
Accounting for Allomorphy in Finite State Transducers

Michael Maxwell
University of Maryland, College Park MD 20742 USA

mmaxwell@umd.edu

Abstract

Building morphological parsers with exist-
ing finite state toolkits can result in some-
thing of a mis-match between the program-
ming language of the toolkit and the lin-
guistic concepts familiar to the average lin-
guist. We illustrate this mismatch with a
particular linguistic construct, suppletive
allomorphy, and discuss ways to encode
suppletive allomorphy in the Stuttgart Fi-
nite State tools (sfst). The complexity of
the general solution motivates our work
in providing an alternative formalism for
morphology and phonology, one which can
be translated automatically into sfst or
other morphological parsing engines.

1 Introduction

While many morphological transducers have been
built using finite state tools such as the Xerox Fi-
nite State Tool (xfst and lexc, (Beesley and Kart-
tunen, 2003)) and the Stuttgart Finite State Tools
(sfst, (Schmid, 2005)), linguists with whom we
have worked, who are mostly not computer scien-
tists or even computer programmers, have found
such a project daunting. We have therefore cre-
ated a descriptive mechanism that more closely
models views of morphology and phonology that
linguists are already familiar with. The resulting
formal descriptions are automatically translated
into the programming language of a finite state
transducer (currently, sfst). For this XML-based
descriptive mechanism to work, the constructs of
the model must be automatically mappable into
the constructs available in the transducer, and this
mapping must work for all instances of such con-
structs.

Many linguistic structures indeed have a fairly
straightforward mapping into the formalism of fi-
nite state technology. Phonological rules (in rule-
based theories of phonology) for example map rea-
sonably well to replace rules in xfst and sfst (al-
though phonological rules expressed in terms of
phonological features would not map so easily). In
such a case, the XML formalism is essentially syn-
tactic sugar.

However, not all linguistic structures have such
a straightforward mapping. Some structures are
simply beyond the reach of finite state systems;
recursive syntactic structures are an obvious ex-
ample. Within morphology, full (unlimited) redu-
plication is another, although xfst provides a work-
around for this. In some cases, however, a linguis-
tic structure may be finite state, but still difficult
to express in a natural and general way using ex-
isting finite state formalisms.

This paper describes one linguistic phenomenon,
suppletive allomorphy, which has proven difficult
to reliably encode in sfst. In the next section I
describe some desiderata for a linguistically based
descriptive system. The following section explains
how suppletive allomorphy works, and the section
after that describes an algorithm we initially tried
in our attempts to treat suppletive allomorphy, but
which gave wrong results in some cases. The fi-
nal algorithm works correctly, and we have imple-
mented it to build parsers from grammars encoded
in our linguistic formalism.

2 A descriptive system for
morphology

Our descriptive mechanism is an XML-based rep-
resentation of morphology and phonology, which
readily accomodates most morphological and rule-
based phonological structures (as character or
phoneme-based representations, not as feature-
based representations). A converter (written in
Python) translates this linguistic representation
into the sfst code needed to build a parser. This
system has been described elsewhere ((Maxwell
and David, 2008; ?; ?; ?); see also (Maxwell, ac-
cepted)), and we will not go into details here. Suf-
fice to say that the mechanism covers the following
sorts of linguistic structures: fusional and aggluti-
native morphology with both prefixes and suffixes;
affix processes such as reduplication1; extended

1The descriptive mechanism handles most forms of
reduplication, although underapplication is a problem,
as it is in theoretical linguistics ((Inkelas and Zoll,
2005)). There are some issues with the treatement of
reduplication in finite state transducers, some of a the-
oretical nature (unbounded reduplication is not finite

exponence (morphosyntactic features realized on
more than one affix, implying a sort of agreement
between affixes); inflection classes; stem and affix
allomorphy governed by phonological rules (with
rules being optionally sensitive to exception fea-
tures); suppletive stem and affix allomorphs; sup-
pletive word forms (requiring blocking of hyper-
regular forms); and dialectal and spelling variation.

For the working linguist who does not consider
him or herself to be a programmer, the XML rep-
resentation offers several advantages over encoding
grammars in the programming language of some fi-
nite state transducer:
Software independence: The use of XML

means that we can create formal grammar
specifications which are independent of any
particular transducer.

