-
lected the first available record in cases of mul-
tiple pronunciation variants for a word. In ad-
dition, we performed an extensive manual revi-
sion of the data, addressing phenomena such as
incorrect IPA realizations, pseudo-words or mis-
transcriptions of inflected forms possibly due to
“copy & paste” editing. The complete revised list
is available for download together with the soft-
ware used for evaluation at http://kaskade.

4LexDb was also chosen by Bisani and Ney (2008) to
evaluate their approach on German. The authors reported ex-
cellent results (WER 1.75%, PER 0.28%), far better than
those reported for other languages or datasets of compara-
ble size. Such remarkable differences may be attributed to
a greater transparency of German’s orthography (versus for
example that of English), but may also be due at least in part
to the fact that pronunciations in LexDb were to a large ex-
tent automatically generated (Lüngen, p.c.), a property which
make them a dubious choice for purposes of g2p evaluation.

5http://de.wiktionary.org
6http://de.wiktionary.org/wiki/

Wiktionary:Deutsch/Lautschrift

dwds.de/gramophone/.
Additionally, we used a subset of 73,736 words

from the English part of the CELEX database
(Baayen et al., 1995) to test gramophone’s per-
formance on English data, which has a reputation
for being especially problematic for g2p systems.
The principle challenge for g2p on English data
lies in its comparative lack of phonological trans-
parency compared to languages such as German or
Spanish. Our implementation included for exam-
ple 25 different grapheme patterns associated with
the unstressed mid central vowel /@/, compared to
only 5 for German.

4.3 Method

For each dataset, we manually prepared a set of
grapheme-phoneme segment mappings M as de-
scribed in Section 3.1. For the SAMPA-encoded
LexDb dataset we enumerated 277 distinct map-
ping pairs, versus 589 such pairs for the IPA-
encoded wiktionary dataset and 463 pairs for the
CELEX dataset. Each dataset was randomly par-
titioned into ten chunks of approximately equal
size and evaluated by 10-fold cross-validation.
For each of the ten training subsets and for
each model order N with 1 ≤ N ≤ 5, we
trained a sequitur model of order N and a
gramophone model using a context window of
N grapheme segments for CRF model features
and a language model of order N for candidate
rating as described in Sections 3.2 and 3.3, respec-
tively. 5% of the training subset was reserved as
a development set for testing model convergence
criteria for both sequitur and CRF model train-
ing. Each trained model was applied to the re-
spective disjoint test subset, and both word- and
phoneme-error rates were computed for the con-
catenation of all test subsets.

4.4 Results & Discussion

Evaluation results for sequitur and
gramophone are given in Table 1. The
gramophone system outperformed sequitur
for all conditions tested, although the differences
between the two systems became less pronounced
as model order increased. On the English CELEX
dataset with model order N = 5 for example,
gramophone and sequitur differed by only
48 phoneme errors and 50 word errors, rendering
the methods effectively indistinguishable in this
case.



sequitur gramophone ∆
Dataset N WER% PER% WER% PER% WER% PER%
de-LexDB 1 98.21 34.88 86.26 21.37 12.17 38.73
de-LexDB 2 33.12 5.26 27.94 4.18 15.64 20.53
de-LexDB 3 7.26 1.00 4.19 0.55 42.29 45.00
de-LexDB 4 1.80 0.26 1.36 0.19 24.44 26.92
de-LexDB 5 1.18 0.16 1.02 0.14 13.56 12.50
de-wiktionary 1 98.62 43.21 89.77 29.68 8.97 31.31
de-wiktionary 2 59.46 12.40 51.72 9.97 13.02 19.60
de-wiktionary 3 22.78 4.13 18.78 3.31 17.56 19.85
de-wiktionary 4 12.29 2.22 11.03 1.96 10.25 11.71
de-wiktionary 5 9.61 1.74 9.05 1.66 5.83 4.60
en-CELEX 1 98.53 45.18 87.50 31.45 11.19 30.39
en-CELEX 2 67.02 17.77 51.44 12.21 23.25 31.29
en-CELEX 3 30.74 6.71 22.80 4.85 25.83 27.72
en-CELEX 4 13.58 2.81 11.36 2.37 16.35 15.66
en-CELEX 5 8.98 1.88 8.91 1.87 0.78 0.53

Table 1: Evaluation results for sequitur and gramophone. Relative error-rate reduction values in the
rightmost two columns are computed as ∆r = (rsequitur−rgramophone)/rsequitur for r ∈ {WER,PER}.