Longevity: Software independence means our
formal grammar descriptions will be portable
into the next generations of software.

Linguistic basis: By basing our XML schema on
linguistically recognized concepts, we ensure
that the resulting descriptions are linguistically
sound.

Theory agnosticism: At the same time, adher-
ing too closely to a particular linguistic theory
would threaten the longevity of data encoded
in the schema, and thereby limit the potential
audience of users to those linguists who knew
(and liked) that theory. Our schema therefore
attempts to follow the notion of Basic Linguis-
tic Theory ((Dixon, 2009b; ?)).

Alternative analyses: It not always possible to
provide a schema that is general enough to ac-
comodate a wide variety of theories; instead,
the schema must provide optionsdifferent ways
to analyze phenomenawhich jointly allow for
different theoretical approaches, or different
analyses within a single approach.

Ease of use by linguists: A linguistically-based
description language allows linguists to con-
struct grammars in a way that should already
be familiar to them, making it easier for them
to build and maintain parsers. This is particu-
larly evident where a linguistic structure is not
straightforwardly mappable into a finite state
transducers programming language: our sys-
tem is adapted to the user, rather than the user
having to adapt to the programming language.

These desiderata are used in later sections of this
paper to motivate design decisions.

3 Suppletive allomorphy

Suppletive allomorphy is phonologically condi-
tioned allomorphy (that is, it is not driven by in-

state) and some of a more practical nature (lengthy
reduplicated strings can result in slow compilation and
large finite state networks).

flection classes) for which phonological processes
cannot reasonably be posited. Carstairs ()[p.
21]Carstairs1987 and Paster (()paster2009) give
examples, of which one is the Turkish passive suf-
fix. This takes the form n after a vowel-final stem,
and l elsewhere. While this can be expressed using
phonological rules, it is not natural to do so, and
attempting to do so could easily lead to improper
application of the rule elsewhere.

Generative phonologists often avoid the use of
allomorphs, assuming instead a single underlying
form of each affix, and generating alternative forms
of morphemes by the use of phonological rules.
Where such rules can be easily defined, and when
they handle the allomorphy of a large number of
morphemes (for instance stem allomorphy, or suf-
fixal allomorphy due to vowel harmony, as in Turk-
ish), this makes sense. But phonological rules have
a drawback: if not written carefully, they can ap-
ply to the wrong forms. Working linguists often use
allomorphy in situations where they could write a
reasonable phonological rule, but have not gotten
around to writing it yet, or because the rule would
require refinement in order to prevent incorrect
application. In fact even generative linguists de-
bate the boundary between suppletive allomorphy
and allomorphy that can be attributed to general
phonological rules ((Kiparsky, 1996; Bonet and
Harbour, 2012).) This situation thus presents an
example of our desideratum mentioned in section
2, namely to allow alternative descriptive meth-
ods, rather than forcing the linguist to model a
phenomenon in a particular way.

Hence, the need for our system to handle supple-
tive allomorphy has three motivations: some allo-
morphy cannot reasonably be treated with phono-
logical rules; even where it can, the linguist may
simply prefer to use suppletion; and even if the
linguist may eventually come up with appropriate
phonological rules, rendering the use of suppletion
unnecessary, we wish the system to be usable from
the beginning of the linguist’s work.

Allomorphs by definition appear in mutually ex-
clusive phonological environments. While it is al-
ways possible to state each allomorphs environ-
ment as mutually exclusive, it is often easier to
represent them as a sequence from most specific to
least specific; the first allomorph in this list whose
environment is satisfied in a particular inflected
wordform is chosen. The last allomorph in such
a list is usually an elsewhere case, chosen if none
of the preceding allomorphs in the list have envi-
ronments which are satisfied ((Kiparsky, 1973)).

As an example, consider the English noun plural
suffix. This suffix has three phonologically condi-
tioned allomorphs: a voiced /z/, a voiceless /s/,
and /z/.2 While these may be derived by phono-

2We will not discuss unusual plurals, such as the en

logical rules (which could also handle the verbal
third person singular and the possessive clitic, and
perhaps the verbal past tense ed), for illustrative
purposes assume the allomorphs are to be repre-
sented suppletively:3

/z/ : (s—z————)
/s/ : (p—t—k)
/z/ : elsewhere

(after b, d, hard g, vowels...; but not after s, z,
...p, t, k)

The order is important. In particular, the else-
where case must apply last, lest it bleed the appli-
cation of the other cases. This is represented here
as extrinsic ordering. The first and second cases
do not need to be ordered in this character-based
formulation.4

It is not immediately obvious how to express
such a list in finite state terms. In general, one of
two methods might be used: either the allomorphs
could be tested one by one on each wordform, and
the first one that matches would be chosen; or each
allomorph in the list could be allowed to occur in
its phonological environment, and also forbidden to
occur in any of the environments of the allomorphs
preceding it in the list.

4 Implementing suppletive
allomorphy

In this section, I will first discuss the first imple-
mentation of suppletive allomorphy that we did,
and show why it fails in a way that may not be im-
mediately obvious. Following that, I describe our
working implementation.

4.1 Implementation 1: Realizational
implementation

Our first implementation was quite simple. The
underlying form is represented by the stem plus
a unique symbol for each affix; these symbols are
then realized by (converted to) the allomorph ap-
propriate to their phonological environment. The
unique symbol can be the affixs gloss, which is
typically something like ¡PL¿ or ¡1.Sg¿; the angled
brackets indicate to sfst that this is a single sym-
bol. Algorithm 1 implements this.

Suppose the lexicon consists of the noun stems
{/bot/ boat, /kls/ class, and /tri/ tree}; and sup-

of oxen; nor irregular plurals such as geese, mice. I
also ignore stems ending in /f/, since in many words
this is /v/ in the plural, which then takes the /z/ suffix
allomorph: wife/wives.

3The examples are represented using IPA charac-
ters, since the standard orthography does not make
the distinctions in a consistent way.

4If the allomorph environments were stated inten-
sionally in terms of phonological features, rather than
extensionally as lists of phonemes, the first and second
allomorphs of this affix would be need to be extrinsi-
cally ordered with respect to each other as well.

Initialization: Initialize Lexicon to contain an
underlying representation wordform of each
cell in the paradigm of each Stem in the
dictionary, where each wordform consists of a
stem and its affixes according to the
morphotactics of the language, and with each
Affix represented by a unique label.
Then:
foreach Affix in Slots do

foreach Allomorph in Allomorphs of
Affix do

if the phonological environment
specified by Allomorph is satisfied
then

replace Affix with Allomorph

end

end

end
return Lexicon.

Algorithm 1: Realizational implementation

pose that there is one affix, PL, with allomorphs
[z /(s—z————) , s /(p—t—k) , and z /else-
where]. Then the set of underlying plural forms
will be {/klsPL/, /botPL/, /triPL/}. Applying al-
gorithm 1 to /klsPL/, the environment of the first
allomorph /z/ is satisfied, hence /klsPL/ becomes
/klsz/. For /botPL/, the environment of the /z/
allomorph is not satisified, but that of the /s/ al-
lomorph is; hence the result is /bots/. Finally, for
/triPL/ neither the environment of /z/ nor that of
/s/ is satisfied, so the elsewhere case gives /triz/.
The results for this simple case are correct.

Unfortunately, this simple implementation will
fail if there is more than one order (layer) of af-
fixes, there are allomorphs in at least two of those
orders, and the choice of allomorphs in each or-
der depends on the allomorph chosen in another
order. For example, consider a hypothetical ag-
glutinating language in which the first order suf-
fix /an/ assimilates in point of articulation to a
following consonant, while the second order suffix
/za/ assimilates in voicing to a preceding conso-
nant. Assuming consonants in this language are
labial, coronal or velar, the first suffix would have
allomorphs /am/, /an/, and /a/, while the sec-
ond suffix would have allomorphs /za/ and /sa/.
While it is easy to write the replacement rules for
each affix individually that would generate the cor-
rect allomorphs, it is not possible to simultaneously
condition each on the output of the other.

Does such a hypothetical case occur in reality?
I have not been able to find clear examples. How-
ever, several facts combine to make it difficult to
discount the problem. First, it is true that affixes
are usually inwardly phonologically sensitive. That
is, the choice of a suffix allomorph more often de-

pends only on the phonemes to its left, and vice
versa for a prefix; this has, in fact, been claimed
to be a universal ((Bobaljik, 2000)). If this were
always the case, we could simply apply the algo-
rithm in such a way as to convert affixes to allo-
morphs from the inside out.5 Nevertheless, there
are at least alleged cases of outward phonological
sensitivity (e.g. (Deal and Wolf, to appear)), so it is
not possible to rule out a priori a language in which
adjacent affixes interact in this way–and we would
prefer not to create an implementation which only
works if a particular linguistic theory is correct (the
point dubbed theory agnosticism above).