For both sequitur and gramophone, er-
ror rates were substantially higher for wiktionary
and CELEX than for LexDB. Taken together
with the unusually high accuracy rates for LexDB
reported by Bisani and Ney (2008), this phe-
nomenon suggests that the grapheme-phoneme
correspondences encoded in LexDB are them-
selves particularly amenable to machine learning
techniques. Given that these data were to a large
extent automatically generated, this is not surpris-
ing. Nonetheless, it may also be the case that
the raw wiktionary data – due to the distributed
and collaborative nature of their creation – dis-
play less internal consistency than single-source
datasets typically created in the context of aca-
demic projects. Although we attempted to ad-
dress and remove such inconsistencies as part of
the data preparation process described in Section
4.2, some degree of noise is likely to remain in the
wiktionary data.

In general, gramophone models learned more
quickly than their sequitur counterparts of the
same order, but the relative improvement tends to
decrease as the order of the model increases, par-
ticularly with regard to phoneme error-rates. In-
deed, the observed differences in transcription ac-
curacy between the two approaches on all three
datasets becomes negligible for N = 5. In
light of these trends, it may well be the case
that sequitur will “overtake” gramophone

as model order grows beyond N = 5, since
gramophone’s reliance on a set of manual align-
ment heuristics would prevent it from discov-
ering a correct transcription whenever the nec-
essary segment mappings are not encoded in
its editor, effectively setting an upper bound
for gramophone transcription accuracy. Lack-
ing any such alignment constraints, sequitur
would be free to learn the proper transcriptions in
such cases.

5 Conclusion & Outlook

We have presented gramophone, a hybrid sys-
tem for grapheme-to-phoneme conversion using
a simple set of manually constructed alignment
mappings to provide a grapheme-level segmenta-
tion of each input word. Each segment is assigned
a phoneme-segment label by a conditional random
field model, and the resulting graphone strings are
passed to an N -gram language model to select the
optimal transcription. We tested our approach by
comparing it to the sequitur system described
by Bisani and Ney (2008) on two independent
datasets of contemporary German and one of con-
temporary English.

Our approach outperformed sequitur on
all conditions tested, although decreasing ab-
solute and relative error reduction rates for
gramophone with respect to sequitur lead
in general to only minimal observable differences



for model order N = 5. Future work should
investigate whether the upper bound imposed by
gramophone’s reliance on explicit heuristics to
provide all admissible segmentations counteracts
its performance benefits with respect to pure sta-
tistical approaches such as sequitur for higher
model orders.

We are also interested in determining to what
extent the gramophone architecture can be sim-
ulated using purely (weighted) finite-state means,
in particular with the aim of reducing memory-,
I/O-, and computation overhead incurred by over-
generation in the alignment phase by means of
“lazy” best-path search in weighted transducer
cascades (Mohri, 2002; Jurish, 2010a). While
CRFs cannot in general be represented as WF-
STs, the CRF employed by gramophone uses
only observable features and thus contains no
overt feature-dependency cycles; it is currently un-
known to the authors whether a WFST equiva-
lent exists in this case. Similarly, the shift from
a transducer-like representation during the label-
ing phase to a string-of-pairs representation for the
rating phase cannot in general be implemented us-
ing traditional (W)FSTs, since these do not admit
intersection in the general case (Roche and Sch-
abes, 1997). We speculate that since the maximum
length of an alignment mapping is finite and deter-
mined at compile-time by the finite set of mapping
heuristics, an efficient WFST approximation may
be possible.
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