Second, there are certainly cases of phonological
processes which operate in an outwardly sensitive
manner. For example, assimilation of nasal con-
sonsants to the point of articulation of a follow-
ing consonant is frequent (cf. (Bonet and Harbour,
2012, footnote 22)). While these cases can often
be treated by phonological rules which change one
phoneme to another (as opposed to realizing an
abstract morpheme as one or another of its allo-
morphs), such an analysis may not be obviously
correct to a linguist: there may for instance be ap-
parent counter-examples,6 or for one reason or an-
other the linguist may choose not to implement the
rule-based analysis. This comes back to the point
made in section 2 that we wish to allow the linguist
to describe a language as they prefer to analyze it,
rather than imposing a theoretical straightjacket
based on what is easy to implement.

Thirdly, there are cases in which an affix and
a stem interact, both selecting allomorphs of the
other. Many Austronesian languages have a prefix
which ends in a nasal consonant when followed by a
vowel-initial stem. When followed by a consonant-
initial stem, the final nasal consonant of the prefix
and the initial consonant of the stem may coalesce
into a single nasal consonant with the stem conso-
nants point of articulation ((Pater, 1999)). Since
both the prefix and the stem are altered, if this is to
be expressed by allomorphs (rather than by means
of a phonological process), both the prefix and the
stem must have mutually conditioning allomorphs.
If a similar situation occurs between affixes, then
it would not be statable under algorithm 1.

Finally, even if mutual conditioning never occur-
sand it is certainly statistically infrequentthe fact

5This assumes, as seems likely, that there is never
phonological conditioning between prefixes and suf-
fixes.

6The English derivational prefix in has allomorphs
im before bilabials, il before /l/, and ir before /r/ (as
well as /i/ before velars, although this is not written in
the orthography). The derivational prefix un, however,
has no analogous allomorphs. A phonological rule that
assimilated /n/ to the following consonant would there-
fore be difficult to write so as to handle both affixes.
While this is a case of inward sensitivity, the analogous
situation with outward sensitivity cannot be ruled out.

that phonological outward sensitivity (if not nec-
essarily mutual phonological conditioning) some-
times occurs means that a converter from a lin-
guistically based description into sfst code would
need to recognize such sensitivity and construct
an order of application of the realizational rules
that would ensure that for any outwardly sensitive
affixes, the allomorphs of affixes appearing imme-
diately outside of the outwardly sensitive affix were
chosen before those of the outwardly sensitive affix,
reversing the normal inside-to-outside order of the
algorithm. While this is possible, it adds consider-
able complexity to the algorithm. As we show be-
low, it is possible to allow for both inward and out-
ward phonological conditioning at the same time,
rendering unnecessary the added complexity of or-
dering the allomorph constraint checking based on
whether the sensitivity is inward or outward.

In sum, while it will usually be possible to con-
struct a grammar in which the order of allomorph
selection avoids the need for simultaneous mutual
conditioning of two affixes, this adds an unneces-
sary complexity to the converter, and in some cases
this may be impossible. Since our converter must
work for all grammars that someone might write,
the converter must be able to handle this situation,
and therefore algorithm 1 is not sufficient for our
purposes.

I note in passing that another way to handle af-
fix allomorphy would be to select the correct al-
lomorph at the point at which the affix is being
attached to the base, avoiding the intermediate
stage in which the affix is represented by a label on
the surface side. Unfortunately, this suffers from
an even worse version of the problem that algo-
rithm 1 suffered from: there is no way to handle
outward phonological sensitivity in the choice of
allomorphs. We must therefore look for another
solution.

4.2 Implementation 2: Allomorphy by
logic

Our working implementation encodes the allo-
morph constraints by logic, as it were. Recall that
in the ordered list of allomorphs, the first allo-
morph which can apply to a particular wordform is
allowed to apply; any remaining allomorphs cannot
appear in that environment. Thus, the first allo-
morph must appear in environment 1; the second
allomorph must appear in environment 2, but must
not appear in environment 1, even if environment 1
is a subset of environment 2; and so forth, with the
final allomorph typically being an elsewhere case,
which is allowed to appear in any wordform so long
as the allomorph is not in environment 1, 2, 3....

An algorithm for this, which overcomes the prob-
lems of algorithm 1, is given in 2.7 The sfst code

7The documentation for xfst and for sfst differ in

generated by this algorithm is straightforward, but
in our experience parts of it can be difficult to
get right by handwhich of course is our motiva-
tion for providing a linguistically based formalism
that is translated automatically into the necessary
sfst code, freeing up the user to think about the
linguistics rather than the somewhat complex sfst
code.

As mentioned above, the algorithm has been
implemented in Python, and converts the XML-
based representation to sfst. When we speak of
loops, therefore, we are talking about how the
Python code loops over a set of affixes or allo-
morphs; the sfst code of course does not contain
loops. To avoid confusion, we identify the pseudo-
code which would be output as sfst statements by
enclosing that pseudo-code in a Python function
SFSTOutput().

Initialization: Initialize Lexicon to contain
each wordform consisting of a stem plus all
Allomorphs of all Slots, according to the
morphotactics of the language. Include a label
before and after each Allomorph with the
gloss of its Affix.
Then:
foreach Affix in the set of Slots of each
part of speech do

foreach Allomorph in the ordered list of
Allomorphs of Affix do

1 SFSTOutput(Set TemporaryLexicon
equal to the subset of Lexicon that
contains Allomorph.)

2 SFSTOutput(Remove from Lexicon all
instances of Allomorph).

3 SFSTOutput(Remove from Lexicon all
instances of Affix which appear in the
environment specified by Allomorph).

4 SFSTOutput(Set TemporaryLexicon
equal to the subset of
TemporaryLexicon where Allomorph

is found in the environment it specifies,
and then remove all labels of Affix
from the surface side of
TemporaryLexicon).

5 SFSTOutput(Add TemporaryLexicon

back to Lexicon).
end

end
return SFSTOutput(Lexicon)

Algorithm 2: Logic implementation

The initialization is straightforward. At the end
of the initialization, the Lexicon will contain word-

their use of the terms upper and lower to designate
sides of transducers. To avoid confusion, I adopt the
terms lexical and surface.

forms of the following type (using the sfst nota-
tion):

(bot|kls|tri)

<PL> ({<>}:{\-z}
|{<>}:{\-s}
|{<>}:{\-z})

<>:<PL>

We will use this toy lexicon to illustrate the func-
tioning of the algorithm.

The <PL> symbol bracketing the allomorphs on
the surface side ensures that the algorithm applies
allomorph constraints of a given affix only to the
allomorphs of that affix, and not to sequences of
phonemes which happen to be identical to the al-
lomorph but which belong to another affix, or to
a stem. In part this could be accomplished by en-
suring that boundary markers separate each affix
from other morphemes; this prevents an affix al-
lomorph from being confused with part of a stem,
for example.

However, some linguists may prefer not to use
boundary markers, which have a checkered his-
tory in theoretical phonology. Furthermore, the
use of boundary markers does not prevent the al-
lomorph of one affix from being confusable with
the allomorph of another affix, or even with a small
stem. This potential confusion will cause problems
if the phonological conditioning of homophonous
allomorphs differs for different affixes. While this
may be unusual across languages, it cannot be dis-
counted;8 and it can certainly happen if two affixes
each have zero (null) allomorphs, since those zeroes
would be homophonous. We therefore include on
the surface side the label (<PL>, to distinguish this
allomorph from allomorphs of other affixes.

Since this example has only a single affix <PL>,
the algorithm makes only a single pass through the
outer loop.9

The first pass through the inner loop is for the
allomorph -z. Step 1 uses the following sfst code to
copy all paths containing this allomorph into the
temporary variable:10

$TemporaryLexicon$ =

$Lexicon$

8In English, the possessive clitic (written as
apostrophe-s) has a slightly different distribution of
allomorphs from the plural noun suffix: the clitic of-
ten has a null allomorph when it follows a word-final
/s/, particularly if the final syllable of the word is un-
stressed: Jesus disciples.

9A reviewer asked whether the algorithm is capable
of handling unbounded affixation. The short answer is
no; but then I am not aware of any language with un-
bounded affixation. That is, agglutinating (and even
polysynthetic) languages generally have a limited num-
ber of derivational affixes, and a fixed number of slots
for inflectional affixes.

10I have made simplifications for expository pur-
poses, e.g. word boundary markers are not shown.

|| (.*<PL>\-z<PL>.*)
Step 2, which removes all paths containing in-
stances of this same allomorph from $Lexicon$,
looks like this:

$Lexicon$ =

$Lexicon$

|| (!(.*<PL>\-z<PL>.*))
At this point, $TemporaryLexicon$ includes all
paths containing instances of the z allomorph, and
$Lexicon$ includes no instances of that allomorph.

Step 3 then removes all instances of any allo-
morph of the <PL> suffix from the lexicon, provided
those instances appear in the environment where z
is expected:11

$Lexicon$ =

$Lexicon$

|| (!(.*(s|z||||)<PL>.*<PL>.*))

Of course steps 2 and 3 could be combined into a
single sfst command.

At this stage, $TemporaryLexicon$ contains all
instances of the z allomorph. Step 4 first removes
from $TemporaryLexicon$ any instances of the z
allomorph which do not appear in the correct en-
vrionment,12 and then removes the <PL> tags from
the surface side:13

$TemporaryLexicon$ =

$TemporaryLexicon$

|| (.*(s|z||||)<PL>\-z<PL>.*))
|| (<PL>:<> ^-> <> __)

Finally, $TemporaryLexicon$ is added back to
$Lexicon$. $Lexicon$ now contains instances of
the z only where this allomorph immediately fol-
lows strident consonants (s, z, , , and); further-
more, these instances are no longer tagged as <PL>.
$Lexicon$ also contains paths containing the s and
z allomorphs, still tagged with the <PL> marker,
but neither of these two allomorphs now appears
after a strident consonant.

In the second pass through the inner loop, steps
1 and 2 use sfst code which is virtually identical
to that of the first pass, save that the allomorph s
appears in place of z.

The code in step 3 for removing all instances
of Affix tagged as <PL> in the environment be-
longing to this second allomorph, shown below, re-
moves instances of the -z allomorph appearing in

11The sfst code shown here assumes that there can
be no more than one instance of an affix tagged <PL>
in any wordform. The converter warns the user if this
assumption does not hold.

12Since the only instances of the <PL> affix contained
in $TemporaryLexicon$ are of the z allomorph, \-z
could be replaced by .* in this sfst code.

13In sfst, replace rules require an explicit environ-
ment, hence the rule requires a regular expression to
the left or right of the environment bar; an epsilon,
written ¡¿, suffices.

this environment, but has no effect on the instances
of the -z allomorph, since the tags bracketing that
allomorph were removed in step 4 in the previous
pass.

$Lexicon$ =

$Lexicon$

|| (!(.*(p|t|k)<PL>.*<PL>.*))

The code for step 4 is also similar to that in the
first pass, but this time applies to the s allomorph
and its environment, ensuring that this allomorph
is found only in its specified environment; it then
removes the <PL> tags from the surface side:

$TemporaryLexicon$ =

$TemporaryLexicon$

|| (.*(p|t|k)<PL>\-s<PL>.*))
|| (<PL>:<> ^-> <> __)

Again, the contents of $TemporaryLexicon$ are
added back to $Lexicon$, which will now contain
all paths for which the z and s allomorphs are
found in their correct environments (but without
the <PL> tags on the surface side), as well as paths
for the z allomorph (still bracketed by <PL> on the
surface side) where this allomorph is not found in
the environment for the z or s allomorphs.

Finally, on the third pass through the inner loop,
steps 1 and 2 again use sfst code which is simi-
lar to that of the previous passes, except that the
allomorph z appears. Since this is the last allo-
morph, after step 2 there will be no instances in
$Lexicon$ of this affix tagged by <PL> on the sur-
face; and step 3, which removes all instances of
the affix with those tags from $Lexicon$, is there-
fore unnecessary (although performing it will do
no harm).

Step 4 is supposed to restrict the appearance
of the allomorph in $TemporaryLexicon$ to those
paths in which it appears in the appropriate envi-
ronment. Since this final allomorph is the else-
where case, the environment is effectively any-
thing, and this step therefore makes no change to
$TemporaryLexicon$, except to remove the <PL>

tags from the surface side:

$TemporaryLexicon$ =

$TemporaryLexicon$

|| (.*<PL>\-z<PL>.*))
|| (<PL>:<> ^-> <> __)

Again, we add $TemporaryLexicon$ back to
$Lexicon$, which will now contain all paths for
the three allomorphs, each in all and only its cor-
rect environments, and without the <PL> tags on
the surface.

If there were more affixes, their allomorphs
would be constrained to the correct environments
during subsequent passes through the outer loop.

In order for this solution to work in agglutinat-
ing languages, where there may be more than one

order of prefixes or suffixes, one additional refine-
ment is needed. The sfst code in steps 3 and 4
must overlook any affix labels. For example, sup-
pose we had a hypothetical agglutinating language
like this toy English example, but with an addi-
tonal order of suffixes between the stem and the
plural suffix, containing affixes marking the person
of the possessor. Before the application of step 1,
the surface side of words in this language might
look like bot<1>{d}<1><PL>{z}<PL>, where <1> is
the tag used for one of the first order affixes (in-
tended here to represent a first person possessor).
In order for the sfst code in step 1 to see that the
phoneme to the left of the <PL> suffix is the /d/ of
the inner suffix, it must be possible for it to over-
look the intervening affix label <1>.14 Fortunately,
sfst provides a construct which allows for ignoring
specific characters, the insertion operator, written
<<.15 The refined code needed in step 4 (using the
second pass through the loop as an example) for
in this hypothetical agglutinating language would
therefore be:

$TemporaryLexicon$ =

$TemporaryLexicon$

|| (.*((p|t|k)<< <1>)<PL>\-s<PL>.*))
|| (<PL>:<> ^-> <> __)

Note that all the labels for affixes which have
not yet been processed by the inner loop of the
algorithm must be ignored. The code to ignore
these affix labels is added by our converter in the
relevant places.

5 Conclusion

We have described a treatment of allomorphs that
accounts for the fact that they are ordered, with
the first allomorph whose phonological environ-
ment is satisfied in any particular word taking pri-
ority over the remaining allomorphs. This treat-
ment has been implemented in our converter from
XML to sfst. This enables linguists to think in
terms of concepts they are familiar with, without
worrying about how to reliably encode them in sfst.

While one might refer to this XML-based de-
scription language as ”syntactic sugar,” we have
found it to be an essential nutrient for gram-
mar writing. The reason is that some constructs–
such as the allomorph constraints discussed in this
paper–are very hard to get right in practice. By
allowing the user to think of them in much sim-
pler terms–and in particular, in linguistic terms–

14If suffixes are processed left-to-right, the ¡1¿ labels
on the surface side could have been removed prior to
this processing step. However, this problem would still
arise for phonological conditioning by suffixes to the
right of the plural suffix: another instance of the out-
ward sensitivity problem.

15This same mechanism is used in our system to al-
low morpheme boundary markers to be ignored.

we have made it easier for the linguists to get their
grammars right, or at least to think of linguis-
tic problems, rather than programming language
problems.

In fact, what we have constructed is a linguis-
tically based higher order programming language;
and the converter from our XML representation is
analogous to a compiler for a programming lan-
guage, except that instead of outputting assembly
language code, it outputs sfst code. Another sim-
ilarity between the converter and many program-
ming language compilers is the need for some de-
gree of optimization in the output code. We have
found that long sfst commands tend to make the
sfst-compiler program very slow. Accordingly, the
converter breaks up long commands into shorter
ones by assigning the output of intermediate steps
to variables. For example, the left and right en-
vironments of phonological rules and allomorph
constraints are compiled separately into FSAs and
stored as intermediate variables, before the entire
phonological rule or allomorph constraint is com-
piled and applied.16 Again, the fact that the op-
timization is done by the converter frees up the
linguist from having to deal with this.

In addition to the converter from XML to sfst,
we are developing other tools to make it easier for
linguists to build morphological transducers. One
of these tools is a debugger, which in its present
form displays the derivation from underlying to
surface form, including the application of phono-
logical rules. The debugger does not yet display
the steps described in this paper for the applica-
tion of the allomorphs constraints; that is future
work.

References

Kenneth R. Beesley and Lauri Karttunen. 2003.
Finite State Morphology. University of Chicago
Press, Chicago.

Jonathan David Bobaljik. 2000. The ins and
outs of contextual allomorphy. In University of
Maryland Working Papers in Linguistics, vol-
ume 10, page 3571. University of Maryland.

Eullia Bonet and Daniel Harbour. 2012. Contex-
tual allomorphy. In Jochen Trommer, editor,
The Morphology and Phonology of Exponence,
volume 41 of Oxford Studies in Theoretical Lin-
guistics. Oxford University Press.

Andrew Carstairs-McCarthy. 1987. Allomorphy in
Inflexion. Croom Helm.

16Differently from programming language compiler
optimization, the optimization performed by our con-
verter is intended to speed up the subsequent sfst com-
pilation step, not the run-time performance.

Andrew Damerell Carstairs. 1987. Allomorphy in
inflexion. Croom Helm linguistics series. Croom
Helm, London.

Anne David and Michael Maxwell. 2008. Joint
grammar development by linguists and com-
puter scientists. In IJCNLP (DBL, 2008), pages
27–34.

2008. Third International Joint Conference on
Natural Language Processing, IJCNLP 2008,
Hyderabad, India, January 7-12, 2008. The As-
sociation for Computer Linguistics.

Amy Rose Deal and Matthew Wolf, (to appear).
Outwards-sensitive phonologically-conditioned
allomorphy in Nez Perce. Oxford University
Press.

R. M. W. Dixon. 2009a. Basic Linguistic Theory,
volume 2: Grammatical Topics. Oxford Univer-
sity Press.

R.M.W. Dixon. 2009b. Basic Linguistic The-
ory, volume 1: Methodology. Oxford University
Press.

Mans Hulden. 2009. Foma: a finite-state compiler
and library. In Proceedings of the 12th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Demonstrations
Session, page 2932. Association for Computa-
tional Linguistics.

Sharon Inkelas and Cheryl Zoll. 2005. Reduplica-
tion: Doubling in Morphology. Cambridge Stud-
ies in Linguistics. Cambridge University Press.

Paul Kiparsky. 1973. elsewhere in phonology. In
Stephen R. Anderson, editor, A Festschrift for
Morris Halle, pages 93–106. Holt, New York.

Paul Kiparsky. 1996. Allomorphy or mor-
phophonology? In Rajendra Singh, editor, Tru-
betzkoy’s Orphan: Proceedings of the Montreal
Roundtable Morphonology: Contemporary Re-
sponses, pages 13–31. Benjamins, Amsterdam.

Michael Maxwell and Anne David. 2008. Interop-
erable grammars. In Jonathan Webster, Nancy
Ide, and Alex Chengyu Fang, editors, First In-
ternational Conference on Global Interoperabil-
ity for Language Resources (ICGL 2008), pages
155–162, Hong Kong.

Michael Maxwell. 2010. Standardization as a
means to sustainability. In Workshop on Lan-
guage Resources: From Storyboard to Sustain-
ability and LR Lifecycle Management, pages 30–
33. LREC 2010.

Michael Maxwell. 2012. Electronic grammars and
reproducible research. In Sebastian Nordoff and
Karl-Ludwig G. Poggeman, editors, Electronic
Grammaticography, pages 207–235. University of
Hawaii Press.

Michael Maxwell. (accepted). Grammar debug-
ging. Workshop on Systems and Frameworks for
Computational Morphology.

Mary E. Paster. 2006. Phonological Conditions on
Affixation. Ph.D. thesis, University of Califor-
nia, Berkeley.

Mary E. Paster. 2009. Explaining phonological
conditions on affixation: Evidence from supple-
tive allomorphy and affix ordering 1. 2(1):18–37.

Joe Pater. 1999. Austronesian nasal substitu-
tion and other NC effects. In Ren Kager, Harry
van der Hulst, and Wim Zonneveld, editors, The
Prosody Morphology Interface, pages 310–343.
Cambridge University Press.

Helmut Schmid. 2005. A programming language
for finite state transducers. In Anssi Yli-Jyr,
Lauri Karttunen, and Juhani Karhumki, editors,
Proceedings of the 5th International Workshop
on Finite State Methods in Natural Language
Processing (FSMNLP 2005).

